peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_expm_frechet.py
"""Frechet derivative of the matrix exponential.""" | |
import numpy as np | |
import scipy.linalg | |
__all__ = ['expm_frechet', 'expm_cond'] | |
def expm_frechet(A, E, method=None, compute_expm=True, check_finite=True): | |
""" | |
Frechet derivative of the matrix exponential of A in the direction E. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Matrix of which to take the matrix exponential. | |
E : (N, N) array_like | |
Matrix direction in which to take the Frechet derivative. | |
method : str, optional | |
Choice of algorithm. Should be one of | |
- `SPS` (default) | |
- `blockEnlarge` | |
compute_expm : bool, optional | |
Whether to compute also `expm_A` in addition to `expm_frechet_AE`. | |
Default is True. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
expm_A : ndarray | |
Matrix exponential of A. | |
expm_frechet_AE : ndarray | |
Frechet derivative of the matrix exponential of A in the direction E. | |
For ``compute_expm = False``, only `expm_frechet_AE` is returned. | |
See Also | |
-------- | |
expm : Compute the exponential of a matrix. | |
Notes | |
----- | |
This section describes the available implementations that can be selected | |
by the `method` parameter. The default method is *SPS*. | |
Method *blockEnlarge* is a naive algorithm. | |
Method *SPS* is Scaling-Pade-Squaring [1]_. | |
It is a sophisticated implementation which should take | |
only about 3/8 as much time as the naive implementation. | |
The asymptotics are the same. | |
.. versionadded:: 0.13.0 | |
References | |
---------- | |
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009) | |
Computing the Frechet Derivative of the Matrix Exponential, | |
with an application to Condition Number Estimation. | |
SIAM Journal On Matrix Analysis and Applications., | |
30 (4). pp. 1639-1657. ISSN 1095-7162 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> rng = np.random.default_rng() | |
>>> A = rng.standard_normal((3, 3)) | |
>>> E = rng.standard_normal((3, 3)) | |
>>> expm_A, expm_frechet_AE = linalg.expm_frechet(A, E) | |
>>> expm_A.shape, expm_frechet_AE.shape | |
((3, 3), (3, 3)) | |
Create a 6x6 matrix containing [[A, E], [0, A]]: | |
>>> M = np.zeros((6, 6)) | |
>>> M[:3, :3] = A | |
>>> M[:3, 3:] = E | |
>>> M[3:, 3:] = A | |
>>> expm_M = linalg.expm(M) | |
>>> np.allclose(expm_A, expm_M[:3, :3]) | |
True | |
>>> np.allclose(expm_frechet_AE, expm_M[:3, 3:]) | |
True | |
""" | |
if check_finite: | |
A = np.asarray_chkfinite(A) | |
E = np.asarray_chkfinite(E) | |
else: | |
A = np.asarray(A) | |
E = np.asarray(E) | |
if A.ndim != 2 or A.shape[0] != A.shape[1]: | |
raise ValueError('expected A to be a square matrix') | |
if E.ndim != 2 or E.shape[0] != E.shape[1]: | |
raise ValueError('expected E to be a square matrix') | |
if A.shape != E.shape: | |
raise ValueError('expected A and E to be the same shape') | |
if method is None: | |
method = 'SPS' | |
if method == 'SPS': | |
expm_A, expm_frechet_AE = expm_frechet_algo_64(A, E) | |
elif method == 'blockEnlarge': | |
expm_A, expm_frechet_AE = expm_frechet_block_enlarge(A, E) | |
else: | |
raise ValueError('Unknown implementation %s' % method) | |
if compute_expm: | |
return expm_A, expm_frechet_AE | |
else: | |
return expm_frechet_AE | |
def expm_frechet_block_enlarge(A, E): | |
""" | |
This is a helper function, mostly for testing and profiling. | |
Return expm(A), frechet(A, E) | |
""" | |
n = A.shape[0] | |
M = np.vstack([ | |
np.hstack([A, E]), | |
np.hstack([np.zeros_like(A), A])]) | |
expm_M = scipy.linalg.expm(M) | |
return expm_M[:n, :n], expm_M[:n, n:] | |
""" | |
Maximal values ell_m of ||2**-s A|| such that the backward error bound | |
does not exceed 2**-53. | |
""" | |
ell_table_61 = ( | |
None, | |
# 1 | |
2.11e-8, | |
3.56e-4, | |
1.08e-2, | |
6.49e-2, | |
2.00e-1, | |
4.37e-1, | |
7.83e-1, | |
1.23e0, | |
1.78e0, | |
2.42e0, | |
# 11 | |
3.13e0, | |
3.90e0, | |
4.74e0, | |
5.63e0, | |
6.56e0, | |
7.52e0, | |
8.53e0, | |
9.56e0, | |
1.06e1, | |
1.17e1, | |
) | |
# The b vectors and U and V are copypasted | |
# from scipy.sparse.linalg.matfuncs.py. | |
# M, Lu, Lv follow (6.11), (6.12), (6.13), (3.3) | |
def _diff_pade3(A, E, ident): | |
b = (120., 60., 12., 1.) | |
A2 = A.dot(A) | |
M2 = np.dot(A, E) + np.dot(E, A) | |
U = A.dot(b[3]*A2 + b[1]*ident) | |
V = b[2]*A2 + b[0]*ident | |
Lu = A.dot(b[3]*M2) + E.dot(b[3]*A2 + b[1]*ident) | |
Lv = b[2]*M2 | |
return U, V, Lu, Lv | |
def _diff_pade5(A, E, ident): | |
b = (30240., 15120., 3360., 420., 30., 1.) | |
A2 = A.dot(A) | |
M2 = np.dot(A, E) + np.dot(E, A) | |
A4 = np.dot(A2, A2) | |
M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
U = A.dot(b[5]*A4 + b[3]*A2 + b[1]*ident) | |
V = b[4]*A4 + b[2]*A2 + b[0]*ident | |
Lu = (A.dot(b[5]*M4 + b[3]*M2) + | |
E.dot(b[5]*A4 + b[3]*A2 + b[1]*ident)) | |
Lv = b[4]*M4 + b[2]*M2 | |
return U, V, Lu, Lv | |
def _diff_pade7(A, E, ident): | |
b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.) | |
A2 = A.dot(A) | |
M2 = np.dot(A, E) + np.dot(E, A) | |
A4 = np.dot(A2, A2) | |
M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
A6 = np.dot(A2, A4) | |
M6 = np.dot(A4, M2) + np.dot(M4, A2) | |
U = A.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident) | |
V = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident | |
Lu = (A.dot(b[7]*M6 + b[5]*M4 + b[3]*M2) + | |
E.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)) | |
Lv = b[6]*M6 + b[4]*M4 + b[2]*M2 | |
return U, V, Lu, Lv | |
def _diff_pade9(A, E, ident): | |
b = (17643225600., 8821612800., 2075673600., 302702400., 30270240., | |
2162160., 110880., 3960., 90., 1.) | |
A2 = A.dot(A) | |
M2 = np.dot(A, E) + np.dot(E, A) | |
A4 = np.dot(A2, A2) | |
M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
A6 = np.dot(A2, A4) | |
M6 = np.dot(A4, M2) + np.dot(M4, A2) | |
A8 = np.dot(A4, A4) | |
M8 = np.dot(A4, M4) + np.dot(M4, A4) | |
U = A.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident) | |
V = b[8]*A8 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident | |
Lu = (A.dot(b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2) + | |
E.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)) | |
Lv = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 | |
return U, V, Lu, Lv | |
def expm_frechet_algo_64(A, E): | |
n = A.shape[0] | |
s = None | |
ident = np.identity(n) | |
A_norm_1 = scipy.linalg.norm(A, 1) | |
m_pade_pairs = ( | |
(3, _diff_pade3), | |
(5, _diff_pade5), | |
(7, _diff_pade7), | |
(9, _diff_pade9)) | |
for m, pade in m_pade_pairs: | |
if A_norm_1 <= ell_table_61[m]: | |
U, V, Lu, Lv = pade(A, E, ident) | |
s = 0 | |
break | |
if s is None: | |
# scaling | |
s = max(0, int(np.ceil(np.log2(A_norm_1 / ell_table_61[13])))) | |
A = A * 2.0**-s | |
E = E * 2.0**-s | |
# pade order 13 | |
A2 = np.dot(A, A) | |
M2 = np.dot(A, E) + np.dot(E, A) | |
A4 = np.dot(A2, A2) | |
M4 = np.dot(A2, M2) + np.dot(M2, A2) | |
A6 = np.dot(A2, A4) | |
M6 = np.dot(A4, M2) + np.dot(M4, A2) | |
b = (64764752532480000., 32382376266240000., 7771770303897600., | |
1187353796428800., 129060195264000., 10559470521600., | |
670442572800., 33522128640., 1323241920., 40840800., 960960., | |
16380., 182., 1.) | |
W1 = b[13]*A6 + b[11]*A4 + b[9]*A2 | |
W2 = b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident | |
Z1 = b[12]*A6 + b[10]*A4 + b[8]*A2 | |
Z2 = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident | |
W = np.dot(A6, W1) + W2 | |
U = np.dot(A, W) | |
V = np.dot(A6, Z1) + Z2 | |
Lw1 = b[13]*M6 + b[11]*M4 + b[9]*M2 | |
Lw2 = b[7]*M6 + b[5]*M4 + b[3]*M2 | |
Lz1 = b[12]*M6 + b[10]*M4 + b[8]*M2 | |
Lz2 = b[6]*M6 + b[4]*M4 + b[2]*M2 | |
Lw = np.dot(A6, Lw1) + np.dot(M6, W1) + Lw2 | |
Lu = np.dot(A, Lw) + np.dot(E, W) | |
Lv = np.dot(A6, Lz1) + np.dot(M6, Z1) + Lz2 | |
# factor once and solve twice | |
lu_piv = scipy.linalg.lu_factor(-U + V) | |
R = scipy.linalg.lu_solve(lu_piv, U + V) | |
L = scipy.linalg.lu_solve(lu_piv, Lu + Lv + np.dot((Lu - Lv), R)) | |
# squaring | |
for k in range(s): | |
L = np.dot(R, L) + np.dot(L, R) | |
R = np.dot(R, R) | |
return R, L | |
def vec(M): | |
""" | |
Stack columns of M to construct a single vector. | |
This is somewhat standard notation in linear algebra. | |
Parameters | |
---------- | |
M : 2-D array_like | |
Input matrix | |
Returns | |
------- | |
v : 1-D ndarray | |
Output vector | |
""" | |
return M.T.ravel() | |
def expm_frechet_kronform(A, method=None, check_finite=True): | |
""" | |
Construct the Kronecker form of the Frechet derivative of expm. | |
Parameters | |
---------- | |
A : array_like with shape (N, N) | |
Matrix to be expm'd. | |
method : str, optional | |
Extra keyword to be passed to expm_frechet. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
K : 2-D ndarray with shape (N*N, N*N) | |
Kronecker form of the Frechet derivative of the matrix exponential. | |
Notes | |
----- | |
This function is used to help compute the condition number | |
of the matrix exponential. | |
See Also | |
-------- | |
expm : Compute a matrix exponential. | |
expm_frechet : Compute the Frechet derivative of the matrix exponential. | |
expm_cond : Compute the relative condition number of the matrix exponential | |
in the Frobenius norm. | |
""" | |
if check_finite: | |
A = np.asarray_chkfinite(A) | |
else: | |
A = np.asarray(A) | |
if len(A.shape) != 2 or A.shape[0] != A.shape[1]: | |
raise ValueError('expected a square matrix') | |
n = A.shape[0] | |
ident = np.identity(n) | |
cols = [] | |
for i in range(n): | |
for j in range(n): | |
E = np.outer(ident[i], ident[j]) | |
F = expm_frechet(A, E, | |
method=method, compute_expm=False, check_finite=False) | |
cols.append(vec(F)) | |
return np.vstack(cols).T | |
def expm_cond(A, check_finite=True): | |
""" | |
Relative condition number of the matrix exponential in the Frobenius norm. | |
Parameters | |
---------- | |
A : 2-D array_like | |
Square input matrix with shape (N, N). | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
kappa : float | |
The relative condition number of the matrix exponential | |
in the Frobenius norm | |
See Also | |
-------- | |
expm : Compute the exponential of a matrix. | |
expm_frechet : Compute the Frechet derivative of the matrix exponential. | |
Notes | |
----- | |
A faster estimate for the condition number in the 1-norm | |
has been published but is not yet implemented in SciPy. | |
.. versionadded:: 0.14.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import expm_cond | |
>>> A = np.array([[-0.3, 0.2, 0.6], [0.6, 0.3, -0.1], [-0.7, 1.2, 0.9]]) | |
>>> k = expm_cond(A) | |
>>> k | |
1.7787805864469866 | |
""" | |
if check_finite: | |
A = np.asarray_chkfinite(A) | |
else: | |
A = np.asarray(A) | |
if len(A.shape) != 2 or A.shape[0] != A.shape[1]: | |
raise ValueError('expected a square matrix') | |
X = scipy.linalg.expm(A) | |
K = expm_frechet_kronform(A, check_finite=False) | |
# The following norm choices are deliberate. | |
# The norms of A and X are Frobenius norms, | |
# and the norm of K is the induced 2-norm. | |
A_norm = scipy.linalg.norm(A, 'fro') | |
X_norm = scipy.linalg.norm(X, 'fro') | |
K_norm = scipy.linalg.norm(K, 2) | |
kappa = (K_norm * A_norm) / X_norm | |
return kappa | |