peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_cholesky.py
"""Cholesky decomposition functions.""" | |
from numpy import asarray_chkfinite, asarray, atleast_2d | |
# Local imports | |
from ._misc import LinAlgError, _datacopied | |
from .lapack import get_lapack_funcs | |
__all__ = ['cholesky', 'cho_factor', 'cho_solve', 'cholesky_banded', | |
'cho_solve_banded'] | |
def _cholesky(a, lower=False, overwrite_a=False, clean=True, | |
check_finite=True): | |
"""Common code for cholesky() and cho_factor().""" | |
a1 = asarray_chkfinite(a) if check_finite else asarray(a) | |
a1 = atleast_2d(a1) | |
# Dimension check | |
if a1.ndim != 2: | |
raise ValueError(f'Input array needs to be 2D but received a {a1.ndim}d-array.') | |
# Squareness check | |
if a1.shape[0] != a1.shape[1]: | |
raise ValueError('Input array is expected to be square but has ' | |
f'the shape: {a1.shape}.') | |
# Quick return for square empty array | |
if a1.size == 0: | |
return a1.copy(), lower | |
overwrite_a = overwrite_a or _datacopied(a1, a) | |
potrf, = get_lapack_funcs(('potrf',), (a1,)) | |
c, info = potrf(a1, lower=lower, overwrite_a=overwrite_a, clean=clean) | |
if info > 0: | |
raise LinAlgError("%d-th leading minor of the array is not positive " | |
"definite" % info) | |
if info < 0: | |
raise ValueError(f'LAPACK reported an illegal value in {-info}-th argument' | |
'on entry to "POTRF".') | |
return c, lower | |
def cholesky(a, lower=False, overwrite_a=False, check_finite=True): | |
""" | |
Compute the Cholesky decomposition of a matrix. | |
Returns the Cholesky decomposition, :math:`A = L L^*` or | |
:math:`A = U^* U` of a Hermitian positive-definite matrix A. | |
Parameters | |
---------- | |
a : (M, M) array_like | |
Matrix to be decomposed | |
lower : bool, optional | |
Whether to compute the upper- or lower-triangular Cholesky | |
factorization. Default is upper-triangular. | |
overwrite_a : bool, optional | |
Whether to overwrite data in `a` (may improve performance). | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
c : (M, M) ndarray | |
Upper- or lower-triangular Cholesky factor of `a`. | |
Raises | |
------ | |
LinAlgError : if decomposition fails. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import cholesky | |
>>> a = np.array([[1,-2j],[2j,5]]) | |
>>> L = cholesky(a, lower=True) | |
>>> L | |
array([[ 1.+0.j, 0.+0.j], | |
[ 0.+2.j, 1.+0.j]]) | |
>>> L @ L.T.conj() | |
array([[ 1.+0.j, 0.-2.j], | |
[ 0.+2.j, 5.+0.j]]) | |
""" | |
c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=True, | |
check_finite=check_finite) | |
return c | |
def cho_factor(a, lower=False, overwrite_a=False, check_finite=True): | |
""" | |
Compute the Cholesky decomposition of a matrix, to use in cho_solve | |
Returns a matrix containing the Cholesky decomposition, | |
``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`. | |
The return value can be directly used as the first parameter to cho_solve. | |
.. warning:: | |
The returned matrix also contains random data in the entries not | |
used by the Cholesky decomposition. If you need to zero these | |
entries, use the function `cholesky` instead. | |
Parameters | |
---------- | |
a : (M, M) array_like | |
Matrix to be decomposed | |
lower : bool, optional | |
Whether to compute the upper or lower triangular Cholesky factorization | |
(Default: upper-triangular) | |
overwrite_a : bool, optional | |
Whether to overwrite data in a (may improve performance) | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
c : (M, M) ndarray | |
Matrix whose upper or lower triangle contains the Cholesky factor | |
of `a`. Other parts of the matrix contain random data. | |
lower : bool | |
Flag indicating whether the factor is in the lower or upper triangle | |
Raises | |
------ | |
LinAlgError | |
Raised if decomposition fails. | |
See Also | |
-------- | |
cho_solve : Solve a linear set equations using the Cholesky factorization | |
of a matrix. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import cho_factor | |
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]]) | |
>>> c, low = cho_factor(A) | |
>>> c | |
array([[3. , 1. , 0.33333333, 1.66666667], | |
[3. , 2.44948974, 1.90515869, -0.27216553], | |
[1. , 5. , 2.29330749, 0.8559528 ], | |
[5. , 1. , 2. , 1.55418563]]) | |
>>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4))) | |
True | |
""" | |
c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=False, | |
check_finite=check_finite) | |
return c, lower | |
def cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True): | |
"""Solve the linear equations A x = b, given the Cholesky factorization of A. | |
Parameters | |
---------- | |
(c, lower) : tuple, (array, bool) | |
Cholesky factorization of a, as given by cho_factor | |
b : array | |
Right-hand side | |
overwrite_b : bool, optional | |
Whether to overwrite data in b (may improve performance) | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : array | |
The solution to the system A x = b | |
See Also | |
-------- | |
cho_factor : Cholesky factorization of a matrix | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import cho_factor, cho_solve | |
>>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]]) | |
>>> c, low = cho_factor(A) | |
>>> x = cho_solve((c, low), [1, 1, 1, 1]) | |
>>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4)) | |
True | |
""" | |
(c, lower) = c_and_lower | |
if check_finite: | |
b1 = asarray_chkfinite(b) | |
c = asarray_chkfinite(c) | |
else: | |
b1 = asarray(b) | |
c = asarray(c) | |
if c.ndim != 2 or c.shape[0] != c.shape[1]: | |
raise ValueError("The factored matrix c is not square.") | |
if c.shape[1] != b1.shape[0]: | |
raise ValueError(f"incompatible dimensions ({c.shape} and {b1.shape})") | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
potrs, = get_lapack_funcs(('potrs',), (c, b1)) | |
x, info = potrs(c, b1, lower=lower, overwrite_b=overwrite_b) | |
if info != 0: | |
raise ValueError('illegal value in %dth argument of internal potrs' | |
% -info) | |
return x | |
def cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True): | |
""" | |
Cholesky decompose a banded Hermitian positive-definite matrix | |
The matrix a is stored in ab either in lower-diagonal or upper- | |
diagonal ordered form:: | |
ab[u + i - j, j] == a[i,j] (if upper form; i <= j) | |
ab[ i - j, j] == a[i,j] (if lower form; i >= j) | |
Example of ab (shape of a is (6,6), u=2):: | |
upper form: | |
* * a02 a13 a24 a35 | |
* a01 a12 a23 a34 a45 | |
a00 a11 a22 a33 a44 a55 | |
lower form: | |
a00 a11 a22 a33 a44 a55 | |
a10 a21 a32 a43 a54 * | |
a20 a31 a42 a53 * * | |
Parameters | |
---------- | |
ab : (u + 1, M) array_like | |
Banded matrix | |
overwrite_ab : bool, optional | |
Discard data in ab (may enhance performance) | |
lower : bool, optional | |
Is the matrix in the lower form. (Default is upper form) | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
c : (u + 1, M) ndarray | |
Cholesky factorization of a, in the same banded format as ab | |
See Also | |
-------- | |
cho_solve_banded : | |
Solve a linear set equations, given the Cholesky factorization | |
of a banded Hermitian. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import cholesky_banded | |
>>> from numpy import allclose, zeros, diag | |
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]]) | |
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1) | |
>>> A = A + A.conj().T + np.diag(Ab[2, :]) | |
>>> c = cholesky_banded(Ab) | |
>>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :]) | |
>>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5))) | |
True | |
""" | |
if check_finite: | |
ab = asarray_chkfinite(ab) | |
else: | |
ab = asarray(ab) | |
pbtrf, = get_lapack_funcs(('pbtrf',), (ab,)) | |
c, info = pbtrf(ab, lower=lower, overwrite_ab=overwrite_ab) | |
if info > 0: | |
raise LinAlgError("%d-th leading minor not positive definite" % info) | |
if info < 0: | |
raise ValueError('illegal value in %d-th argument of internal pbtrf' | |
% -info) | |
return c | |
def cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True): | |
""" | |
Solve the linear equations ``A x = b``, given the Cholesky factorization of | |
the banded Hermitian ``A``. | |
Parameters | |
---------- | |
(cb, lower) : tuple, (ndarray, bool) | |
`cb` is the Cholesky factorization of A, as given by cholesky_banded. | |
`lower` must be the same value that was given to cholesky_banded. | |
b : array_like | |
Right-hand side | |
overwrite_b : bool, optional | |
If True, the function will overwrite the values in `b`. | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : array | |
The solution to the system A x = b | |
See Also | |
-------- | |
cholesky_banded : Cholesky factorization of a banded matrix | |
Notes | |
----- | |
.. versionadded:: 0.8.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import cholesky_banded, cho_solve_banded | |
>>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]]) | |
>>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1) | |
>>> A = A + A.conj().T + np.diag(Ab[2, :]) | |
>>> c = cholesky_banded(Ab) | |
>>> x = cho_solve_banded((c, False), np.ones(5)) | |
>>> np.allclose(A @ x - np.ones(5), np.zeros(5)) | |
True | |
""" | |
(cb, lower) = cb_and_lower | |
if check_finite: | |
cb = asarray_chkfinite(cb) | |
b = asarray_chkfinite(b) | |
else: | |
cb = asarray(cb) | |
b = asarray(b) | |
# Validate shapes. | |
if cb.shape[-1] != b.shape[0]: | |
raise ValueError("shapes of cb and b are not compatible.") | |
pbtrs, = get_lapack_funcs(('pbtrs',), (cb, b)) | |
x, info = pbtrs(cb, b, lower=lower, overwrite_b=overwrite_b) | |
if info > 0: | |
raise LinAlgError("%dth leading minor not positive definite" % info) | |
if info < 0: | |
raise ValueError('illegal value in %dth argument of internal pbtrs' | |
% -info) | |
return x | |