peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_solvers.py
"""Matrix equation solver routines""" | |
# Author: Jeffrey Armstrong <[email protected]> | |
# February 24, 2012 | |
# Modified: Chad Fulton <[email protected]> | |
# June 19, 2014 | |
# Modified: Ilhan Polat <[email protected]> | |
# September 13, 2016 | |
import warnings | |
import numpy as np | |
from numpy.linalg import inv, LinAlgError, norm, cond, svd | |
from ._basic import solve, solve_triangular, matrix_balance | |
from .lapack import get_lapack_funcs | |
from ._decomp_schur import schur | |
from ._decomp_lu import lu | |
from ._decomp_qr import qr | |
from ._decomp_qz import ordqz | |
from ._decomp import _asarray_validated | |
from ._special_matrices import kron, block_diag | |
__all__ = ['solve_sylvester', | |
'solve_continuous_lyapunov', 'solve_discrete_lyapunov', | |
'solve_lyapunov', | |
'solve_continuous_are', 'solve_discrete_are'] | |
def solve_sylvester(a, b, q): | |
""" | |
Computes a solution (X) to the Sylvester equation :math:`AX + XB = Q`. | |
Parameters | |
---------- | |
a : (M, M) array_like | |
Leading matrix of the Sylvester equation | |
b : (N, N) array_like | |
Trailing matrix of the Sylvester equation | |
q : (M, N) array_like | |
Right-hand side | |
Returns | |
------- | |
x : (M, N) ndarray | |
The solution to the Sylvester equation. | |
Raises | |
------ | |
LinAlgError | |
If solution was not found | |
Notes | |
----- | |
Computes a solution to the Sylvester matrix equation via the Bartels- | |
Stewart algorithm. The A and B matrices first undergo Schur | |
decompositions. The resulting matrices are used to construct an | |
alternative Sylvester equation (``RY + YS^T = F``) where the R and S | |
matrices are in quasi-triangular form (or, when R, S or F are complex, | |
triangular form). The simplified equation is then solved using | |
``*TRSYL`` from LAPACK directly. | |
.. versionadded:: 0.11.0 | |
Examples | |
-------- | |
Given `a`, `b`, and `q` solve for `x`: | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]]) | |
>>> b = np.array([[1]]) | |
>>> q = np.array([[1],[2],[3]]) | |
>>> x = linalg.solve_sylvester(a, b, q) | |
>>> x | |
array([[ 0.0625], | |
[-0.5625], | |
[ 0.6875]]) | |
>>> np.allclose(a.dot(x) + x.dot(b), q) | |
True | |
""" | |
# Compute the Schur decomposition form of a | |
r, u = schur(a, output='real') | |
# Compute the Schur decomposition of b | |
s, v = schur(b.conj().transpose(), output='real') | |
# Construct f = u'*q*v | |
f = np.dot(np.dot(u.conj().transpose(), q), v) | |
# Call the Sylvester equation solver | |
trsyl, = get_lapack_funcs(('trsyl',), (r, s, f)) | |
if trsyl is None: | |
raise RuntimeError('LAPACK implementation does not contain a proper ' | |
'Sylvester equation solver (TRSYL)') | |
y, scale, info = trsyl(r, s, f, tranb='C') | |
y = scale*y | |
if info < 0: | |
raise LinAlgError("Illegal value encountered in " | |
"the %d term" % (-info,)) | |
return np.dot(np.dot(u, y), v.conj().transpose()) | |
def solve_continuous_lyapunov(a, q): | |
""" | |
Solves the continuous Lyapunov equation :math:`AX + XA^H = Q`. | |
Uses the Bartels-Stewart algorithm to find :math:`X`. | |
Parameters | |
---------- | |
a : array_like | |
A square matrix | |
q : array_like | |
Right-hand side square matrix | |
Returns | |
------- | |
x : ndarray | |
Solution to the continuous Lyapunov equation | |
See Also | |
-------- | |
solve_discrete_lyapunov : computes the solution to the discrete-time | |
Lyapunov equation | |
solve_sylvester : computes the solution to the Sylvester equation | |
Notes | |
----- | |
The continuous Lyapunov equation is a special form of the Sylvester | |
equation, hence this solver relies on LAPACK routine ?TRSYL. | |
.. versionadded:: 0.11.0 | |
Examples | |
-------- | |
Given `a` and `q` solve for `x`: | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]]) | |
>>> b = np.array([2, 4, -1]) | |
>>> q = np.eye(3) | |
>>> x = linalg.solve_continuous_lyapunov(a, q) | |
>>> x | |
array([[ -0.75 , 0.875 , -3.75 ], | |
[ 0.875 , -1.375 , 5.3125], | |
[ -3.75 , 5.3125, -27.0625]]) | |
>>> np.allclose(a.dot(x) + x.dot(a.T), q) | |
True | |
""" | |
a = np.atleast_2d(_asarray_validated(a, check_finite=True)) | |
q = np.atleast_2d(_asarray_validated(q, check_finite=True)) | |
r_or_c = float | |
for ind, _ in enumerate((a, q)): | |
if np.iscomplexobj(_): | |
r_or_c = complex | |
if not np.equal(*_.shape): | |
raise ValueError("Matrix {} should be square.".format("aq"[ind])) | |
# Shape consistency check | |
if a.shape != q.shape: | |
raise ValueError("Matrix a and q should have the same shape.") | |
# Compute the Schur decomposition form of a | |
r, u = schur(a, output='real') | |
# Construct f = u'*q*u | |
f = u.conj().T.dot(q.dot(u)) | |
# Call the Sylvester equation solver | |
trsyl = get_lapack_funcs('trsyl', (r, f)) | |
dtype_string = 'T' if r_or_c == float else 'C' | |
y, scale, info = trsyl(r, r, f, tranb=dtype_string) | |
if info < 0: | |
raise ValueError('?TRSYL exited with the internal error ' | |
f'"illegal value in argument number {-info}.". See ' | |
'LAPACK documentation for the ?TRSYL error codes.') | |
elif info == 1: | |
warnings.warn('Input "a" has an eigenvalue pair whose sum is ' | |
'very close to or exactly zero. The solution is ' | |
'obtained via perturbing the coefficients.', | |
RuntimeWarning, stacklevel=2) | |
y *= scale | |
return u.dot(y).dot(u.conj().T) | |
# For backwards compatibility, keep the old name | |
solve_lyapunov = solve_continuous_lyapunov | |
def _solve_discrete_lyapunov_direct(a, q): | |
""" | |
Solves the discrete Lyapunov equation directly. | |
This function is called by the `solve_discrete_lyapunov` function with | |
`method=direct`. It is not supposed to be called directly. | |
""" | |
lhs = kron(a, a.conj()) | |
lhs = np.eye(lhs.shape[0]) - lhs | |
x = solve(lhs, q.flatten()) | |
return np.reshape(x, q.shape) | |
def _solve_discrete_lyapunov_bilinear(a, q): | |
""" | |
Solves the discrete Lyapunov equation using a bilinear transformation. | |
This function is called by the `solve_discrete_lyapunov` function with | |
`method=bilinear`. It is not supposed to be called directly. | |
""" | |
eye = np.eye(a.shape[0]) | |
aH = a.conj().transpose() | |
aHI_inv = inv(aH + eye) | |
b = np.dot(aH - eye, aHI_inv) | |
c = 2*np.dot(np.dot(inv(a + eye), q), aHI_inv) | |
return solve_lyapunov(b.conj().transpose(), -c) | |
def solve_discrete_lyapunov(a, q, method=None): | |
""" | |
Solves the discrete Lyapunov equation :math:`AXA^H - X + Q = 0`. | |
Parameters | |
---------- | |
a, q : (M, M) array_like | |
Square matrices corresponding to A and Q in the equation | |
above respectively. Must have the same shape. | |
method : {'direct', 'bilinear'}, optional | |
Type of solver. | |
If not given, chosen to be ``direct`` if ``M`` is less than 10 and | |
``bilinear`` otherwise. | |
Returns | |
------- | |
x : ndarray | |
Solution to the discrete Lyapunov equation | |
See Also | |
-------- | |
solve_continuous_lyapunov : computes the solution to the continuous-time | |
Lyapunov equation | |
Notes | |
----- | |
This section describes the available solvers that can be selected by the | |
'method' parameter. The default method is *direct* if ``M`` is less than 10 | |
and ``bilinear`` otherwise. | |
Method *direct* uses a direct analytical solution to the discrete Lyapunov | |
equation. The algorithm is given in, for example, [1]_. However, it requires | |
the linear solution of a system with dimension :math:`M^2` so that | |
performance degrades rapidly for even moderately sized matrices. | |
Method *bilinear* uses a bilinear transformation to convert the discrete | |
Lyapunov equation to a continuous Lyapunov equation :math:`(BX+XB'=-C)` | |
where :math:`B=(A-I)(A+I)^{-1}` and | |
:math:`C=2(A' + I)^{-1} Q (A + I)^{-1}`. The continuous equation can be | |
efficiently solved since it is a special case of a Sylvester equation. | |
The transformation algorithm is from Popov (1964) as described in [2]_. | |
.. versionadded:: 0.11.0 | |
References | |
---------- | |
.. [1] Hamilton, James D. Time Series Analysis, Princeton: Princeton | |
University Press, 1994. 265. Print. | |
http://doc1.lbfl.li/aca/FLMF037168.pdf | |
.. [2] Gajic, Z., and M.T.J. Qureshi. 2008. | |
Lyapunov Matrix Equation in System Stability and Control. | |
Dover Books on Engineering Series. Dover Publications. | |
Examples | |
-------- | |
Given `a` and `q` solve for `x`: | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[0.2, 0.5],[0.7, -0.9]]) | |
>>> q = np.eye(2) | |
>>> x = linalg.solve_discrete_lyapunov(a, q) | |
>>> x | |
array([[ 0.70872893, 1.43518822], | |
[ 1.43518822, -2.4266315 ]]) | |
>>> np.allclose(a.dot(x).dot(a.T)-x, -q) | |
True | |
""" | |
a = np.asarray(a) | |
q = np.asarray(q) | |
if method is None: | |
# Select automatically based on size of matrices | |
if a.shape[0] >= 10: | |
method = 'bilinear' | |
else: | |
method = 'direct' | |
meth = method.lower() | |
if meth == 'direct': | |
x = _solve_discrete_lyapunov_direct(a, q) | |
elif meth == 'bilinear': | |
x = _solve_discrete_lyapunov_bilinear(a, q) | |
else: | |
raise ValueError('Unknown solver %s' % method) | |
return x | |
def solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True): | |
r""" | |
Solves the continuous-time algebraic Riccati equation (CARE). | |
The CARE is defined as | |
.. math:: | |
X A + A^H X - X B R^{-1} B^H X + Q = 0 | |
The limitations for a solution to exist are : | |
* All eigenvalues of :math:`A` on the right half plane, should be | |
controllable. | |
* The associated hamiltonian pencil (See Notes), should have | |
eigenvalues sufficiently away from the imaginary axis. | |
Moreover, if ``e`` or ``s`` is not precisely ``None``, then the | |
generalized version of CARE | |
.. math:: | |
E^HXA + A^HXE - (E^HXB + S) R^{-1} (B^HXE + S^H) + Q = 0 | |
is solved. When omitted, ``e`` is assumed to be the identity and ``s`` | |
is assumed to be the zero matrix with sizes compatible with ``a`` and | |
``b``, respectively. | |
Parameters | |
---------- | |
a : (M, M) array_like | |
Square matrix | |
b : (M, N) array_like | |
Input | |
q : (M, M) array_like | |
Input | |
r : (N, N) array_like | |
Nonsingular square matrix | |
e : (M, M) array_like, optional | |
Nonsingular square matrix | |
s : (M, N) array_like, optional | |
Input | |
balanced : bool, optional | |
The boolean that indicates whether a balancing step is performed | |
on the data. The default is set to True. | |
Returns | |
------- | |
x : (M, M) ndarray | |
Solution to the continuous-time algebraic Riccati equation. | |
Raises | |
------ | |
LinAlgError | |
For cases where the stable subspace of the pencil could not be | |
isolated. See Notes section and the references for details. | |
See Also | |
-------- | |
solve_discrete_are : Solves the discrete-time algebraic Riccati equation | |
Notes | |
----- | |
The equation is solved by forming the extended hamiltonian matrix pencil, | |
as described in [1]_, :math:`H - \lambda J` given by the block matrices :: | |
[ A 0 B ] [ E 0 0 ] | |
[-Q -A^H -S ] - \lambda * [ 0 E^H 0 ] | |
[ S^H B^H R ] [ 0 0 0 ] | |
and using a QZ decomposition method. | |
In this algorithm, the fail conditions are linked to the symmetry | |
of the product :math:`U_2 U_1^{-1}` and condition number of | |
:math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the | |
eigenvectors spanning the stable subspace with 2-m rows and partitioned | |
into two m-row matrices. See [1]_ and [2]_ for more details. | |
In order to improve the QZ decomposition accuracy, the pencil goes | |
through a balancing step where the sum of absolute values of | |
:math:`H` and :math:`J` entries (after removing the diagonal entries of | |
the sum) is balanced following the recipe given in [3]_. | |
.. versionadded:: 0.11.0 | |
References | |
---------- | |
.. [1] P. van Dooren , "A Generalized Eigenvalue Approach For Solving | |
Riccati Equations.", SIAM Journal on Scientific and Statistical | |
Computing, Vol.2(2), :doi:`10.1137/0902010` | |
.. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati | |
Equations.", Massachusetts Institute of Technology. Laboratory for | |
Information and Decision Systems. LIDS-R ; 859. Available online : | |
http://hdl.handle.net/1721.1/1301 | |
.. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001, | |
SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993` | |
Examples | |
-------- | |
Given `a`, `b`, `q`, and `r` solve for `x`: | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[4, 3], [-4.5, -3.5]]) | |
>>> b = np.array([[1], [-1]]) | |
>>> q = np.array([[9, 6], [6, 4.]]) | |
>>> r = 1 | |
>>> x = linalg.solve_continuous_are(a, b, q, r) | |
>>> x | |
array([[ 21.72792206, 14.48528137], | |
[ 14.48528137, 9.65685425]]) | |
>>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q) | |
True | |
""" | |
# Validate input arguments | |
a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args( | |
a, b, q, r, e, s, 'care') | |
H = np.empty((2*m+n, 2*m+n), dtype=r_or_c) | |
H[:m, :m] = a | |
H[:m, m:2*m] = 0. | |
H[:m, 2*m:] = b | |
H[m:2*m, :m] = -q | |
H[m:2*m, m:2*m] = -a.conj().T | |
H[m:2*m, 2*m:] = 0. if s is None else -s | |
H[2*m:, :m] = 0. if s is None else s.conj().T | |
H[2*m:, m:2*m] = b.conj().T | |
H[2*m:, 2*m:] = r | |
if gen_are and e is not None: | |
J = block_diag(e, e.conj().T, np.zeros_like(r, dtype=r_or_c)) | |
else: | |
J = block_diag(np.eye(2*m), np.zeros_like(r, dtype=r_or_c)) | |
if balanced: | |
# xGEBAL does not remove the diagonals before scaling. Also | |
# to avoid destroying the Symplectic structure, we follow Ref.3 | |
M = np.abs(H) + np.abs(J) | |
np.fill_diagonal(M, 0.) | |
_, (sca, _) = matrix_balance(M, separate=1, permute=0) | |
# do we need to bother? | |
if not np.allclose(sca, np.ones_like(sca)): | |
# Now impose diag(D,inv(D)) from Benner where D is | |
# square root of s_i/s_(n+i) for i=0,.... | |
sca = np.log2(sca) | |
# NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !! | |
s = np.round((sca[m:2*m] - sca[:m])/2) | |
sca = 2 ** np.r_[s, -s, sca[2*m:]] | |
# Elementwise multiplication via broadcasting. | |
elwisescale = sca[:, None] * np.reciprocal(sca) | |
H *= elwisescale | |
J *= elwisescale | |
# Deflate the pencil to 2m x 2m ala Ref.1, eq.(55) | |
q, r = qr(H[:, -n:]) | |
H = q[:, n:].conj().T.dot(H[:, :2*m]) | |
J = q[:2*m, n:].conj().T.dot(J[:2*m, :2*m]) | |
# Decide on which output type is needed for QZ | |
out_str = 'real' if r_or_c == float else 'complex' | |
_, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, | |
overwrite_b=True, check_finite=False, | |
output=out_str) | |
# Get the relevant parts of the stable subspace basis | |
if e is not None: | |
u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m]))) | |
u00 = u[:m, :m] | |
u10 = u[m:, :m] | |
# Solve via back-substituion after checking the condition of u00 | |
up, ul, uu = lu(u00) | |
if 1/cond(uu) < np.spacing(1.): | |
raise LinAlgError('Failed to find a finite solution.') | |
# Exploit the triangular structure | |
x = solve_triangular(ul.conj().T, | |
solve_triangular(uu.conj().T, | |
u10.conj().T, | |
lower=True), | |
unit_diagonal=True, | |
).conj().T.dot(up.conj().T) | |
if balanced: | |
x *= sca[:m, None] * sca[:m] | |
# Check the deviation from symmetry for lack of success | |
# See proof of Thm.5 item 3 in [2] | |
u_sym = u00.conj().T.dot(u10) | |
n_u_sym = norm(u_sym, 1) | |
u_sym = u_sym - u_sym.conj().T | |
sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym]) | |
if norm(u_sym, 1) > sym_threshold: | |
raise LinAlgError('The associated Hamiltonian pencil has eigenvalues ' | |
'too close to the imaginary axis') | |
return (x + x.conj().T)/2 | |
def solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True): | |
r""" | |
Solves the discrete-time algebraic Riccati equation (DARE). | |
The DARE is defined as | |
.. math:: | |
A^HXA - X - (A^HXB) (R + B^HXB)^{-1} (B^HXA) + Q = 0 | |
The limitations for a solution to exist are : | |
* All eigenvalues of :math:`A` outside the unit disc, should be | |
controllable. | |
* The associated symplectic pencil (See Notes), should have | |
eigenvalues sufficiently away from the unit circle. | |
Moreover, if ``e`` and ``s`` are not both precisely ``None``, then the | |
generalized version of DARE | |
.. math:: | |
A^HXA - E^HXE - (A^HXB+S) (R+B^HXB)^{-1} (B^HXA+S^H) + Q = 0 | |
is solved. When omitted, ``e`` is assumed to be the identity and ``s`` | |
is assumed to be the zero matrix. | |
Parameters | |
---------- | |
a : (M, M) array_like | |
Square matrix | |
b : (M, N) array_like | |
Input | |
q : (M, M) array_like | |
Input | |
r : (N, N) array_like | |
Square matrix | |
e : (M, M) array_like, optional | |
Nonsingular square matrix | |
s : (M, N) array_like, optional | |
Input | |
balanced : bool | |
The boolean that indicates whether a balancing step is performed | |
on the data. The default is set to True. | |
Returns | |
------- | |
x : (M, M) ndarray | |
Solution to the discrete algebraic Riccati equation. | |
Raises | |
------ | |
LinAlgError | |
For cases where the stable subspace of the pencil could not be | |
isolated. See Notes section and the references for details. | |
See Also | |
-------- | |
solve_continuous_are : Solves the continuous algebraic Riccati equation | |
Notes | |
----- | |
The equation is solved by forming the extended symplectic matrix pencil, | |
as described in [1]_, :math:`H - \lambda J` given by the block matrices :: | |
[ A 0 B ] [ E 0 B ] | |
[ -Q E^H -S ] - \lambda * [ 0 A^H 0 ] | |
[ S^H 0 R ] [ 0 -B^H 0 ] | |
and using a QZ decomposition method. | |
In this algorithm, the fail conditions are linked to the symmetry | |
of the product :math:`U_2 U_1^{-1}` and condition number of | |
:math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the | |
eigenvectors spanning the stable subspace with 2-m rows and partitioned | |
into two m-row matrices. See [1]_ and [2]_ for more details. | |
In order to improve the QZ decomposition accuracy, the pencil goes | |
through a balancing step where the sum of absolute values of | |
:math:`H` and :math:`J` rows/cols (after removing the diagonal entries) | |
is balanced following the recipe given in [3]_. If the data has small | |
numerical noise, balancing may amplify their effects and some clean up | |
is required. | |
.. versionadded:: 0.11.0 | |
References | |
---------- | |
.. [1] P. van Dooren , "A Generalized Eigenvalue Approach For Solving | |
Riccati Equations.", SIAM Journal on Scientific and Statistical | |
Computing, Vol.2(2), :doi:`10.1137/0902010` | |
.. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati | |
Equations.", Massachusetts Institute of Technology. Laboratory for | |
Information and Decision Systems. LIDS-R ; 859. Available online : | |
http://hdl.handle.net/1721.1/1301 | |
.. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001, | |
SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993` | |
Examples | |
-------- | |
Given `a`, `b`, `q`, and `r` solve for `x`: | |
>>> import numpy as np | |
>>> from scipy import linalg as la | |
>>> a = np.array([[0, 1], [0, -1]]) | |
>>> b = np.array([[1, 0], [2, 1]]) | |
>>> q = np.array([[-4, -4], [-4, 7]]) | |
>>> r = np.array([[9, 3], [3, 1]]) | |
>>> x = la.solve_discrete_are(a, b, q, r) | |
>>> x | |
array([[-4., -4.], | |
[-4., 7.]]) | |
>>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a)) | |
>>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q) | |
True | |
""" | |
# Validate input arguments | |
a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args( | |
a, b, q, r, e, s, 'dare') | |
# Form the matrix pencil | |
H = np.zeros((2*m+n, 2*m+n), dtype=r_or_c) | |
H[:m, :m] = a | |
H[:m, 2*m:] = b | |
H[m:2*m, :m] = -q | |
H[m:2*m, m:2*m] = np.eye(m) if e is None else e.conj().T | |
H[m:2*m, 2*m:] = 0. if s is None else -s | |
H[2*m:, :m] = 0. if s is None else s.conj().T | |
H[2*m:, 2*m:] = r | |
J = np.zeros_like(H, dtype=r_or_c) | |
J[:m, :m] = np.eye(m) if e is None else e | |
J[m:2*m, m:2*m] = a.conj().T | |
J[2*m:, m:2*m] = -b.conj().T | |
if balanced: | |
# xGEBAL does not remove the diagonals before scaling. Also | |
# to avoid destroying the Symplectic structure, we follow Ref.3 | |
M = np.abs(H) + np.abs(J) | |
np.fill_diagonal(M, 0.) | |
_, (sca, _) = matrix_balance(M, separate=1, permute=0) | |
# do we need to bother? | |
if not np.allclose(sca, np.ones_like(sca)): | |
# Now impose diag(D,inv(D)) from Benner where D is | |
# square root of s_i/s_(n+i) for i=0,.... | |
sca = np.log2(sca) | |
# NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !! | |
s = np.round((sca[m:2*m] - sca[:m])/2) | |
sca = 2 ** np.r_[s, -s, sca[2*m:]] | |
# Elementwise multiplication via broadcasting. | |
elwisescale = sca[:, None] * np.reciprocal(sca) | |
H *= elwisescale | |
J *= elwisescale | |
# Deflate the pencil by the R column ala Ref.1 | |
q_of_qr, _ = qr(H[:, -n:]) | |
H = q_of_qr[:, n:].conj().T.dot(H[:, :2*m]) | |
J = q_of_qr[:, n:].conj().T.dot(J[:, :2*m]) | |
# Decide on which output type is needed for QZ | |
out_str = 'real' if r_or_c == float else 'complex' | |
_, _, _, _, _, u = ordqz(H, J, sort='iuc', | |
overwrite_a=True, | |
overwrite_b=True, | |
check_finite=False, | |
output=out_str) | |
# Get the relevant parts of the stable subspace basis | |
if e is not None: | |
u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m]))) | |
u00 = u[:m, :m] | |
u10 = u[m:, :m] | |
# Solve via back-substituion after checking the condition of u00 | |
up, ul, uu = lu(u00) | |
if 1/cond(uu) < np.spacing(1.): | |
raise LinAlgError('Failed to find a finite solution.') | |
# Exploit the triangular structure | |
x = solve_triangular(ul.conj().T, | |
solve_triangular(uu.conj().T, | |
u10.conj().T, | |
lower=True), | |
unit_diagonal=True, | |
).conj().T.dot(up.conj().T) | |
if balanced: | |
x *= sca[:m, None] * sca[:m] | |
# Check the deviation from symmetry for lack of success | |
# See proof of Thm.5 item 3 in [2] | |
u_sym = u00.conj().T.dot(u10) | |
n_u_sym = norm(u_sym, 1) | |
u_sym = u_sym - u_sym.conj().T | |
sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym]) | |
if norm(u_sym, 1) > sym_threshold: | |
raise LinAlgError('The associated symplectic pencil has eigenvalues ' | |
'too close to the unit circle') | |
return (x + x.conj().T)/2 | |
def _are_validate_args(a, b, q, r, e, s, eq_type='care'): | |
""" | |
A helper function to validate the arguments supplied to the | |
Riccati equation solvers. Any discrepancy found in the input | |
matrices leads to a ``ValueError`` exception. | |
Essentially, it performs: | |
- a check whether the input is free of NaN and Infs | |
- a pass for the data through ``numpy.atleast_2d()`` | |
- squareness check of the relevant arrays | |
- shape consistency check of the arrays | |
- singularity check of the relevant arrays | |
- symmetricity check of the relevant matrices | |
- a check whether the regular or the generalized version is asked. | |
This function is used by ``solve_continuous_are`` and | |
``solve_discrete_are``. | |
Parameters | |
---------- | |
a, b, q, r, e, s : array_like | |
Input data | |
eq_type : str | |
Accepted arguments are 'care' and 'dare'. | |
Returns | |
------- | |
a, b, q, r, e, s : ndarray | |
Regularized input data | |
m, n : int | |
shape of the problem | |
r_or_c : type | |
Data type of the problem, returns float or complex | |
gen_or_not : bool | |
Type of the equation, True for generalized and False for regular ARE. | |
""" | |
if eq_type.lower() not in ("dare", "care"): | |
raise ValueError("Equation type unknown. " | |
"Only 'care' and 'dare' is understood") | |
a = np.atleast_2d(_asarray_validated(a, check_finite=True)) | |
b = np.atleast_2d(_asarray_validated(b, check_finite=True)) | |
q = np.atleast_2d(_asarray_validated(q, check_finite=True)) | |
r = np.atleast_2d(_asarray_validated(r, check_finite=True)) | |
# Get the correct data types otherwise NumPy complains | |
# about pushing complex numbers into real arrays. | |
r_or_c = complex if np.iscomplexobj(b) else float | |
for ind, mat in enumerate((a, q, r)): | |
if np.iscomplexobj(mat): | |
r_or_c = complex | |
if not np.equal(*mat.shape): | |
raise ValueError("Matrix {} should be square.".format("aqr"[ind])) | |
# Shape consistency checks | |
m, n = b.shape | |
if m != a.shape[0]: | |
raise ValueError("Matrix a and b should have the same number of rows.") | |
if m != q.shape[0]: | |
raise ValueError("Matrix a and q should have the same shape.") | |
if n != r.shape[0]: | |
raise ValueError("Matrix b and r should have the same number of cols.") | |
# Check if the data matrices q, r are (sufficiently) hermitian | |
for ind, mat in enumerate((q, r)): | |
if norm(mat - mat.conj().T, 1) > np.spacing(norm(mat, 1))*100: | |
raise ValueError("Matrix {} should be symmetric/hermitian." | |
"".format("qr"[ind])) | |
# Continuous time ARE should have a nonsingular r matrix. | |
if eq_type == 'care': | |
min_sv = svd(r, compute_uv=False)[-1] | |
if min_sv == 0. or min_sv < np.spacing(1.)*norm(r, 1): | |
raise ValueError('Matrix r is numerically singular.') | |
# Check if the generalized case is required with omitted arguments | |
# perform late shape checking etc. | |
generalized_case = e is not None or s is not None | |
if generalized_case: | |
if e is not None: | |
e = np.atleast_2d(_asarray_validated(e, check_finite=True)) | |
if not np.equal(*e.shape): | |
raise ValueError("Matrix e should be square.") | |
if m != e.shape[0]: | |
raise ValueError("Matrix a and e should have the same shape.") | |
# numpy.linalg.cond doesn't check for exact zeros and | |
# emits a runtime warning. Hence the following manual check. | |
min_sv = svd(e, compute_uv=False)[-1] | |
if min_sv == 0. or min_sv < np.spacing(1.) * norm(e, 1): | |
raise ValueError('Matrix e is numerically singular.') | |
if np.iscomplexobj(e): | |
r_or_c = complex | |
if s is not None: | |
s = np.atleast_2d(_asarray_validated(s, check_finite=True)) | |
if s.shape != b.shape: | |
raise ValueError("Matrix b and s should have the same shape.") | |
if np.iscomplexobj(s): | |
r_or_c = complex | |
return a, b, q, r, e, s, m, n, r_or_c, generalized_case | |