peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/random.py
""" | |
The mod:`sklearn.utils.random` module includes utilities for random sampling. | |
""" | |
# Author: Hamzeh Alsalhi <[email protected]> | |
# | |
# License: BSD 3 clause | |
import array | |
import numpy as np | |
import scipy.sparse as sp | |
from . import check_random_state | |
from ._random import sample_without_replacement | |
__all__ = ["sample_without_replacement"] | |
def _random_choice_csc(n_samples, classes, class_probability=None, random_state=None): | |
"""Generate a sparse random matrix given column class distributions | |
Parameters | |
---------- | |
n_samples : int, | |
Number of samples to draw in each column. | |
classes : list of size n_outputs of arrays of size (n_classes,) | |
List of classes for each column. | |
class_probability : list of size n_outputs of arrays of \ | |
shape (n_classes,), default=None | |
Class distribution of each column. If None, uniform distribution is | |
assumed. | |
random_state : int, RandomState instance or None, default=None | |
Controls the randomness of the sampled classes. | |
See :term:`Glossary <random_state>`. | |
Returns | |
------- | |
random_matrix : sparse csc matrix of size (n_samples, n_outputs) | |
""" | |
data = array.array("i") | |
indices = array.array("i") | |
indptr = array.array("i", [0]) | |
for j in range(len(classes)): | |
classes[j] = np.asarray(classes[j]) | |
if classes[j].dtype.kind != "i": | |
raise ValueError("class dtype %s is not supported" % classes[j].dtype) | |
classes[j] = classes[j].astype(np.int64, copy=False) | |
# use uniform distribution if no class_probability is given | |
if class_probability is None: | |
class_prob_j = np.empty(shape=classes[j].shape[0]) | |
class_prob_j.fill(1 / classes[j].shape[0]) | |
else: | |
class_prob_j = np.asarray(class_probability[j]) | |
if not np.isclose(np.sum(class_prob_j), 1.0): | |
raise ValueError( | |
"Probability array at index {0} does not sum to one".format(j) | |
) | |
if class_prob_j.shape[0] != classes[j].shape[0]: | |
raise ValueError( | |
"classes[{0}] (length {1}) and " | |
"class_probability[{0}] (length {2}) have " | |
"different length.".format( | |
j, classes[j].shape[0], class_prob_j.shape[0] | |
) | |
) | |
# If 0 is not present in the classes insert it with a probability 0.0 | |
if 0 not in classes[j]: | |
classes[j] = np.insert(classes[j], 0, 0) | |
class_prob_j = np.insert(class_prob_j, 0, 0.0) | |
# If there are nonzero classes choose randomly using class_probability | |
rng = check_random_state(random_state) | |
if classes[j].shape[0] > 1: | |
index_class_0 = np.flatnonzero(classes[j] == 0).item() | |
p_nonzero = 1 - class_prob_j[index_class_0] | |
nnz = int(n_samples * p_nonzero) | |
ind_sample = sample_without_replacement( | |
n_population=n_samples, n_samples=nnz, random_state=random_state | |
) | |
indices.extend(ind_sample) | |
# Normalize probabilities for the nonzero elements | |
classes_j_nonzero = classes[j] != 0 | |
class_probability_nz = class_prob_j[classes_j_nonzero] | |
class_probability_nz_norm = class_probability_nz / np.sum( | |
class_probability_nz | |
) | |
classes_ind = np.searchsorted( | |
class_probability_nz_norm.cumsum(), rng.uniform(size=nnz) | |
) | |
data.extend(classes[j][classes_j_nonzero][classes_ind]) | |
indptr.append(len(indices)) | |
return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int) | |