peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/schema.py
import re | |
import warnings | |
from collections import defaultdict | |
from dataclasses import is_dataclass | |
from datetime import date, datetime, time, timedelta | |
from decimal import Decimal | |
from enum import Enum | |
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network | |
from pathlib import Path | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Callable, | |
Dict, | |
ForwardRef, | |
FrozenSet, | |
Generic, | |
Iterable, | |
List, | |
Optional, | |
Pattern, | |
Sequence, | |
Set, | |
Tuple, | |
Type, | |
TypeVar, | |
Union, | |
cast, | |
) | |
from uuid import UUID | |
from typing_extensions import Annotated, Literal | |
from .fields import ( | |
MAPPING_LIKE_SHAPES, | |
SHAPE_DEQUE, | |
SHAPE_FROZENSET, | |
SHAPE_GENERIC, | |
SHAPE_ITERABLE, | |
SHAPE_LIST, | |
SHAPE_SEQUENCE, | |
SHAPE_SET, | |
SHAPE_SINGLETON, | |
SHAPE_TUPLE, | |
SHAPE_TUPLE_ELLIPSIS, | |
FieldInfo, | |
ModelField, | |
) | |
from .json import pydantic_encoder | |
from .networks import AnyUrl, EmailStr | |
from .types import ( | |
ConstrainedDecimal, | |
ConstrainedFloat, | |
ConstrainedFrozenSet, | |
ConstrainedInt, | |
ConstrainedList, | |
ConstrainedSet, | |
ConstrainedStr, | |
SecretBytes, | |
SecretStr, | |
StrictBytes, | |
StrictStr, | |
conbytes, | |
condecimal, | |
confloat, | |
confrozenset, | |
conint, | |
conlist, | |
conset, | |
constr, | |
) | |
from .typing import ( | |
all_literal_values, | |
get_args, | |
get_origin, | |
get_sub_types, | |
is_callable_type, | |
is_literal_type, | |
is_namedtuple, | |
is_none_type, | |
is_union, | |
) | |
from .utils import ROOT_KEY, get_model, lenient_issubclass | |
if TYPE_CHECKING: | |
from .dataclasses import Dataclass | |
from .main import BaseModel | |
default_prefix = '#/definitions/' | |
default_ref_template = '#/definitions/{model}' | |
TypeModelOrEnum = Union[Type['BaseModel'], Type[Enum]] | |
TypeModelSet = Set[TypeModelOrEnum] | |
def _apply_modify_schema( | |
modify_schema: Callable[..., None], field: Optional[ModelField], field_schema: Dict[str, Any] | |
) -> None: | |
from inspect import signature | |
sig = signature(modify_schema) | |
args = set(sig.parameters.keys()) | |
if 'field' in args or 'kwargs' in args: | |
modify_schema(field_schema, field=field) | |
else: | |
modify_schema(field_schema) | |
def schema( | |
models: Sequence[Union[Type['BaseModel'], Type['Dataclass']]], | |
*, | |
by_alias: bool = True, | |
title: Optional[str] = None, | |
description: Optional[str] = None, | |
ref_prefix: Optional[str] = None, | |
ref_template: str = default_ref_template, | |
) -> Dict[str, Any]: | |
""" | |
Process a list of models and generate a single JSON Schema with all of them defined in the ``definitions`` | |
top-level JSON key, including their sub-models. | |
:param models: a list of models to include in the generated JSON Schema | |
:param by_alias: generate the schemas using the aliases defined, if any | |
:param title: title for the generated schema that includes the definitions | |
:param description: description for the generated schema | |
:param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the | |
default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere | |
else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the | |
top-level key ``definitions``, so you can extract them from there. But all the references will have the set | |
prefix. | |
:param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful | |
for references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For | |
a sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. | |
:return: dict with the JSON Schema with a ``definitions`` top-level key including the schema definitions for | |
the models and sub-models passed in ``models``. | |
""" | |
clean_models = [get_model(model) for model in models] | |
flat_models = get_flat_models_from_models(clean_models) | |
model_name_map = get_model_name_map(flat_models) | |
definitions = {} | |
output_schema: Dict[str, Any] = {} | |
if title: | |
output_schema['title'] = title | |
if description: | |
output_schema['description'] = description | |
for model in clean_models: | |
m_schema, m_definitions, m_nested_models = model_process_schema( | |
model, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
) | |
definitions.update(m_definitions) | |
model_name = model_name_map[model] | |
definitions[model_name] = m_schema | |
if definitions: | |
output_schema['definitions'] = definitions | |
return output_schema | |
def model_schema( | |
model: Union[Type['BaseModel'], Type['Dataclass']], | |
by_alias: bool = True, | |
ref_prefix: Optional[str] = None, | |
ref_template: str = default_ref_template, | |
) -> Dict[str, Any]: | |
""" | |
Generate a JSON Schema for one model. With all the sub-models defined in the ``definitions`` top-level | |
JSON key. | |
:param model: a Pydantic model (a class that inherits from BaseModel) | |
:param by_alias: generate the schemas using the aliases defined, if any | |
:param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the | |
default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere | |
else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the | |
top-level key ``definitions``, so you can extract them from there. But all the references will have the set | |
prefix. | |
:param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for | |
references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a | |
sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. | |
:return: dict with the JSON Schema for the passed ``model`` | |
""" | |
model = get_model(model) | |
flat_models = get_flat_models_from_model(model) | |
model_name_map = get_model_name_map(flat_models) | |
model_name = model_name_map[model] | |
m_schema, m_definitions, nested_models = model_process_schema( | |
model, by_alias=by_alias, model_name_map=model_name_map, ref_prefix=ref_prefix, ref_template=ref_template | |
) | |
if model_name in nested_models: | |
# model_name is in Nested models, it has circular references | |
m_definitions[model_name] = m_schema | |
m_schema = get_schema_ref(model_name, ref_prefix, ref_template, False) | |
if m_definitions: | |
m_schema.update({'definitions': m_definitions}) | |
return m_schema | |
def get_field_info_schema(field: ModelField, schema_overrides: bool = False) -> Tuple[Dict[str, Any], bool]: | |
# If no title is explicitly set, we don't set title in the schema for enums. | |
# The behaviour is the same as `BaseModel` reference, where the default title | |
# is in the definitions part of the schema. | |
schema_: Dict[str, Any] = {} | |
if field.field_info.title or not lenient_issubclass(field.type_, Enum): | |
schema_['title'] = field.field_info.title or field.alias.title().replace('_', ' ') | |
if field.field_info.title: | |
schema_overrides = True | |
if field.field_info.description: | |
schema_['description'] = field.field_info.description | |
schema_overrides = True | |
if not field.required and field.default is not None and not is_callable_type(field.outer_type_): | |
schema_['default'] = encode_default(field.default) | |
schema_overrides = True | |
return schema_, schema_overrides | |
def field_schema( | |
field: ModelField, | |
*, | |
by_alias: bool = True, | |
model_name_map: Dict[TypeModelOrEnum, str], | |
ref_prefix: Optional[str] = None, | |
ref_template: str = default_ref_template, | |
known_models: Optional[TypeModelSet] = None, | |
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: | |
""" | |
Process a Pydantic field and return a tuple with a JSON Schema for it as the first item. | |
Also return a dictionary of definitions with models as keys and their schemas as values. If the passed field | |
is a model and has sub-models, and those sub-models don't have overrides (as ``title``, ``default``, etc), they | |
will be included in the definitions and referenced in the schema instead of included recursively. | |
:param field: a Pydantic ``ModelField`` | |
:param by_alias: use the defined alias (if any) in the returned schema | |
:param model_name_map: used to generate the JSON Schema references to other models included in the definitions | |
:param ref_prefix: the JSON Pointer prefix to use for references to other schemas, if None, the default of | |
#/definitions/ will be used | |
:param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for | |
references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a | |
sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. | |
:param known_models: used to solve circular references | |
:return: tuple of the schema for this field and additional definitions | |
""" | |
s, schema_overrides = get_field_info_schema(field) | |
validation_schema = get_field_schema_validations(field) | |
if validation_schema: | |
s.update(validation_schema) | |
schema_overrides = True | |
f_schema, f_definitions, f_nested_models = field_type_schema( | |
field, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
schema_overrides=schema_overrides, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models or set(), | |
) | |
# $ref will only be returned when there are no schema_overrides | |
if '$ref' in f_schema: | |
return f_schema, f_definitions, f_nested_models | |
else: | |
s.update(f_schema) | |
return s, f_definitions, f_nested_models | |
numeric_types = (int, float, Decimal) | |
_str_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = ( | |
('max_length', numeric_types, 'maxLength'), | |
('min_length', numeric_types, 'minLength'), | |
('regex', str, 'pattern'), | |
) | |
_numeric_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = ( | |
('gt', numeric_types, 'exclusiveMinimum'), | |
('lt', numeric_types, 'exclusiveMaximum'), | |
('ge', numeric_types, 'minimum'), | |
('le', numeric_types, 'maximum'), | |
('multiple_of', numeric_types, 'multipleOf'), | |
) | |
def get_field_schema_validations(field: ModelField) -> Dict[str, Any]: | |
""" | |
Get the JSON Schema validation keywords for a ``field`` with an annotation of | |
a Pydantic ``FieldInfo`` with validation arguments. | |
""" | |
f_schema: Dict[str, Any] = {} | |
if lenient_issubclass(field.type_, Enum): | |
# schema is already updated by `enum_process_schema`; just update with field extra | |
if field.field_info.extra: | |
f_schema.update(field.field_info.extra) | |
return f_schema | |
if lenient_issubclass(field.type_, (str, bytes)): | |
for attr_name, t, keyword in _str_types_attrs: | |
attr = getattr(field.field_info, attr_name, None) | |
if isinstance(attr, t): | |
f_schema[keyword] = attr | |
if lenient_issubclass(field.type_, numeric_types) and not issubclass(field.type_, bool): | |
for attr_name, t, keyword in _numeric_types_attrs: | |
attr = getattr(field.field_info, attr_name, None) | |
if isinstance(attr, t): | |
f_schema[keyword] = attr | |
if field.field_info is not None and field.field_info.const: | |
f_schema['const'] = field.default | |
if field.field_info.extra: | |
f_schema.update(field.field_info.extra) | |
modify_schema = getattr(field.outer_type_, '__modify_schema__', None) | |
if modify_schema: | |
_apply_modify_schema(modify_schema, field, f_schema) | |
return f_schema | |
def get_model_name_map(unique_models: TypeModelSet) -> Dict[TypeModelOrEnum, str]: | |
""" | |
Process a set of models and generate unique names for them to be used as keys in the JSON Schema | |
definitions. By default the names are the same as the class name. But if two models in different Python | |
modules have the same name (e.g. "users.Model" and "items.Model"), the generated names will be | |
based on the Python module path for those conflicting models to prevent name collisions. | |
:param unique_models: a Python set of models | |
:return: dict mapping models to names | |
""" | |
name_model_map = {} | |
conflicting_names: Set[str] = set() | |
for model in unique_models: | |
model_name = normalize_name(model.__name__) | |
if model_name in conflicting_names: | |
model_name = get_long_model_name(model) | |
name_model_map[model_name] = model | |
elif model_name in name_model_map: | |
conflicting_names.add(model_name) | |
conflicting_model = name_model_map.pop(model_name) | |
name_model_map[get_long_model_name(conflicting_model)] = conflicting_model | |
name_model_map[get_long_model_name(model)] = model | |
else: | |
name_model_map[model_name] = model | |
return {v: k for k, v in name_model_map.items()} | |
def get_flat_models_from_model(model: Type['BaseModel'], known_models: Optional[TypeModelSet] = None) -> TypeModelSet: | |
""" | |
Take a single ``model`` and generate a set with itself and all the sub-models in the tree. I.e. if you pass | |
model ``Foo`` (subclass of Pydantic ``BaseModel``) as ``model``, and it has a field of type ``Bar`` (also | |
subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also subclass of ``BaseModel``), | |
the return value will be ``set([Foo, Bar, Baz])``. | |
:param model: a Pydantic ``BaseModel`` subclass | |
:param known_models: used to solve circular references | |
:return: a set with the initial model and all its sub-models | |
""" | |
known_models = known_models or set() | |
flat_models: TypeModelSet = set() | |
flat_models.add(model) | |
known_models |= flat_models | |
fields = cast(Sequence[ModelField], model.__fields__.values()) | |
flat_models |= get_flat_models_from_fields(fields, known_models=known_models) | |
return flat_models | |
def get_flat_models_from_field(field: ModelField, known_models: TypeModelSet) -> TypeModelSet: | |
""" | |
Take a single Pydantic ``ModelField`` (from a model) that could have been declared as a subclass of BaseModel | |
(so, it could be a submodel), and generate a set with its model and all the sub-models in the tree. | |
I.e. if you pass a field that was declared to be of type ``Foo`` (subclass of BaseModel) as ``field``, and that | |
model ``Foo`` has a field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of | |
type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. | |
:param field: a Pydantic ``ModelField`` | |
:param known_models: used to solve circular references | |
:return: a set with the model used in the declaration for this field, if any, and all its sub-models | |
""" | |
from .main import BaseModel | |
flat_models: TypeModelSet = set() | |
field_type = field.type_ | |
if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel): | |
field_type = field_type.__pydantic_model__ | |
if field.sub_fields and not lenient_issubclass(field_type, BaseModel): | |
flat_models |= get_flat_models_from_fields(field.sub_fields, known_models=known_models) | |
elif lenient_issubclass(field_type, BaseModel) and field_type not in known_models: | |
flat_models |= get_flat_models_from_model(field_type, known_models=known_models) | |
elif lenient_issubclass(field_type, Enum): | |
flat_models.add(field_type) | |
return flat_models | |
def get_flat_models_from_fields(fields: Sequence[ModelField], known_models: TypeModelSet) -> TypeModelSet: | |
""" | |
Take a list of Pydantic ``ModelField``s (from a model) that could have been declared as subclasses of ``BaseModel`` | |
(so, any of them could be a submodel), and generate a set with their models and all the sub-models in the tree. | |
I.e. if you pass a the fields of a model ``Foo`` (subclass of ``BaseModel``) as ``fields``, and on of them has a | |
field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also | |
subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. | |
:param fields: a list of Pydantic ``ModelField``s | |
:param known_models: used to solve circular references | |
:return: a set with any model declared in the fields, and all their sub-models | |
""" | |
flat_models: TypeModelSet = set() | |
for field in fields: | |
flat_models |= get_flat_models_from_field(field, known_models=known_models) | |
return flat_models | |
def get_flat_models_from_models(models: Sequence[Type['BaseModel']]) -> TypeModelSet: | |
""" | |
Take a list of ``models`` and generate a set with them and all their sub-models in their trees. I.e. if you pass | |
a list of two models, ``Foo`` and ``Bar``, both subclasses of Pydantic ``BaseModel`` as models, and ``Bar`` has | |
a field of type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. | |
""" | |
flat_models: TypeModelSet = set() | |
for model in models: | |
flat_models |= get_flat_models_from_model(model) | |
return flat_models | |
def get_long_model_name(model: TypeModelOrEnum) -> str: | |
return f'{model.__module__}__{model.__qualname__}'.replace('.', '__') | |
def field_type_schema( | |
field: ModelField, | |
*, | |
by_alias: bool, | |
model_name_map: Dict[TypeModelOrEnum, str], | |
ref_template: str, | |
schema_overrides: bool = False, | |
ref_prefix: Optional[str] = None, | |
known_models: TypeModelSet, | |
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: | |
""" | |
Used by ``field_schema()``, you probably should be using that function. | |
Take a single ``field`` and generate the schema for its type only, not including additional | |
information as title, etc. Also return additional schema definitions, from sub-models. | |
""" | |
from .main import BaseModel # noqa: F811 | |
definitions = {} | |
nested_models: Set[str] = set() | |
f_schema: Dict[str, Any] | |
if field.shape in { | |
SHAPE_LIST, | |
SHAPE_TUPLE_ELLIPSIS, | |
SHAPE_SEQUENCE, | |
SHAPE_SET, | |
SHAPE_FROZENSET, | |
SHAPE_ITERABLE, | |
SHAPE_DEQUE, | |
}: | |
items_schema, f_definitions, f_nested_models = field_singleton_schema( | |
field, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
definitions.update(f_definitions) | |
nested_models.update(f_nested_models) | |
f_schema = {'type': 'array', 'items': items_schema} | |
if field.shape in {SHAPE_SET, SHAPE_FROZENSET}: | |
f_schema['uniqueItems'] = True | |
elif field.shape in MAPPING_LIKE_SHAPES: | |
f_schema = {'type': 'object'} | |
key_field = cast(ModelField, field.key_field) | |
regex = getattr(key_field.type_, 'regex', None) | |
items_schema, f_definitions, f_nested_models = field_singleton_schema( | |
field, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
definitions.update(f_definitions) | |
nested_models.update(f_nested_models) | |
if regex: | |
# Dict keys have a regex pattern | |
# items_schema might be a schema or empty dict, add it either way | |
f_schema['patternProperties'] = {ConstrainedStr._get_pattern(regex): items_schema} | |
if items_schema: | |
# The dict values are not simply Any, so they need a schema | |
f_schema['additionalProperties'] = items_schema | |
elif field.shape == SHAPE_TUPLE or (field.shape == SHAPE_GENERIC and not issubclass(field.type_, BaseModel)): | |
sub_schema = [] | |
sub_fields = cast(List[ModelField], field.sub_fields) | |
for sf in sub_fields: | |
sf_schema, sf_definitions, sf_nested_models = field_type_schema( | |
sf, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
definitions.update(sf_definitions) | |
nested_models.update(sf_nested_models) | |
sub_schema.append(sf_schema) | |
sub_fields_len = len(sub_fields) | |
if field.shape == SHAPE_GENERIC: | |
all_of_schemas = sub_schema[0] if sub_fields_len == 1 else {'type': 'array', 'items': sub_schema} | |
f_schema = {'allOf': [all_of_schemas]} | |
else: | |
f_schema = { | |
'type': 'array', | |
'minItems': sub_fields_len, | |
'maxItems': sub_fields_len, | |
} | |
if sub_fields_len >= 1: | |
f_schema['items'] = sub_schema | |
else: | |
assert field.shape in {SHAPE_SINGLETON, SHAPE_GENERIC}, field.shape | |
f_schema, f_definitions, f_nested_models = field_singleton_schema( | |
field, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
schema_overrides=schema_overrides, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
definitions.update(f_definitions) | |
nested_models.update(f_nested_models) | |
# check field type to avoid repeated calls to the same __modify_schema__ method | |
if field.type_ != field.outer_type_: | |
if field.shape == SHAPE_GENERIC: | |
field_type = field.type_ | |
else: | |
field_type = field.outer_type_ | |
modify_schema = getattr(field_type, '__modify_schema__', None) | |
if modify_schema: | |
_apply_modify_schema(modify_schema, field, f_schema) | |
return f_schema, definitions, nested_models | |
def model_process_schema( | |
model: TypeModelOrEnum, | |
*, | |
by_alias: bool = True, | |
model_name_map: Dict[TypeModelOrEnum, str], | |
ref_prefix: Optional[str] = None, | |
ref_template: str = default_ref_template, | |
known_models: Optional[TypeModelSet] = None, | |
field: Optional[ModelField] = None, | |
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: | |
""" | |
Used by ``model_schema()``, you probably should be using that function. | |
Take a single ``model`` and generate its schema. Also return additional schema definitions, from sub-models. The | |
sub-models of the returned schema will be referenced, but their definitions will not be included in the schema. All | |
the definitions are returned as the second value. | |
""" | |
from inspect import getdoc, signature | |
known_models = known_models or set() | |
if lenient_issubclass(model, Enum): | |
model = cast(Type[Enum], model) | |
s = enum_process_schema(model, field=field) | |
return s, {}, set() | |
model = cast(Type['BaseModel'], model) | |
s = {'title': model.__config__.title or model.__name__} | |
doc = getdoc(model) | |
if doc: | |
s['description'] = doc | |
known_models.add(model) | |
m_schema, m_definitions, nested_models = model_type_schema( | |
model, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
s.update(m_schema) | |
schema_extra = model.__config__.schema_extra | |
if callable(schema_extra): | |
if len(signature(schema_extra).parameters) == 1: | |
schema_extra(s) | |
else: | |
schema_extra(s, model) | |
else: | |
s.update(schema_extra) | |
return s, m_definitions, nested_models | |
def model_type_schema( | |
model: Type['BaseModel'], | |
*, | |
by_alias: bool, | |
model_name_map: Dict[TypeModelOrEnum, str], | |
ref_template: str, | |
ref_prefix: Optional[str] = None, | |
known_models: TypeModelSet, | |
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: | |
""" | |
You probably should be using ``model_schema()``, this function is indirectly used by that function. | |
Take a single ``model`` and generate the schema for its type only, not including additional | |
information as title, etc. Also return additional schema definitions, from sub-models. | |
""" | |
properties = {} | |
required = [] | |
definitions: Dict[str, Any] = {} | |
nested_models: Set[str] = set() | |
for k, f in model.__fields__.items(): | |
try: | |
f_schema, f_definitions, f_nested_models = field_schema( | |
f, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
except SkipField as skip: | |
warnings.warn(skip.message, UserWarning) | |
continue | |
definitions.update(f_definitions) | |
nested_models.update(f_nested_models) | |
if by_alias: | |
properties[f.alias] = f_schema | |
if f.required: | |
required.append(f.alias) | |
else: | |
properties[k] = f_schema | |
if f.required: | |
required.append(k) | |
if ROOT_KEY in properties: | |
out_schema = properties[ROOT_KEY] | |
out_schema['title'] = model.__config__.title or model.__name__ | |
else: | |
out_schema = {'type': 'object', 'properties': properties} | |
if required: | |
out_schema['required'] = required | |
if model.__config__.extra == 'forbid': | |
out_schema['additionalProperties'] = False | |
return out_schema, definitions, nested_models | |
def enum_process_schema(enum: Type[Enum], *, field: Optional[ModelField] = None) -> Dict[str, Any]: | |
""" | |
Take a single `enum` and generate its schema. | |
This is similar to the `model_process_schema` function, but applies to ``Enum`` objects. | |
""" | |
import inspect | |
schema_: Dict[str, Any] = { | |
'title': enum.__name__, | |
# Python assigns all enums a default docstring value of 'An enumeration', so | |
# all enums will have a description field even if not explicitly provided. | |
'description': inspect.cleandoc(enum.__doc__ or 'An enumeration.'), | |
# Add enum values and the enum field type to the schema. | |
'enum': [item.value for item in cast(Iterable[Enum], enum)], | |
} | |
add_field_type_to_schema(enum, schema_) | |
modify_schema = getattr(enum, '__modify_schema__', None) | |
if modify_schema: | |
_apply_modify_schema(modify_schema, field, schema_) | |
return schema_ | |
def field_singleton_sub_fields_schema( | |
field: ModelField, | |
*, | |
by_alias: bool, | |
model_name_map: Dict[TypeModelOrEnum, str], | |
ref_template: str, | |
schema_overrides: bool = False, | |
ref_prefix: Optional[str] = None, | |
known_models: TypeModelSet, | |
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: | |
""" | |
This function is indirectly used by ``field_schema()``, you probably should be using that function. | |
Take a list of Pydantic ``ModelField`` from the declaration of a type with parameters, and generate their | |
schema. I.e., fields used as "type parameters", like ``str`` and ``int`` in ``Tuple[str, int]``. | |
""" | |
sub_fields = cast(List[ModelField], field.sub_fields) | |
definitions = {} | |
nested_models: Set[str] = set() | |
if len(sub_fields) == 1: | |
return field_type_schema( | |
sub_fields[0], | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
schema_overrides=schema_overrides, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
else: | |
s: Dict[str, Any] = {} | |
# https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#discriminator-object | |
field_has_discriminator: bool = field.discriminator_key is not None | |
if field_has_discriminator: | |
assert field.sub_fields_mapping is not None | |
discriminator_models_refs: Dict[str, Union[str, Dict[str, Any]]] = {} | |
for discriminator_value, sub_field in field.sub_fields_mapping.items(): | |
if isinstance(discriminator_value, Enum): | |
discriminator_value = str(discriminator_value.value) | |
# sub_field is either a `BaseModel` or directly an `Annotated` `Union` of many | |
if is_union(get_origin(sub_field.type_)): | |
sub_models = get_sub_types(sub_field.type_) | |
discriminator_models_refs[discriminator_value] = { | |
model_name_map[sub_model]: get_schema_ref( | |
model_name_map[sub_model], ref_prefix, ref_template, False | |
) | |
for sub_model in sub_models | |
} | |
else: | |
sub_field_type = sub_field.type_ | |
if hasattr(sub_field_type, '__pydantic_model__'): | |
sub_field_type = sub_field_type.__pydantic_model__ | |
discriminator_model_name = model_name_map[sub_field_type] | |
discriminator_model_ref = get_schema_ref(discriminator_model_name, ref_prefix, ref_template, False) | |
discriminator_models_refs[discriminator_value] = discriminator_model_ref['$ref'] | |
s['discriminator'] = { | |
'propertyName': field.discriminator_alias, | |
'mapping': discriminator_models_refs, | |
} | |
sub_field_schemas = [] | |
for sf in sub_fields: | |
sub_schema, sub_definitions, sub_nested_models = field_type_schema( | |
sf, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
schema_overrides=schema_overrides, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
definitions.update(sub_definitions) | |
if schema_overrides and 'allOf' in sub_schema: | |
# if the sub_field is a referenced schema we only need the referenced | |
# object. Otherwise we will end up with several allOf inside anyOf/oneOf. | |
# See https://github.com/pydantic/pydantic/issues/1209 | |
sub_schema = sub_schema['allOf'][0] | |
if sub_schema.keys() == {'discriminator', 'oneOf'}: | |
# we don't want discriminator information inside oneOf choices, this is dealt with elsewhere | |
sub_schema.pop('discriminator') | |
sub_field_schemas.append(sub_schema) | |
nested_models.update(sub_nested_models) | |
s['oneOf' if field_has_discriminator else 'anyOf'] = sub_field_schemas | |
return s, definitions, nested_models | |
# Order is important, e.g. subclasses of str must go before str | |
# this is used only for standard library types, custom types should use __modify_schema__ instead | |
field_class_to_schema: Tuple[Tuple[Any, Dict[str, Any]], ...] = ( | |
(Path, {'type': 'string', 'format': 'path'}), | |
(datetime, {'type': 'string', 'format': 'date-time'}), | |
(date, {'type': 'string', 'format': 'date'}), | |
(time, {'type': 'string', 'format': 'time'}), | |
(timedelta, {'type': 'number', 'format': 'time-delta'}), | |
(IPv4Network, {'type': 'string', 'format': 'ipv4network'}), | |
(IPv6Network, {'type': 'string', 'format': 'ipv6network'}), | |
(IPv4Interface, {'type': 'string', 'format': 'ipv4interface'}), | |
(IPv6Interface, {'type': 'string', 'format': 'ipv6interface'}), | |
(IPv4Address, {'type': 'string', 'format': 'ipv4'}), | |
(IPv6Address, {'type': 'string', 'format': 'ipv6'}), | |
(Pattern, {'type': 'string', 'format': 'regex'}), | |
(str, {'type': 'string'}), | |
(bytes, {'type': 'string', 'format': 'binary'}), | |
(bool, {'type': 'boolean'}), | |
(int, {'type': 'integer'}), | |
(float, {'type': 'number'}), | |
(Decimal, {'type': 'number'}), | |
(UUID, {'type': 'string', 'format': 'uuid'}), | |
(dict, {'type': 'object'}), | |
(list, {'type': 'array', 'items': {}}), | |
(tuple, {'type': 'array', 'items': {}}), | |
(set, {'type': 'array', 'items': {}, 'uniqueItems': True}), | |
(frozenset, {'type': 'array', 'items': {}, 'uniqueItems': True}), | |
) | |
json_scheme = {'type': 'string', 'format': 'json-string'} | |
def add_field_type_to_schema(field_type: Any, schema_: Dict[str, Any]) -> None: | |
""" | |
Update the given `schema` with the type-specific metadata for the given `field_type`. | |
This function looks through `field_class_to_schema` for a class that matches the given `field_type`, | |
and then modifies the given `schema` with the information from that type. | |
""" | |
for type_, t_schema in field_class_to_schema: | |
# Fallback for `typing.Pattern` and `re.Pattern` as they are not a valid class | |
if lenient_issubclass(field_type, type_) or field_type is type_ is Pattern: | |
schema_.update(t_schema) | |
break | |
def get_schema_ref(name: str, ref_prefix: Optional[str], ref_template: str, schema_overrides: bool) -> Dict[str, Any]: | |
if ref_prefix: | |
schema_ref = {'$ref': ref_prefix + name} | |
else: | |
schema_ref = {'$ref': ref_template.format(model=name)} | |
return {'allOf': [schema_ref]} if schema_overrides else schema_ref | |
def field_singleton_schema( # noqa: C901 (ignore complexity) | |
field: ModelField, | |
*, | |
by_alias: bool, | |
model_name_map: Dict[TypeModelOrEnum, str], | |
ref_template: str, | |
schema_overrides: bool = False, | |
ref_prefix: Optional[str] = None, | |
known_models: TypeModelSet, | |
) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: | |
""" | |
This function is indirectly used by ``field_schema()``, you should probably be using that function. | |
Take a single Pydantic ``ModelField``, and return its schema and any additional definitions from sub-models. | |
""" | |
from .main import BaseModel | |
definitions: Dict[str, Any] = {} | |
nested_models: Set[str] = set() | |
field_type = field.type_ | |
# Recurse into this field if it contains sub_fields and is NOT a | |
# BaseModel OR that BaseModel is a const | |
if field.sub_fields and ( | |
(field.field_info and field.field_info.const) or not lenient_issubclass(field_type, BaseModel) | |
): | |
return field_singleton_sub_fields_schema( | |
field, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
schema_overrides=schema_overrides, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
if field_type is Any or field_type is object or field_type.__class__ == TypeVar or get_origin(field_type) is type: | |
return {}, definitions, nested_models # no restrictions | |
if is_none_type(field_type): | |
return {'type': 'null'}, definitions, nested_models | |
if is_callable_type(field_type): | |
raise SkipField(f'Callable {field.name} was excluded from schema since JSON schema has no equivalent type.') | |
f_schema: Dict[str, Any] = {} | |
if field.field_info is not None and field.field_info.const: | |
f_schema['const'] = field.default | |
if is_literal_type(field_type): | |
values = tuple(x.value if isinstance(x, Enum) else x for x in all_literal_values(field_type)) | |
if len({v.__class__ for v in values}) > 1: | |
return field_schema( | |
multitypes_literal_field_for_schema(values, field), | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
) | |
# All values have the same type | |
field_type = values[0].__class__ | |
f_schema['enum'] = list(values) | |
add_field_type_to_schema(field_type, f_schema) | |
elif lenient_issubclass(field_type, Enum): | |
enum_name = model_name_map[field_type] | |
f_schema, schema_overrides = get_field_info_schema(field, schema_overrides) | |
f_schema.update(get_schema_ref(enum_name, ref_prefix, ref_template, schema_overrides)) | |
definitions[enum_name] = enum_process_schema(field_type, field=field) | |
elif is_namedtuple(field_type): | |
sub_schema, *_ = model_process_schema( | |
field_type.__pydantic_model__, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
field=field, | |
) | |
items_schemas = list(sub_schema['properties'].values()) | |
f_schema.update( | |
{ | |
'type': 'array', | |
'items': items_schemas, | |
'minItems': len(items_schemas), | |
'maxItems': len(items_schemas), | |
} | |
) | |
elif not hasattr(field_type, '__pydantic_model__'): | |
add_field_type_to_schema(field_type, f_schema) | |
modify_schema = getattr(field_type, '__modify_schema__', None) | |
if modify_schema: | |
_apply_modify_schema(modify_schema, field, f_schema) | |
if f_schema: | |
return f_schema, definitions, nested_models | |
# Handle dataclass-based models | |
if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel): | |
field_type = field_type.__pydantic_model__ | |
if issubclass(field_type, BaseModel): | |
model_name = model_name_map[field_type] | |
if field_type not in known_models: | |
sub_schema, sub_definitions, sub_nested_models = model_process_schema( | |
field_type, | |
by_alias=by_alias, | |
model_name_map=model_name_map, | |
ref_prefix=ref_prefix, | |
ref_template=ref_template, | |
known_models=known_models, | |
field=field, | |
) | |
definitions.update(sub_definitions) | |
definitions[model_name] = sub_schema | |
nested_models.update(sub_nested_models) | |
else: | |
nested_models.add(model_name) | |
schema_ref = get_schema_ref(model_name, ref_prefix, ref_template, schema_overrides) | |
return schema_ref, definitions, nested_models | |
# For generics with no args | |
args = get_args(field_type) | |
if args is not None and not args and Generic in field_type.__bases__: | |
return f_schema, definitions, nested_models | |
raise ValueError(f'Value not declarable with JSON Schema, field: {field}') | |
def multitypes_literal_field_for_schema(values: Tuple[Any, ...], field: ModelField) -> ModelField: | |
""" | |
To support `Literal` with values of different types, we split it into multiple `Literal` with same type | |
e.g. `Literal['qwe', 'asd', 1, 2]` becomes `Union[Literal['qwe', 'asd'], Literal[1, 2]]` | |
""" | |
literal_distinct_types = defaultdict(list) | |
for v in values: | |
literal_distinct_types[v.__class__].append(v) | |
distinct_literals = (Literal[tuple(same_type_values)] for same_type_values in literal_distinct_types.values()) | |
return ModelField( | |
name=field.name, | |
type_=Union[tuple(distinct_literals)], # type: ignore | |
class_validators=field.class_validators, | |
model_config=field.model_config, | |
default=field.default, | |
required=field.required, | |
alias=field.alias, | |
field_info=field.field_info, | |
) | |
def encode_default(dft: Any) -> Any: | |
from .main import BaseModel | |
if isinstance(dft, BaseModel) or is_dataclass(dft): | |
dft = cast('dict[str, Any]', pydantic_encoder(dft)) | |
if isinstance(dft, dict): | |
return {encode_default(k): encode_default(v) for k, v in dft.items()} | |
elif isinstance(dft, Enum): | |
return dft.value | |
elif isinstance(dft, (int, float, str)): | |
return dft | |
elif isinstance(dft, (list, tuple)): | |
t = dft.__class__ | |
seq_args = (encode_default(v) for v in dft) | |
return t(*seq_args) if is_namedtuple(t) else t(seq_args) | |
elif dft is None: | |
return None | |
else: | |
return pydantic_encoder(dft) | |
_map_types_constraint: Dict[Any, Callable[..., type]] = {int: conint, float: confloat, Decimal: condecimal} | |
def get_annotation_from_field_info( | |
annotation: Any, field_info: FieldInfo, field_name: str, validate_assignment: bool = False | |
) -> Type[Any]: | |
""" | |
Get an annotation with validation implemented for numbers and strings based on the field_info. | |
:param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr`` | |
:param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema | |
:param field_name: name of the field for use in error messages | |
:param validate_assignment: default False, flag for BaseModel Config value of validate_assignment | |
:return: the same ``annotation`` if unmodified or a new annotation with validation in place | |
""" | |
constraints = field_info.get_constraints() | |
used_constraints: Set[str] = set() | |
if constraints: | |
annotation, used_constraints = get_annotation_with_constraints(annotation, field_info) | |
if validate_assignment: | |
used_constraints.add('allow_mutation') | |
unused_constraints = constraints - used_constraints | |
if unused_constraints: | |
raise ValueError( | |
f'On field "{field_name}" the following field constraints are set but not enforced: ' | |
f'{", ".join(unused_constraints)}. ' | |
f'\nFor more details see https://docs.pydantic.dev/usage/schema/#unenforced-field-constraints' | |
) | |
return annotation | |
def get_annotation_with_constraints(annotation: Any, field_info: FieldInfo) -> Tuple[Type[Any], Set[str]]: # noqa: C901 | |
""" | |
Get an annotation with used constraints implemented for numbers and strings based on the field_info. | |
:param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr`` | |
:param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema | |
:return: the same ``annotation`` if unmodified or a new annotation along with the used constraints. | |
""" | |
used_constraints: Set[str] = set() | |
def go(type_: Any) -> Type[Any]: | |
if ( | |
is_literal_type(type_) | |
or isinstance(type_, ForwardRef) | |
or lenient_issubclass(type_, (ConstrainedList, ConstrainedSet, ConstrainedFrozenSet)) | |
): | |
return type_ | |
origin = get_origin(type_) | |
if origin is not None: | |
args: Tuple[Any, ...] = get_args(type_) | |
if any(isinstance(a, ForwardRef) for a in args): | |
# forward refs cause infinite recursion below | |
return type_ | |
if origin is Annotated: | |
return go(args[0]) | |
if is_union(origin): | |
return Union[tuple(go(a) for a in args)] # type: ignore | |
if issubclass(origin, List) and ( | |
field_info.min_items is not None | |
or field_info.max_items is not None | |
or field_info.unique_items is not None | |
): | |
used_constraints.update({'min_items', 'max_items', 'unique_items'}) | |
return conlist( | |
go(args[0]), | |
min_items=field_info.min_items, | |
max_items=field_info.max_items, | |
unique_items=field_info.unique_items, | |
) | |
if issubclass(origin, Set) and (field_info.min_items is not None or field_info.max_items is not None): | |
used_constraints.update({'min_items', 'max_items'}) | |
return conset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items) | |
if issubclass(origin, FrozenSet) and (field_info.min_items is not None or field_info.max_items is not None): | |
used_constraints.update({'min_items', 'max_items'}) | |
return confrozenset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items) | |
for t in (Tuple, List, Set, FrozenSet, Sequence): | |
if issubclass(origin, t): # type: ignore | |
return t[tuple(go(a) for a in args)] # type: ignore | |
if issubclass(origin, Dict): | |
return Dict[args[0], go(args[1])] # type: ignore | |
attrs: Optional[Tuple[str, ...]] = None | |
constraint_func: Optional[Callable[..., type]] = None | |
if isinstance(type_, type): | |
if issubclass(type_, (SecretStr, SecretBytes)): | |
attrs = ('max_length', 'min_length') | |
def constraint_func(**kw: Any) -> Type[Any]: | |
return type(type_.__name__, (type_,), kw) | |
elif issubclass(type_, str) and not issubclass(type_, (EmailStr, AnyUrl)): | |
attrs = ('max_length', 'min_length', 'regex') | |
if issubclass(type_, StrictStr): | |
def constraint_func(**kw: Any) -> Type[Any]: | |
return type(type_.__name__, (type_,), kw) | |
else: | |
constraint_func = constr | |
elif issubclass(type_, bytes): | |
attrs = ('max_length', 'min_length', 'regex') | |
if issubclass(type_, StrictBytes): | |
def constraint_func(**kw: Any) -> Type[Any]: | |
return type(type_.__name__, (type_,), kw) | |
else: | |
constraint_func = conbytes | |
elif issubclass(type_, numeric_types) and not issubclass( | |
type_, | |
( | |
ConstrainedInt, | |
ConstrainedFloat, | |
ConstrainedDecimal, | |
ConstrainedList, | |
ConstrainedSet, | |
ConstrainedFrozenSet, | |
bool, | |
), | |
): | |
# Is numeric type | |
attrs = ('gt', 'lt', 'ge', 'le', 'multiple_of') | |
if issubclass(type_, float): | |
attrs += ('allow_inf_nan',) | |
if issubclass(type_, Decimal): | |
attrs += ('max_digits', 'decimal_places') | |
numeric_type = next(t for t in numeric_types if issubclass(type_, t)) # pragma: no branch | |
constraint_func = _map_types_constraint[numeric_type] | |
if attrs: | |
used_constraints.update(set(attrs)) | |
kwargs = { | |
attr_name: attr | |
for attr_name, attr in ((attr_name, getattr(field_info, attr_name)) for attr_name in attrs) | |
if attr is not None | |
} | |
if kwargs: | |
constraint_func = cast(Callable[..., type], constraint_func) | |
return constraint_func(**kwargs) | |
return type_ | |
return go(annotation), used_constraints | |
def normalize_name(name: str) -> str: | |
""" | |
Normalizes the given name. This can be applied to either a model *or* enum. | |
""" | |
return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name) | |
class SkipField(Exception): | |
""" | |
Utility exception used to exclude fields from schema. | |
""" | |
def __init__(self, message: str) -> None: | |
self.message = message | |