peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_optimize.py
#__docformat__ = "restructuredtext en" | |
# ******NOTICE*************** | |
# optimize.py module by Travis E. Oliphant | |
# | |
# You may copy and use this module as you see fit with no | |
# guarantee implied provided you keep this notice in all copies. | |
# *****END NOTICE************ | |
# A collection of optimization algorithms. Version 0.5 | |
# CHANGES | |
# Added fminbound (July 2001) | |
# Added brute (Aug. 2002) | |
# Finished line search satisfying strong Wolfe conditions (Mar. 2004) | |
# Updated strong Wolfe conditions line search to use | |
# cubic-interpolation (Mar. 2004) | |
# Minimization routines | |
__all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg', | |
'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der', | |
'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime', | |
'line_search', 'check_grad', 'OptimizeResult', 'show_options', | |
'OptimizeWarning'] | |
__docformat__ = "restructuredtext en" | |
import math | |
import warnings | |
import sys | |
import inspect | |
from numpy import (atleast_1d, eye, argmin, zeros, shape, squeeze, | |
asarray, sqrt) | |
import numpy as np | |
from scipy.linalg import cholesky, issymmetric, LinAlgError | |
from scipy.sparse.linalg import LinearOperator | |
from ._linesearch import (line_search_wolfe1, line_search_wolfe2, | |
line_search_wolfe2 as line_search, | |
LineSearchWarning) | |
from ._numdiff import approx_derivative | |
from scipy._lib._util import getfullargspec_no_self as _getfullargspec | |
from scipy._lib._util import (MapWrapper, check_random_state, _RichResult, | |
_call_callback_maybe_halt) | |
from scipy.optimize._differentiable_functions import ScalarFunction, FD_METHODS | |
# standard status messages of optimizers | |
_status_message = {'success': 'Optimization terminated successfully.', | |
'maxfev': 'Maximum number of function evaluations has ' | |
'been exceeded.', | |
'maxiter': 'Maximum number of iterations has been ' | |
'exceeded.', | |
'pr_loss': 'Desired error not necessarily achieved due ' | |
'to precision loss.', | |
'nan': 'NaN result encountered.', | |
'out_of_bounds': 'The result is outside of the provided ' | |
'bounds.'} | |
class MemoizeJac: | |
""" Decorator that caches the return values of a function returning `(fun, grad)` | |
each time it is called. """ | |
def __init__(self, fun): | |
self.fun = fun | |
self.jac = None | |
self._value = None | |
self.x = None | |
def _compute_if_needed(self, x, *args): | |
if not np.all(x == self.x) or self._value is None or self.jac is None: | |
self.x = np.asarray(x).copy() | |
fg = self.fun(x, *args) | |
self.jac = fg[1] | |
self._value = fg[0] | |
def __call__(self, x, *args): | |
""" returns the function value """ | |
self._compute_if_needed(x, *args) | |
return self._value | |
def derivative(self, x, *args): | |
self._compute_if_needed(x, *args) | |
return self.jac | |
def _wrap_callback(callback, method=None): | |
"""Wrap a user-provided callback so that attributes can be attached.""" | |
if callback is None or method in {'tnc', 'slsqp', 'cobyla'}: | |
return callback # don't wrap | |
sig = inspect.signature(callback) | |
if set(sig.parameters) == {'intermediate_result'}: | |
def wrapped_callback(res): | |
return callback(intermediate_result=res) | |
elif method == 'trust-constr': | |
def wrapped_callback(res): | |
return callback(np.copy(res.x), res) | |
elif method == 'differential_evolution': | |
def wrapped_callback(res): | |
return callback(np.copy(res.x), res.convergence) | |
else: | |
def wrapped_callback(res): | |
return callback(np.copy(res.x)) | |
wrapped_callback.stop_iteration = False | |
return wrapped_callback | |
class OptimizeResult(_RichResult): | |
""" | |
Represents the optimization result. | |
Attributes | |
---------- | |
x : ndarray | |
The solution of the optimization. | |
success : bool | |
Whether or not the optimizer exited successfully. | |
status : int | |
Termination status of the optimizer. Its value depends on the | |
underlying solver. Refer to `message` for details. | |
message : str | |
Description of the cause of the termination. | |
fun, jac, hess: ndarray | |
Values of objective function, its Jacobian and its Hessian (if | |
available). The Hessians may be approximations, see the documentation | |
of the function in question. | |
hess_inv : object | |
Inverse of the objective function's Hessian; may be an approximation. | |
Not available for all solvers. The type of this attribute may be | |
either np.ndarray or scipy.sparse.linalg.LinearOperator. | |
nfev, njev, nhev : int | |
Number of evaluations of the objective functions and of its | |
Jacobian and Hessian. | |
nit : int | |
Number of iterations performed by the optimizer. | |
maxcv : float | |
The maximum constraint violation. | |
Notes | |
----- | |
Depending on the specific solver being used, `OptimizeResult` may | |
not have all attributes listed here, and they may have additional | |
attributes not listed here. Since this class is essentially a | |
subclass of dict with attribute accessors, one can see which | |
attributes are available using the `OptimizeResult.keys` method. | |
""" | |
pass | |
class OptimizeWarning(UserWarning): | |
pass | |
def _check_positive_definite(Hk): | |
def is_pos_def(A): | |
if issymmetric(A): | |
try: | |
cholesky(A) | |
return True | |
except LinAlgError: | |
return False | |
else: | |
return False | |
if Hk is not None: | |
if not is_pos_def(Hk): | |
raise ValueError("'hess_inv0' matrix isn't positive definite.") | |
def _check_unknown_options(unknown_options): | |
if unknown_options: | |
msg = ", ".join(map(str, unknown_options.keys())) | |
# Stack level 4: this is called from _minimize_*, which is | |
# called from another function in SciPy. Level 4 is the first | |
# level in user code. | |
warnings.warn("Unknown solver options: %s" % msg, OptimizeWarning, stacklevel=4) | |
def is_finite_scalar(x): | |
"""Test whether `x` is either a finite scalar or a finite array scalar. | |
""" | |
return np.size(x) == 1 and np.isfinite(x) | |
_epsilon = sqrt(np.finfo(float).eps) | |
def vecnorm(x, ord=2): | |
if ord == np.inf: | |
return np.amax(np.abs(x)) | |
elif ord == -np.inf: | |
return np.amin(np.abs(x)) | |
else: | |
return np.sum(np.abs(x)**ord, axis=0)**(1.0 / ord) | |
def _prepare_scalar_function(fun, x0, jac=None, args=(), bounds=None, | |
epsilon=None, finite_diff_rel_step=None, | |
hess=None): | |
""" | |
Creates a ScalarFunction object for use with scalar minimizers | |
(BFGS/LBFGSB/SLSQP/TNC/CG/etc). | |
Parameters | |
---------- | |
fun : callable | |
The objective function to be minimized. | |
``fun(x, *args) -> float`` | |
where ``x`` is an 1-D array with shape (n,) and ``args`` | |
is a tuple of the fixed parameters needed to completely | |
specify the function. | |
x0 : ndarray, shape (n,) | |
Initial guess. Array of real elements of size (n,), | |
where 'n' is the number of independent variables. | |
jac : {callable, '2-point', '3-point', 'cs', None}, optional | |
Method for computing the gradient vector. If it is a callable, it | |
should be a function that returns the gradient vector: | |
``jac(x, *args) -> array_like, shape (n,)`` | |
If one of `{'2-point', '3-point', 'cs'}` is selected then the gradient | |
is calculated with a relative step for finite differences. If `None`, | |
then two-point finite differences with an absolute step is used. | |
args : tuple, optional | |
Extra arguments passed to the objective function and its | |
derivatives (`fun`, `jac` functions). | |
bounds : sequence, optional | |
Bounds on variables. 'new-style' bounds are required. | |
eps : float or ndarray | |
If `jac is None` the absolute step size used for numerical | |
approximation of the jacobian via forward differences. | |
finite_diff_rel_step : None or array_like, optional | |
If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
use for numerical approximation of the jacobian. The absolute step | |
size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, | |
possibly adjusted to fit into the bounds. For ``jac='3-point'`` | |
the sign of `h` is ignored. If None (default) then step is selected | |
automatically. | |
hess : {callable, '2-point', '3-point', 'cs', None} | |
Computes the Hessian matrix. If it is callable, it should return the | |
Hessian matrix: | |
``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)`` | |
Alternatively, the keywords {'2-point', '3-point', 'cs'} select a | |
finite difference scheme for numerical estimation. | |
Whenever the gradient is estimated via finite-differences, the Hessian | |
cannot be estimated with options {'2-point', '3-point', 'cs'} and needs | |
to be estimated using one of the quasi-Newton strategies. | |
Returns | |
------- | |
sf : ScalarFunction | |
""" | |
if callable(jac): | |
grad = jac | |
elif jac in FD_METHODS: | |
# epsilon is set to None so that ScalarFunction is made to use | |
# rel_step | |
epsilon = None | |
grad = jac | |
else: | |
# default (jac is None) is to do 2-point finite differences with | |
# absolute step size. ScalarFunction has to be provided an | |
# epsilon value that is not None to use absolute steps. This is | |
# normally the case from most _minimize* methods. | |
grad = '2-point' | |
epsilon = epsilon | |
if hess is None: | |
# ScalarFunction requires something for hess, so we give a dummy | |
# implementation here if nothing is provided, return a value of None | |
# so that downstream minimisers halt. The results of `fun.hess` | |
# should not be used. | |
def hess(x, *args): | |
return None | |
if bounds is None: | |
bounds = (-np.inf, np.inf) | |
# ScalarFunction caches. Reuse of fun(x) during grad | |
# calculation reduces overall function evaluations. | |
sf = ScalarFunction(fun, x0, args, grad, hess, | |
finite_diff_rel_step, bounds, epsilon=epsilon) | |
return sf | |
def _clip_x_for_func(func, bounds): | |
# ensures that x values sent to func are clipped to bounds | |
# this is used as a mitigation for gh11403, slsqp/tnc sometimes | |
# suggest a move that is outside the limits by 1 or 2 ULP. This | |
# unclean fix makes sure x is strictly within bounds. | |
def eval(x): | |
x = _check_clip_x(x, bounds) | |
return func(x) | |
return eval | |
def _check_clip_x(x, bounds): | |
if (x < bounds[0]).any() or (x > bounds[1]).any(): | |
warnings.warn("Values in x were outside bounds during a " | |
"minimize step, clipping to bounds", | |
RuntimeWarning, stacklevel=3) | |
x = np.clip(x, bounds[0], bounds[1]) | |
return x | |
return x | |
def rosen(x): | |
""" | |
The Rosenbrock function. | |
The function computed is:: | |
sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0) | |
Parameters | |
---------- | |
x : array_like | |
1-D array of points at which the Rosenbrock function is to be computed. | |
Returns | |
------- | |
f : float | |
The value of the Rosenbrock function. | |
See Also | |
-------- | |
rosen_der, rosen_hess, rosen_hess_prod | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import rosen | |
>>> X = 0.1 * np.arange(10) | |
>>> rosen(X) | |
76.56 | |
For higher-dimensional input ``rosen`` broadcasts. | |
In the following example, we use this to plot a 2D landscape. | |
Note that ``rosen_hess`` does not broadcast in this manner. | |
>>> import matplotlib.pyplot as plt | |
>>> from mpl_toolkits.mplot3d import Axes3D | |
>>> x = np.linspace(-1, 1, 50) | |
>>> X, Y = np.meshgrid(x, x) | |
>>> ax = plt.subplot(111, projection='3d') | |
>>> ax.plot_surface(X, Y, rosen([X, Y])) | |
>>> plt.show() | |
""" | |
x = asarray(x) | |
r = np.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0, | |
axis=0) | |
return r | |
def rosen_der(x): | |
""" | |
The derivative (i.e. gradient) of the Rosenbrock function. | |
Parameters | |
---------- | |
x : array_like | |
1-D array of points at which the derivative is to be computed. | |
Returns | |
------- | |
rosen_der : (N,) ndarray | |
The gradient of the Rosenbrock function at `x`. | |
See Also | |
-------- | |
rosen, rosen_hess, rosen_hess_prod | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import rosen_der | |
>>> X = 0.1 * np.arange(9) | |
>>> rosen_der(X) | |
array([ -2. , 10.6, 15.6, 13.4, 6.4, -3. , -12.4, -19.4, 62. ]) | |
""" | |
x = asarray(x) | |
xm = x[1:-1] | |
xm_m1 = x[:-2] | |
xm_p1 = x[2:] | |
der = np.zeros_like(x) | |
der[1:-1] = (200 * (xm - xm_m1**2) - | |
400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm)) | |
der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0]) | |
der[-1] = 200 * (x[-1] - x[-2]**2) | |
return der | |
def rosen_hess(x): | |
""" | |
The Hessian matrix of the Rosenbrock function. | |
Parameters | |
---------- | |
x : array_like | |
1-D array of points at which the Hessian matrix is to be computed. | |
Returns | |
------- | |
rosen_hess : ndarray | |
The Hessian matrix of the Rosenbrock function at `x`. | |
See Also | |
-------- | |
rosen, rosen_der, rosen_hess_prod | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import rosen_hess | |
>>> X = 0.1 * np.arange(4) | |
>>> rosen_hess(X) | |
array([[-38., 0., 0., 0.], | |
[ 0., 134., -40., 0.], | |
[ 0., -40., 130., -80.], | |
[ 0., 0., -80., 200.]]) | |
""" | |
x = atleast_1d(x) | |
H = np.diag(-400 * x[:-1], 1) - np.diag(400 * x[:-1], -1) | |
diagonal = np.zeros(len(x), dtype=x.dtype) | |
diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2 | |
diagonal[-1] = 200 | |
diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:] | |
H = H + np.diag(diagonal) | |
return H | |
def rosen_hess_prod(x, p): | |
""" | |
Product of the Hessian matrix of the Rosenbrock function with a vector. | |
Parameters | |
---------- | |
x : array_like | |
1-D array of points at which the Hessian matrix is to be computed. | |
p : array_like | |
1-D array, the vector to be multiplied by the Hessian matrix. | |
Returns | |
------- | |
rosen_hess_prod : ndarray | |
The Hessian matrix of the Rosenbrock function at `x` multiplied | |
by the vector `p`. | |
See Also | |
-------- | |
rosen, rosen_der, rosen_hess | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import rosen_hess_prod | |
>>> X = 0.1 * np.arange(9) | |
>>> p = 0.5 * np.arange(9) | |
>>> rosen_hess_prod(X, p) | |
array([ -0., 27., -10., -95., -192., -265., -278., -195., -180.]) | |
""" | |
x = atleast_1d(x) | |
Hp = np.zeros(len(x), dtype=x.dtype) | |
Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1] | |
Hp[1:-1] = (-400 * x[:-2] * p[:-2] + | |
(202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] - | |
400 * x[1:-1] * p[2:]) | |
Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1] | |
return Hp | |
def _wrap_scalar_function(function, args): | |
# wraps a minimizer function to count number of evaluations | |
# and to easily provide an args kwd. | |
ncalls = [0] | |
if function is None: | |
return ncalls, None | |
def function_wrapper(x, *wrapper_args): | |
ncalls[0] += 1 | |
# A copy of x is sent to the user function (gh13740) | |
fx = function(np.copy(x), *(wrapper_args + args)) | |
# Ideally, we'd like to a have a true scalar returned from f(x). For | |
# backwards-compatibility, also allow np.array([1.3]), np.array([[1.3]]) etc. | |
if not np.isscalar(fx): | |
try: | |
fx = np.asarray(fx).item() | |
except (TypeError, ValueError) as e: | |
raise ValueError("The user-provided objective function " | |
"must return a scalar value.") from e | |
return fx | |
return ncalls, function_wrapper | |
class _MaxFuncCallError(RuntimeError): | |
pass | |
def _wrap_scalar_function_maxfun_validation(function, args, maxfun): | |
# wraps a minimizer function to count number of evaluations | |
# and to easily provide an args kwd. | |
ncalls = [0] | |
if function is None: | |
return ncalls, None | |
def function_wrapper(x, *wrapper_args): | |
if ncalls[0] >= maxfun: | |
raise _MaxFuncCallError("Too many function calls") | |
ncalls[0] += 1 | |
# A copy of x is sent to the user function (gh13740) | |
fx = function(np.copy(x), *(wrapper_args + args)) | |
# Ideally, we'd like to a have a true scalar returned from f(x). For | |
# backwards-compatibility, also allow np.array([1.3]), | |
# np.array([[1.3]]) etc. | |
if not np.isscalar(fx): | |
try: | |
fx = np.asarray(fx).item() | |
except (TypeError, ValueError) as e: | |
raise ValueError("The user-provided objective function " | |
"must return a scalar value.") from e | |
return fx | |
return ncalls, function_wrapper | |
def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None, | |
full_output=0, disp=1, retall=0, callback=None, initial_simplex=None): | |
""" | |
Minimize a function using the downhill simplex algorithm. | |
This algorithm only uses function values, not derivatives or second | |
derivatives. | |
Parameters | |
---------- | |
func : callable func(x,*args) | |
The objective function to be minimized. | |
x0 : ndarray | |
Initial guess. | |
args : tuple, optional | |
Extra arguments passed to func, i.e., ``f(x,*args)``. | |
xtol : float, optional | |
Absolute error in xopt between iterations that is acceptable for | |
convergence. | |
ftol : number, optional | |
Absolute error in func(xopt) between iterations that is acceptable for | |
convergence. | |
maxiter : int, optional | |
Maximum number of iterations to perform. | |
maxfun : number, optional | |
Maximum number of function evaluations to make. | |
full_output : bool, optional | |
Set to True if fopt and warnflag outputs are desired. | |
disp : bool, optional | |
Set to True to print convergence messages. | |
retall : bool, optional | |
Set to True to return list of solutions at each iteration. | |
callback : callable, optional | |
Called after each iteration, as callback(xk), where xk is the | |
current parameter vector. | |
initial_simplex : array_like of shape (N + 1, N), optional | |
Initial simplex. If given, overrides `x0`. | |
``initial_simplex[j,:]`` should contain the coordinates of | |
the jth vertex of the ``N+1`` vertices in the simplex, where | |
``N`` is the dimension. | |
Returns | |
------- | |
xopt : ndarray | |
Parameter that minimizes function. | |
fopt : float | |
Value of function at minimum: ``fopt = func(xopt)``. | |
iter : int | |
Number of iterations performed. | |
funcalls : int | |
Number of function calls made. | |
warnflag : int | |
1 : Maximum number of function evaluations made. | |
2 : Maximum number of iterations reached. | |
allvecs : list | |
Solution at each iteration. | |
See also | |
-------- | |
minimize: Interface to minimization algorithms for multivariate | |
functions. See the 'Nelder-Mead' `method` in particular. | |
Notes | |
----- | |
Uses a Nelder-Mead simplex algorithm to find the minimum of function of | |
one or more variables. | |
This algorithm has a long history of successful use in applications. | |
But it will usually be slower than an algorithm that uses first or | |
second derivative information. In practice, it can have poor | |
performance in high-dimensional problems and is not robust to | |
minimizing complicated functions. Additionally, there currently is no | |
complete theory describing when the algorithm will successfully | |
converge to the minimum, or how fast it will if it does. Both the ftol and | |
xtol criteria must be met for convergence. | |
Examples | |
-------- | |
>>> def f(x): | |
... return x**2 | |
>>> from scipy import optimize | |
>>> minimum = optimize.fmin(f, 1) | |
Optimization terminated successfully. | |
Current function value: 0.000000 | |
Iterations: 17 | |
Function evaluations: 34 | |
>>> minimum[0] | |
-8.8817841970012523e-16 | |
References | |
---------- | |
.. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function | |
minimization", The Computer Journal, 7, pp. 308-313 | |
.. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now | |
Respectable", in Numerical Analysis 1995, Proceedings of the | |
1995 Dundee Biennial Conference in Numerical Analysis, D.F. | |
Griffiths and G.A. Watson (Eds.), Addison Wesley Longman, | |
Harlow, UK, pp. 191-208. | |
""" | |
opts = {'xatol': xtol, | |
'fatol': ftol, | |
'maxiter': maxiter, | |
'maxfev': maxfun, | |
'disp': disp, | |
'return_all': retall, | |
'initial_simplex': initial_simplex} | |
callback = _wrap_callback(callback) | |
res = _minimize_neldermead(func, x0, args, callback=callback, **opts) | |
if full_output: | |
retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status'] | |
if retall: | |
retlist += (res['allvecs'], ) | |
return retlist | |
else: | |
if retall: | |
return res['x'], res['allvecs'] | |
else: | |
return res['x'] | |
def _minimize_neldermead(func, x0, args=(), callback=None, | |
maxiter=None, maxfev=None, disp=False, | |
return_all=False, initial_simplex=None, | |
xatol=1e-4, fatol=1e-4, adaptive=False, bounds=None, | |
**unknown_options): | |
""" | |
Minimization of scalar function of one or more variables using the | |
Nelder-Mead algorithm. | |
Options | |
------- | |
disp : bool | |
Set to True to print convergence messages. | |
maxiter, maxfev : int | |
Maximum allowed number of iterations and function evaluations. | |
Will default to ``N*200``, where ``N`` is the number of | |
variables, if neither `maxiter` or `maxfev` is set. If both | |
`maxiter` and `maxfev` are set, minimization will stop at the | |
first reached. | |
return_all : bool, optional | |
Set to True to return a list of the best solution at each of the | |
iterations. | |
initial_simplex : array_like of shape (N + 1, N) | |
Initial simplex. If given, overrides `x0`. | |
``initial_simplex[j,:]`` should contain the coordinates of | |
the jth vertex of the ``N+1`` vertices in the simplex, where | |
``N`` is the dimension. | |
xatol : float, optional | |
Absolute error in xopt between iterations that is acceptable for | |
convergence. | |
fatol : number, optional | |
Absolute error in func(xopt) between iterations that is acceptable for | |
convergence. | |
adaptive : bool, optional | |
Adapt algorithm parameters to dimensionality of problem. Useful for | |
high-dimensional minimization [1]_. | |
bounds : sequence or `Bounds`, optional | |
Bounds on variables. There are two ways to specify the bounds: | |
1. Instance of `Bounds` class. | |
2. Sequence of ``(min, max)`` pairs for each element in `x`. None | |
is used to specify no bound. | |
Note that this just clips all vertices in simplex based on | |
the bounds. | |
References | |
---------- | |
.. [1] Gao, F. and Han, L. | |
Implementing the Nelder-Mead simplex algorithm with adaptive | |
parameters. 2012. Computational Optimization and Applications. | |
51:1, pp. 259-277 | |
""" | |
_check_unknown_options(unknown_options) | |
maxfun = maxfev | |
retall = return_all | |
x0 = np.atleast_1d(x0).flatten() | |
dtype = x0.dtype if np.issubdtype(x0.dtype, np.inexact) else np.float64 | |
x0 = np.asarray(x0, dtype=dtype) | |
if adaptive: | |
dim = float(len(x0)) | |
rho = 1 | |
chi = 1 + 2/dim | |
psi = 0.75 - 1/(2*dim) | |
sigma = 1 - 1/dim | |
else: | |
rho = 1 | |
chi = 2 | |
psi = 0.5 | |
sigma = 0.5 | |
nonzdelt = 0.05 | |
zdelt = 0.00025 | |
if bounds is not None: | |
lower_bound, upper_bound = bounds.lb, bounds.ub | |
# check bounds | |
if (lower_bound > upper_bound).any(): | |
raise ValueError("Nelder Mead - one of the lower bounds " | |
"is greater than an upper bound.", | |
stacklevel=3) | |
if np.any(lower_bound > x0) or np.any(x0 > upper_bound): | |
warnings.warn("Initial guess is not within the specified bounds", | |
OptimizeWarning, stacklevel=3) | |
if bounds is not None: | |
x0 = np.clip(x0, lower_bound, upper_bound) | |
if initial_simplex is None: | |
N = len(x0) | |
sim = np.empty((N + 1, N), dtype=x0.dtype) | |
sim[0] = x0 | |
for k in range(N): | |
y = np.array(x0, copy=True) | |
if y[k] != 0: | |
y[k] = (1 + nonzdelt)*y[k] | |
else: | |
y[k] = zdelt | |
sim[k + 1] = y | |
else: | |
sim = np.atleast_2d(initial_simplex).copy() | |
dtype = sim.dtype if np.issubdtype(sim.dtype, np.inexact) else np.float64 | |
sim = np.asarray(sim, dtype=dtype) | |
if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1: | |
raise ValueError("`initial_simplex` should be an array of shape (N+1,N)") | |
if len(x0) != sim.shape[1]: | |
raise ValueError("Size of `initial_simplex` is not consistent with `x0`") | |
N = sim.shape[1] | |
if retall: | |
allvecs = [sim[0]] | |
# If neither are set, then set both to default | |
if maxiter is None and maxfun is None: | |
maxiter = N * 200 | |
maxfun = N * 200 | |
elif maxiter is None: | |
# Convert remaining Nones, to np.inf, unless the other is np.inf, in | |
# which case use the default to avoid unbounded iteration | |
if maxfun == np.inf: | |
maxiter = N * 200 | |
else: | |
maxiter = np.inf | |
elif maxfun is None: | |
if maxiter == np.inf: | |
maxfun = N * 200 | |
else: | |
maxfun = np.inf | |
if bounds is not None: | |
# The default simplex construction may make all entries (for a given | |
# parameter) greater than an upper bound if x0 is very close to the | |
# upper bound. If one simply clips the simplex to the bounds this could | |
# make the simplex entries degenerate. If that occurs reflect into the | |
# interior. | |
msk = sim > upper_bound | |
# reflect into the interior | |
sim = np.where(msk, 2*upper_bound - sim, sim) | |
# but make sure the reflection is no less than the lower_bound | |
sim = np.clip(sim, lower_bound, upper_bound) | |
one2np1 = list(range(1, N + 1)) | |
fsim = np.full((N + 1,), np.inf, dtype=float) | |
fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun) | |
try: | |
for k in range(N + 1): | |
fsim[k] = func(sim[k]) | |
except _MaxFuncCallError: | |
pass | |
finally: | |
ind = np.argsort(fsim) | |
sim = np.take(sim, ind, 0) | |
fsim = np.take(fsim, ind, 0) | |
ind = np.argsort(fsim) | |
fsim = np.take(fsim, ind, 0) | |
# sort so sim[0,:] has the lowest function value | |
sim = np.take(sim, ind, 0) | |
iterations = 1 | |
while (fcalls[0] < maxfun and iterations < maxiter): | |
try: | |
if (np.max(np.ravel(np.abs(sim[1:] - sim[0]))) <= xatol and | |
np.max(np.abs(fsim[0] - fsim[1:])) <= fatol): | |
break | |
xbar = np.add.reduce(sim[:-1], 0) / N | |
xr = (1 + rho) * xbar - rho * sim[-1] | |
if bounds is not None: | |
xr = np.clip(xr, lower_bound, upper_bound) | |
fxr = func(xr) | |
doshrink = 0 | |
if fxr < fsim[0]: | |
xe = (1 + rho * chi) * xbar - rho * chi * sim[-1] | |
if bounds is not None: | |
xe = np.clip(xe, lower_bound, upper_bound) | |
fxe = func(xe) | |
if fxe < fxr: | |
sim[-1] = xe | |
fsim[-1] = fxe | |
else: | |
sim[-1] = xr | |
fsim[-1] = fxr | |
else: # fsim[0] <= fxr | |
if fxr < fsim[-2]: | |
sim[-1] = xr | |
fsim[-1] = fxr | |
else: # fxr >= fsim[-2] | |
# Perform contraction | |
if fxr < fsim[-1]: | |
xc = (1 + psi * rho) * xbar - psi * rho * sim[-1] | |
if bounds is not None: | |
xc = np.clip(xc, lower_bound, upper_bound) | |
fxc = func(xc) | |
if fxc <= fxr: | |
sim[-1] = xc | |
fsim[-1] = fxc | |
else: | |
doshrink = 1 | |
else: | |
# Perform an inside contraction | |
xcc = (1 - psi) * xbar + psi * sim[-1] | |
if bounds is not None: | |
xcc = np.clip(xcc, lower_bound, upper_bound) | |
fxcc = func(xcc) | |
if fxcc < fsim[-1]: | |
sim[-1] = xcc | |
fsim[-1] = fxcc | |
else: | |
doshrink = 1 | |
if doshrink: | |
for j in one2np1: | |
sim[j] = sim[0] + sigma * (sim[j] - sim[0]) | |
if bounds is not None: | |
sim[j] = np.clip( | |
sim[j], lower_bound, upper_bound) | |
fsim[j] = func(sim[j]) | |
iterations += 1 | |
except _MaxFuncCallError: | |
pass | |
finally: | |
ind = np.argsort(fsim) | |
sim = np.take(sim, ind, 0) | |
fsim = np.take(fsim, ind, 0) | |
if retall: | |
allvecs.append(sim[0]) | |
intermediate_result = OptimizeResult(x=sim[0], fun=fsim[0]) | |
if _call_callback_maybe_halt(callback, intermediate_result): | |
break | |
x = sim[0] | |
fval = np.min(fsim) | |
warnflag = 0 | |
if fcalls[0] >= maxfun: | |
warnflag = 1 | |
msg = _status_message['maxfev'] | |
if disp: | |
warnings.warn(msg, RuntimeWarning, stacklevel=3) | |
elif iterations >= maxiter: | |
warnflag = 2 | |
msg = _status_message['maxiter'] | |
if disp: | |
warnings.warn(msg, RuntimeWarning, stacklevel=3) | |
else: | |
msg = _status_message['success'] | |
if disp: | |
print(msg) | |
print(" Current function value: %f" % fval) | |
print(" Iterations: %d" % iterations) | |
print(" Function evaluations: %d" % fcalls[0]) | |
result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0], | |
status=warnflag, success=(warnflag == 0), | |
message=msg, x=x, final_simplex=(sim, fsim)) | |
if retall: | |
result['allvecs'] = allvecs | |
return result | |
def approx_fprime(xk, f, epsilon=_epsilon, *args): | |
"""Finite difference approximation of the derivatives of a | |
scalar or vector-valued function. | |
If a function maps from :math:`R^n` to :math:`R^m`, its derivatives form | |
an m-by-n matrix | |
called the Jacobian, where an element :math:`(i, j)` is a partial | |
derivative of f[i] with respect to ``xk[j]``. | |
Parameters | |
---------- | |
xk : array_like | |
The coordinate vector at which to determine the gradient of `f`. | |
f : callable | |
Function of which to estimate the derivatives of. Has the signature | |
``f(xk, *args)`` where `xk` is the argument in the form of a 1-D array | |
and `args` is a tuple of any additional fixed parameters needed to | |
completely specify the function. The argument `xk` passed to this | |
function is an ndarray of shape (n,) (never a scalar even if n=1). | |
It must return a 1-D array_like of shape (m,) or a scalar. | |
.. versionchanged:: 1.9.0 | |
`f` is now able to return a 1-D array-like, with the :math:`(m, n)` | |
Jacobian being estimated. | |
epsilon : {float, array_like}, optional | |
Increment to `xk` to use for determining the function gradient. | |
If a scalar, uses the same finite difference delta for all partial | |
derivatives. If an array, should contain one value per element of | |
`xk`. Defaults to ``sqrt(np.finfo(float).eps)``, which is approximately | |
1.49e-08. | |
\\*args : args, optional | |
Any other arguments that are to be passed to `f`. | |
Returns | |
------- | |
jac : ndarray | |
The partial derivatives of `f` to `xk`. | |
See Also | |
-------- | |
check_grad : Check correctness of gradient function against approx_fprime. | |
Notes | |
----- | |
The function gradient is determined by the forward finite difference | |
formula:: | |
f(xk[i] + epsilon[i]) - f(xk[i]) | |
f'[i] = --------------------------------- | |
epsilon[i] | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import optimize | |
>>> def func(x, c0, c1): | |
... "Coordinate vector `x` should be an array of size two." | |
... return c0 * x[0]**2 + c1*x[1]**2 | |
>>> x = np.ones(2) | |
>>> c0, c1 = (1, 200) | |
>>> eps = np.sqrt(np.finfo(float).eps) | |
>>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1) | |
array([ 2. , 400.00004198]) | |
""" | |
xk = np.asarray(xk, float) | |
f0 = f(xk, *args) | |
return approx_derivative(f, xk, method='2-point', abs_step=epsilon, | |
args=args, f0=f0) | |
def check_grad(func, grad, x0, *args, epsilon=_epsilon, | |
direction='all', seed=None): | |
"""Check the correctness of a gradient function by comparing it against a | |
(forward) finite-difference approximation of the gradient. | |
Parameters | |
---------- | |
func : callable ``func(x0, *args)`` | |
Function whose derivative is to be checked. | |
grad : callable ``grad(x0, *args)`` | |
Jacobian of `func`. | |
x0 : ndarray | |
Points to check `grad` against forward difference approximation of grad | |
using `func`. | |
args : \\*args, optional | |
Extra arguments passed to `func` and `grad`. | |
epsilon : float, optional | |
Step size used for the finite difference approximation. It defaults to | |
``sqrt(np.finfo(float).eps)``, which is approximately 1.49e-08. | |
direction : str, optional | |
If set to ``'random'``, then gradients along a random vector | |
are used to check `grad` against forward difference approximation | |
using `func`. By default it is ``'all'``, in which case, all | |
the one hot direction vectors are considered to check `grad`. | |
If `func` is a vector valued function then only ``'all'`` can be used. | |
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
Specify `seed` for reproducing the return value from this function. | |
The random numbers generated with this seed affect the random vector | |
along which gradients are computed to check ``grad``. Note that `seed` | |
is only used when `direction` argument is set to `'random'`. | |
Returns | |
------- | |
err : float | |
The square root of the sum of squares (i.e., the 2-norm) of the | |
difference between ``grad(x0, *args)`` and the finite difference | |
approximation of `grad` using func at the points `x0`. | |
See Also | |
-------- | |
approx_fprime | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> def func(x): | |
... return x[0]**2 - 0.5 * x[1]**3 | |
>>> def grad(x): | |
... return [2 * x[0], -1.5 * x[1]**2] | |
>>> from scipy.optimize import check_grad | |
>>> check_grad(func, grad, [1.5, -1.5]) | |
2.9802322387695312e-08 # may vary | |
>>> rng = np.random.default_rng() | |
>>> check_grad(func, grad, [1.5, -1.5], | |
... direction='random', seed=rng) | |
2.9802322387695312e-08 | |
""" | |
step = epsilon | |
x0 = np.asarray(x0) | |
def g(w, func, x0, v, *args): | |
return func(x0 + w*v, *args) | |
if direction == 'random': | |
_grad = np.asanyarray(grad(x0, *args)) | |
if _grad.ndim > 1: | |
raise ValueError("'random' can only be used with scalar valued" | |
" func") | |
random_state = check_random_state(seed) | |
v = random_state.normal(0, 1, size=(x0.shape)) | |
_args = (func, x0, v) + args | |
_func = g | |
vars = np.zeros((1,)) | |
analytical_grad = np.dot(_grad, v) | |
elif direction == 'all': | |
_args = args | |
_func = func | |
vars = x0 | |
analytical_grad = grad(x0, *args) | |
else: | |
raise ValueError(f"{direction} is not a valid string for " | |
"``direction`` argument") | |
return np.sqrt(np.sum(np.abs( | |
(analytical_grad - approx_fprime(vars, _func, step, *_args))**2 | |
))) | |
def approx_fhess_p(x0, p, fprime, epsilon, *args): | |
# calculate fprime(x0) first, as this may be cached by ScalarFunction | |
f1 = fprime(*((x0,) + args)) | |
f2 = fprime(*((x0 + epsilon*p,) + args)) | |
return (f2 - f1) / epsilon | |
class _LineSearchError(RuntimeError): | |
pass | |
def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, | |
**kwargs): | |
""" | |
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if | |
suitable step length is not found, and raise an exception if a | |
suitable step length is not found. | |
Raises | |
------ | |
_LineSearchError | |
If no suitable step size is found | |
""" | |
extra_condition = kwargs.pop('extra_condition', None) | |
ret = line_search_wolfe1(f, fprime, xk, pk, gfk, | |
old_fval, old_old_fval, | |
**kwargs) | |
if ret[0] is not None and extra_condition is not None: | |
xp1 = xk + ret[0] * pk | |
if not extra_condition(ret[0], xp1, ret[3], ret[5]): | |
# Reject step if extra_condition fails | |
ret = (None,) | |
if ret[0] is None: | |
# line search failed: try different one. | |
with warnings.catch_warnings(): | |
warnings.simplefilter('ignore', LineSearchWarning) | |
kwargs2 = {} | |
for key in ('c1', 'c2', 'amax'): | |
if key in kwargs: | |
kwargs2[key] = kwargs[key] | |
ret = line_search_wolfe2(f, fprime, xk, pk, gfk, | |
old_fval, old_old_fval, | |
extra_condition=extra_condition, | |
**kwargs2) | |
if ret[0] is None: | |
raise _LineSearchError() | |
return ret | |
def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf, | |
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, | |
retall=0, callback=None, xrtol=0, c1=1e-4, c2=0.9, | |
hess_inv0=None): | |
""" | |
Minimize a function using the BFGS algorithm. | |
Parameters | |
---------- | |
f : callable ``f(x,*args)`` | |
Objective function to be minimized. | |
x0 : ndarray | |
Initial guess, shape (n,) | |
fprime : callable ``f'(x,*args)``, optional | |
Gradient of f. | |
args : tuple, optional | |
Extra arguments passed to f and fprime. | |
gtol : float, optional | |
Terminate successfully if gradient norm is less than `gtol` | |
norm : float, optional | |
Order of norm (Inf is max, -Inf is min) | |
epsilon : int or ndarray, optional | |
If `fprime` is approximated, use this value for the step size. | |
callback : callable, optional | |
An optional user-supplied function to call after each | |
iteration. Called as ``callback(xk)``, where ``xk`` is the | |
current parameter vector. | |
maxiter : int, optional | |
Maximum number of iterations to perform. | |
full_output : bool, optional | |
If True, return ``fopt``, ``func_calls``, ``grad_calls``, and | |
``warnflag`` in addition to ``xopt``. | |
disp : bool, optional | |
Print convergence message if True. | |
retall : bool, optional | |
Return a list of results at each iteration if True. | |
xrtol : float, default: 0 | |
Relative tolerance for `x`. Terminate successfully if step | |
size is less than ``xk * xrtol`` where ``xk`` is the current | |
parameter vector. | |
c1 : float, default: 1e-4 | |
Parameter for Armijo condition rule. | |
c2 : float, default: 0.9 | |
Parameter for curvature condition rule. | |
hess_inv0 : None or ndarray, optional`` | |
Initial inverse hessian estimate, shape (n, n). If None (default) then | |
the identity matrix is used. | |
Returns | |
------- | |
xopt : ndarray | |
Parameters which minimize f, i.e., ``f(xopt) == fopt``. | |
fopt : float | |
Minimum value. | |
gopt : ndarray | |
Value of gradient at minimum, f'(xopt), which should be near 0. | |
Bopt : ndarray | |
Value of 1/f''(xopt), i.e., the inverse Hessian matrix. | |
func_calls : int | |
Number of function_calls made. | |
grad_calls : int | |
Number of gradient calls made. | |
warnflag : integer | |
1 : Maximum number of iterations exceeded. | |
2 : Gradient and/or function calls not changing. | |
3 : NaN result encountered. | |
allvecs : list | |
The value of `xopt` at each iteration. Only returned if `retall` is | |
True. | |
Notes | |
----- | |
Optimize the function, `f`, whose gradient is given by `fprime` | |
using the quasi-Newton method of Broyden, Fletcher, Goldfarb, | |
and Shanno (BFGS). | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
See Also | |
-------- | |
minimize: Interface to minimization algorithms for multivariate | |
functions. See ``method='BFGS'`` in particular. | |
References | |
---------- | |
Wright, and Nocedal 'Numerical Optimization', 1999, p. 198. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import fmin_bfgs | |
>>> def quadratic_cost(x, Q): | |
... return x @ Q @ x | |
... | |
>>> x0 = np.array([-3, -4]) | |
>>> cost_weight = np.diag([1., 10.]) | |
>>> # Note that a trailing comma is necessary for a tuple with single element | |
>>> fmin_bfgs(quadratic_cost, x0, args=(cost_weight,)) | |
Optimization terminated successfully. | |
Current function value: 0.000000 | |
Iterations: 7 # may vary | |
Function evaluations: 24 # may vary | |
Gradient evaluations: 8 # may vary | |
array([ 2.85169950e-06, -4.61820139e-07]) | |
>>> def quadratic_cost_grad(x, Q): | |
... return 2 * Q @ x | |
... | |
>>> fmin_bfgs(quadratic_cost, x0, quadratic_cost_grad, args=(cost_weight,)) | |
Optimization terminated successfully. | |
Current function value: 0.000000 | |
Iterations: 7 | |
Function evaluations: 8 | |
Gradient evaluations: 8 | |
array([ 2.85916637e-06, -4.54371951e-07]) | |
""" | |
opts = {'gtol': gtol, | |
'norm': norm, | |
'eps': epsilon, | |
'disp': disp, | |
'maxiter': maxiter, | |
'return_all': retall, | |
'xrtol': xrtol, | |
'c1': c1, | |
'c2': c2, | |
'hess_inv0': hess_inv0} | |
callback = _wrap_callback(callback) | |
res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts) | |
if full_output: | |
retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'], | |
res['nfev'], res['njev'], res['status']) | |
if retall: | |
retlist += (res['allvecs'], ) | |
return retlist | |
else: | |
if retall: | |
return res['x'], res['allvecs'] | |
else: | |
return res['x'] | |
def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None, | |
gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None, | |
disp=False, return_all=False, finite_diff_rel_step=None, | |
xrtol=0, c1=1e-4, c2=0.9, | |
hess_inv0=None, **unknown_options): | |
""" | |
Minimization of scalar function of one or more variables using the | |
BFGS algorithm. | |
Options | |
------- | |
disp : bool | |
Set to True to print convergence messages. | |
maxiter : int | |
Maximum number of iterations to perform. | |
gtol : float | |
Terminate successfully if gradient norm is less than `gtol`. | |
norm : float | |
Order of norm (Inf is max, -Inf is min). | |
eps : float or ndarray | |
If `jac is None` the absolute step size used for numerical | |
approximation of the jacobian via forward differences. | |
return_all : bool, optional | |
Set to True to return a list of the best solution at each of the | |
iterations. | |
finite_diff_rel_step : None or array_like, optional | |
If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
use for numerical approximation of the jacobian. The absolute step | |
size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, | |
possibly adjusted to fit into the bounds. For ``jac='3-point'`` | |
the sign of `h` is ignored. If None (default) then step is selected | |
automatically. | |
xrtol : float, default: 0 | |
Relative tolerance for `x`. Terminate successfully if step size is | |
less than ``xk * xrtol`` where ``xk`` is the current parameter vector. | |
c1 : float, default: 1e-4 | |
Parameter for Armijo condition rule. | |
c2 : float, default: 0.9 | |
Parameter for curvature condition rule. | |
hess_inv0 : None or ndarray, optional | |
Initial inverse hessian estimate, shape (n, n). If None (default) then | |
the identity matrix is used. | |
Notes | |
----- | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
If minimization doesn't complete successfully, with an error message of | |
``Desired error not necessarily achieved due to precision loss``, then | |
consider setting `gtol` to a higher value. This precision loss typically | |
occurs when the (finite difference) numerical differentiation cannot provide | |
sufficient precision to satisfy the `gtol` termination criterion. | |
This can happen when working in single precision and a callable jac is not | |
provided. For single precision problems a `gtol` of 1e-3 seems to work. | |
""" | |
_check_unknown_options(unknown_options) | |
_check_positive_definite(hess_inv0) | |
retall = return_all | |
x0 = asarray(x0).flatten() | |
if x0.ndim == 0: | |
x0.shape = (1,) | |
if maxiter is None: | |
maxiter = len(x0) * 200 | |
sf = _prepare_scalar_function(fun, x0, jac, args=args, epsilon=eps, | |
finite_diff_rel_step=finite_diff_rel_step) | |
f = sf.fun | |
myfprime = sf.grad | |
old_fval = f(x0) | |
gfk = myfprime(x0) | |
k = 0 | |
N = len(x0) | |
I = np.eye(N, dtype=int) | |
Hk = I if hess_inv0 is None else hess_inv0 | |
# Sets the initial step guess to dx ~ 1 | |
old_old_fval = old_fval + np.linalg.norm(gfk) / 2 | |
xk = x0 | |
if retall: | |
allvecs = [x0] | |
warnflag = 0 | |
gnorm = vecnorm(gfk, ord=norm) | |
while (gnorm > gtol) and (k < maxiter): | |
pk = -np.dot(Hk, gfk) | |
try: | |
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ | |
_line_search_wolfe12(f, myfprime, xk, pk, gfk, | |
old_fval, old_old_fval, amin=1e-100, | |
amax=1e100, c1=c1, c2=c2) | |
except _LineSearchError: | |
# Line search failed to find a better solution. | |
warnflag = 2 | |
break | |
sk = alpha_k * pk | |
xkp1 = xk + sk | |
if retall: | |
allvecs.append(xkp1) | |
xk = xkp1 | |
if gfkp1 is None: | |
gfkp1 = myfprime(xkp1) | |
yk = gfkp1 - gfk | |
gfk = gfkp1 | |
k += 1 | |
intermediate_result = OptimizeResult(x=xk, fun=old_fval) | |
if _call_callback_maybe_halt(callback, intermediate_result): | |
break | |
gnorm = vecnorm(gfk, ord=norm) | |
if (gnorm <= gtol): | |
break | |
# See Chapter 5 in P.E. Frandsen, K. Jonasson, H.B. Nielsen, | |
# O. Tingleff: "Unconstrained Optimization", IMM, DTU. 1999. | |
# These notes are available here: | |
# http://www2.imm.dtu.dk/documents/ftp/publlec.html | |
if (alpha_k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))): | |
break | |
if not np.isfinite(old_fval): | |
# We correctly found +-Inf as optimal value, or something went | |
# wrong. | |
warnflag = 2 | |
break | |
rhok_inv = np.dot(yk, sk) | |
# this was handled in numeric, let it remains for more safety | |
# Cryptic comment above is preserved for posterity. Future reader: | |
# consider change to condition below proposed in gh-1261/gh-17345. | |
if rhok_inv == 0.: | |
rhok = 1000.0 | |
if disp: | |
msg = "Divide-by-zero encountered: rhok assumed large" | |
_print_success_message_or_warn(True, msg) | |
else: | |
rhok = 1. / rhok_inv | |
A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok | |
A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok | |
Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * | |
sk[np.newaxis, :]) | |
fval = old_fval | |
if warnflag == 2: | |
msg = _status_message['pr_loss'] | |
elif k >= maxiter: | |
warnflag = 1 | |
msg = _status_message['maxiter'] | |
elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any(): | |
warnflag = 3 | |
msg = _status_message['nan'] | |
else: | |
msg = _status_message['success'] | |
if disp: | |
_print_success_message_or_warn(warnflag, msg) | |
print(" Current function value: %f" % fval) | |
print(" Iterations: %d" % k) | |
print(" Function evaluations: %d" % sf.nfev) | |
print(" Gradient evaluations: %d" % sf.ngev) | |
result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=sf.nfev, | |
njev=sf.ngev, status=warnflag, | |
success=(warnflag == 0), message=msg, x=xk, | |
nit=k) | |
if retall: | |
result['allvecs'] = allvecs | |
return result | |
def _print_success_message_or_warn(warnflag, message, warntype=None): | |
if not warnflag: | |
print(message) | |
else: | |
warnings.warn(message, warntype or OptimizeWarning, stacklevel=3) | |
def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf, | |
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, | |
callback=None, c1=1e-4, c2=0.4): | |
""" | |
Minimize a function using a nonlinear conjugate gradient algorithm. | |
Parameters | |
---------- | |
f : callable, ``f(x, *args)`` | |
Objective function to be minimized. Here `x` must be a 1-D array of | |
the variables that are to be changed in the search for a minimum, and | |
`args` are the other (fixed) parameters of `f`. | |
x0 : ndarray | |
A user-supplied initial estimate of `xopt`, the optimal value of `x`. | |
It must be a 1-D array of values. | |
fprime : callable, ``fprime(x, *args)``, optional | |
A function that returns the gradient of `f` at `x`. Here `x` and `args` | |
are as described above for `f`. The returned value must be a 1-D array. | |
Defaults to None, in which case the gradient is approximated | |
numerically (see `epsilon`, below). | |
args : tuple, optional | |
Parameter values passed to `f` and `fprime`. Must be supplied whenever | |
additional fixed parameters are needed to completely specify the | |
functions `f` and `fprime`. | |
gtol : float, optional | |
Stop when the norm of the gradient is less than `gtol`. | |
norm : float, optional | |
Order to use for the norm of the gradient | |
(``-np.inf`` is min, ``np.inf`` is max). | |
epsilon : float or ndarray, optional | |
Step size(s) to use when `fprime` is approximated numerically. Can be a | |
scalar or a 1-D array. Defaults to ``sqrt(eps)``, with eps the | |
floating point machine precision. Usually ``sqrt(eps)`` is about | |
1.5e-8. | |
maxiter : int, optional | |
Maximum number of iterations to perform. Default is ``200 * len(x0)``. | |
full_output : bool, optional | |
If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in | |
addition to `xopt`. See the Returns section below for additional | |
information on optional return values. | |
disp : bool, optional | |
If True, return a convergence message, followed by `xopt`. | |
retall : bool, optional | |
If True, add to the returned values the results of each iteration. | |
callback : callable, optional | |
An optional user-supplied function, called after each iteration. | |
Called as ``callback(xk)``, where ``xk`` is the current value of `x0`. | |
c1 : float, default: 1e-4 | |
Parameter for Armijo condition rule. | |
c2 : float, default: 0.4 | |
Parameter for curvature condition rule. | |
Returns | |
------- | |
xopt : ndarray | |
Parameters which minimize f, i.e., ``f(xopt) == fopt``. | |
fopt : float, optional | |
Minimum value found, f(xopt). Only returned if `full_output` is True. | |
func_calls : int, optional | |
The number of function_calls made. Only returned if `full_output` | |
is True. | |
grad_calls : int, optional | |
The number of gradient calls made. Only returned if `full_output` is | |
True. | |
warnflag : int, optional | |
Integer value with warning status, only returned if `full_output` is | |
True. | |
0 : Success. | |
1 : The maximum number of iterations was exceeded. | |
2 : Gradient and/or function calls were not changing. May indicate | |
that precision was lost, i.e., the routine did not converge. | |
3 : NaN result encountered. | |
allvecs : list of ndarray, optional | |
List of arrays, containing the results at each iteration. | |
Only returned if `retall` is True. | |
See Also | |
-------- | |
minimize : common interface to all `scipy.optimize` algorithms for | |
unconstrained and constrained minimization of multivariate | |
functions. It provides an alternative way to call | |
``fmin_cg``, by specifying ``method='CG'``. | |
Notes | |
----- | |
This conjugate gradient algorithm is based on that of Polak and Ribiere | |
[1]_. | |
Conjugate gradient methods tend to work better when: | |
1. `f` has a unique global minimizing point, and no local minima or | |
other stationary points, | |
2. `f` is, at least locally, reasonably well approximated by a | |
quadratic function of the variables, | |
3. `f` is continuous and has a continuous gradient, | |
4. `fprime` is not too large, e.g., has a norm less than 1000, | |
5. The initial guess, `x0`, is reasonably close to `f` 's global | |
minimizing point, `xopt`. | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
References | |
---------- | |
.. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122. | |
Examples | |
-------- | |
Example 1: seek the minimum value of the expression | |
``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values | |
of the parameters and an initial guess ``(u, v) = (0, 0)``. | |
>>> import numpy as np | |
>>> args = (2, 3, 7, 8, 9, 10) # parameter values | |
>>> def f(x, *args): | |
... u, v = x | |
... a, b, c, d, e, f = args | |
... return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f | |
>>> def gradf(x, *args): | |
... u, v = x | |
... a, b, c, d, e, f = args | |
... gu = 2*a*u + b*v + d # u-component of the gradient | |
... gv = b*u + 2*c*v + e # v-component of the gradient | |
... return np.asarray((gu, gv)) | |
>>> x0 = np.asarray((0, 0)) # Initial guess. | |
>>> from scipy import optimize | |
>>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args) | |
Optimization terminated successfully. | |
Current function value: 1.617021 | |
Iterations: 4 | |
Function evaluations: 8 | |
Gradient evaluations: 8 | |
>>> res1 | |
array([-1.80851064, -0.25531915]) | |
Example 2: solve the same problem using the `minimize` function. | |
(This `myopts` dictionary shows all of the available options, | |
although in practice only non-default values would be needed. | |
The returned value will be a dictionary.) | |
>>> opts = {'maxiter' : None, # default value. | |
... 'disp' : True, # non-default value. | |
... 'gtol' : 1e-5, # default value. | |
... 'norm' : np.inf, # default value. | |
... 'eps' : 1.4901161193847656e-08} # default value. | |
>>> res2 = optimize.minimize(f, x0, jac=gradf, args=args, | |
... method='CG', options=opts) | |
Optimization terminated successfully. | |
Current function value: 1.617021 | |
Iterations: 4 | |
Function evaluations: 8 | |
Gradient evaluations: 8 | |
>>> res2.x # minimum found | |
array([-1.80851064, -0.25531915]) | |
""" | |
opts = {'gtol': gtol, | |
'norm': norm, | |
'eps': epsilon, | |
'disp': disp, | |
'maxiter': maxiter, | |
'return_all': retall} | |
callback = _wrap_callback(callback) | |
res = _minimize_cg(f, x0, args, fprime, callback=callback, c1=c1, c2=c2, | |
**opts) | |
if full_output: | |
retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status'] | |
if retall: | |
retlist += (res['allvecs'], ) | |
return retlist | |
else: | |
if retall: | |
return res['x'], res['allvecs'] | |
else: | |
return res['x'] | |
def _minimize_cg(fun, x0, args=(), jac=None, callback=None, | |
gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None, | |
disp=False, return_all=False, finite_diff_rel_step=None, | |
c1=1e-4, c2=0.4, **unknown_options): | |
""" | |
Minimization of scalar function of one or more variables using the | |
conjugate gradient algorithm. | |
Options | |
------- | |
disp : bool | |
Set to True to print convergence messages. | |
maxiter : int | |
Maximum number of iterations to perform. | |
gtol : float | |
Gradient norm must be less than `gtol` before successful | |
termination. | |
norm : float | |
Order of norm (Inf is max, -Inf is min). | |
eps : float or ndarray | |
If `jac is None` the absolute step size used for numerical | |
approximation of the jacobian via forward differences. | |
return_all : bool, optional | |
Set to True to return a list of the best solution at each of the | |
iterations. | |
finite_diff_rel_step : None or array_like, optional | |
If `jac in ['2-point', '3-point', 'cs']` the relative step size to | |
use for numerical approximation of the jacobian. The absolute step | |
size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``, | |
possibly adjusted to fit into the bounds. For ``jac='3-point'`` | |
the sign of `h` is ignored. If None (default) then step is selected | |
automatically. | |
c1 : float, default: 1e-4 | |
Parameter for Armijo condition rule. | |
c2 : float, default: 0.4 | |
Parameter for curvature condition rule. | |
Notes | |
----- | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
""" | |
_check_unknown_options(unknown_options) | |
retall = return_all | |
x0 = asarray(x0).flatten() | |
if maxiter is None: | |
maxiter = len(x0) * 200 | |
sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps, | |
finite_diff_rel_step=finite_diff_rel_step) | |
f = sf.fun | |
myfprime = sf.grad | |
old_fval = f(x0) | |
gfk = myfprime(x0) | |
k = 0 | |
xk = x0 | |
# Sets the initial step guess to dx ~ 1 | |
old_old_fval = old_fval + np.linalg.norm(gfk) / 2 | |
if retall: | |
allvecs = [xk] | |
warnflag = 0 | |
pk = -gfk | |
gnorm = vecnorm(gfk, ord=norm) | |
sigma_3 = 0.01 | |
while (gnorm > gtol) and (k < maxiter): | |
deltak = np.dot(gfk, gfk) | |
cached_step = [None] | |
def polak_ribiere_powell_step(alpha, gfkp1=None): | |
xkp1 = xk + alpha * pk | |
if gfkp1 is None: | |
gfkp1 = myfprime(xkp1) | |
yk = gfkp1 - gfk | |
beta_k = max(0, np.dot(yk, gfkp1) / deltak) | |
pkp1 = -gfkp1 + beta_k * pk | |
gnorm = vecnorm(gfkp1, ord=norm) | |
return (alpha, xkp1, pkp1, gfkp1, gnorm) | |
def descent_condition(alpha, xkp1, fp1, gfkp1): | |
# Polak-Ribiere+ needs an explicit check of a sufficient | |
# descent condition, which is not guaranteed by strong Wolfe. | |
# | |
# See Gilbert & Nocedal, "Global convergence properties of | |
# conjugate gradient methods for optimization", | |
# SIAM J. Optimization 2, 21 (1992). | |
cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) | |
alpha, xk, pk, gfk, gnorm = cached_step | |
# Accept step if it leads to convergence. | |
if gnorm <= gtol: | |
return True | |
# Accept step if sufficient descent condition applies. | |
return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk) | |
try: | |
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ | |
_line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval, | |
old_old_fval, c1=c1, c2=c2, amin=1e-100, | |
amax=1e100, extra_condition=descent_condition) | |
except _LineSearchError: | |
# Line search failed to find a better solution. | |
warnflag = 2 | |
break | |
# Reuse already computed results if possible | |
if alpha_k == cached_step[0]: | |
alpha_k, xk, pk, gfk, gnorm = cached_step | |
else: | |
alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) | |
if retall: | |
allvecs.append(xk) | |
k += 1 | |
intermediate_result = OptimizeResult(x=xk, fun=old_fval) | |
if _call_callback_maybe_halt(callback, intermediate_result): | |
break | |
fval = old_fval | |
if warnflag == 2: | |
msg = _status_message['pr_loss'] | |
elif k >= maxiter: | |
warnflag = 1 | |
msg = _status_message['maxiter'] | |
elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any(): | |
warnflag = 3 | |
msg = _status_message['nan'] | |
else: | |
msg = _status_message['success'] | |
if disp: | |
_print_success_message_or_warn(warnflag, msg) | |
print(" Current function value: %f" % fval) | |
print(" Iterations: %d" % k) | |
print(" Function evaluations: %d" % sf.nfev) | |
print(" Gradient evaluations: %d" % sf.ngev) | |
result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev, | |
njev=sf.ngev, status=warnflag, | |
success=(warnflag == 0), message=msg, x=xk, | |
nit=k) | |
if retall: | |
result['allvecs'] = allvecs | |
return result | |
def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5, | |
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, | |
callback=None, c1=1e-4, c2=0.9): | |
""" | |
Unconstrained minimization of a function using the Newton-CG method. | |
Parameters | |
---------- | |
f : callable ``f(x, *args)`` | |
Objective function to be minimized. | |
x0 : ndarray | |
Initial guess. | |
fprime : callable ``f'(x, *args)`` | |
Gradient of f. | |
fhess_p : callable ``fhess_p(x, p, *args)``, optional | |
Function which computes the Hessian of f times an | |
arbitrary vector, p. | |
fhess : callable ``fhess(x, *args)``, optional | |
Function to compute the Hessian matrix of f. | |
args : tuple, optional | |
Extra arguments passed to f, fprime, fhess_p, and fhess | |
(the same set of extra arguments is supplied to all of | |
these functions). | |
epsilon : float or ndarray, optional | |
If fhess is approximated, use this value for the step size. | |
callback : callable, optional | |
An optional user-supplied function which is called after | |
each iteration. Called as callback(xk), where xk is the | |
current parameter vector. | |
avextol : float, optional | |
Convergence is assumed when the average relative error in | |
the minimizer falls below this amount. | |
maxiter : int, optional | |
Maximum number of iterations to perform. | |
full_output : bool, optional | |
If True, return the optional outputs. | |
disp : bool, optional | |
If True, print convergence message. | |
retall : bool, optional | |
If True, return a list of results at each iteration. | |
c1 : float, default: 1e-4 | |
Parameter for Armijo condition rule. | |
c2 : float, default: 0.9 | |
Parameter for curvature condition rule | |
Returns | |
------- | |
xopt : ndarray | |
Parameters which minimize f, i.e., ``f(xopt) == fopt``. | |
fopt : float | |
Value of the function at xopt, i.e., ``fopt = f(xopt)``. | |
fcalls : int | |
Number of function calls made. | |
gcalls : int | |
Number of gradient calls made. | |
hcalls : int | |
Number of Hessian calls made. | |
warnflag : int | |
Warnings generated by the algorithm. | |
1 : Maximum number of iterations exceeded. | |
2 : Line search failure (precision loss). | |
3 : NaN result encountered. | |
allvecs : list | |
The result at each iteration, if retall is True (see below). | |
See also | |
-------- | |
minimize: Interface to minimization algorithms for multivariate | |
functions. See the 'Newton-CG' `method` in particular. | |
Notes | |
----- | |
Only one of `fhess_p` or `fhess` need to be given. If `fhess` | |
is provided, then `fhess_p` will be ignored. If neither `fhess` | |
nor `fhess_p` is provided, then the hessian product will be | |
approximated using finite differences on `fprime`. `fhess_p` | |
must compute the hessian times an arbitrary vector. If it is not | |
given, finite-differences on `fprime` are used to compute | |
it. | |
Newton-CG methods are also called truncated Newton methods. This | |
function differs from scipy.optimize.fmin_tnc because | |
1. scipy.optimize.fmin_ncg is written purely in Python using NumPy | |
and scipy while scipy.optimize.fmin_tnc calls a C function. | |
2. scipy.optimize.fmin_ncg is only for unconstrained minimization | |
while scipy.optimize.fmin_tnc is for unconstrained minimization | |
or box constrained minimization. (Box constraints give | |
lower and upper bounds for each variable separately.) | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
References | |
---------- | |
Wright & Nocedal, 'Numerical Optimization', 1999, p. 140. | |
""" | |
opts = {'xtol': avextol, | |
'eps': epsilon, | |
'maxiter': maxiter, | |
'disp': disp, | |
'return_all': retall} | |
callback = _wrap_callback(callback) | |
res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p, | |
callback=callback, c1=c1, c2=c2, **opts) | |
if full_output: | |
retlist = (res['x'], res['fun'], res['nfev'], res['njev'], | |
res['nhev'], res['status']) | |
if retall: | |
retlist += (res['allvecs'], ) | |
return retlist | |
else: | |
if retall: | |
return res['x'], res['allvecs'] | |
else: | |
return res['x'] | |
def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None, | |
callback=None, xtol=1e-5, eps=_epsilon, maxiter=None, | |
disp=False, return_all=False, c1=1e-4, c2=0.9, | |
**unknown_options): | |
""" | |
Minimization of scalar function of one or more variables using the | |
Newton-CG algorithm. | |
Note that the `jac` parameter (Jacobian) is required. | |
Options | |
------- | |
disp : bool | |
Set to True to print convergence messages. | |
xtol : float | |
Average relative error in solution `xopt` acceptable for | |
convergence. | |
maxiter : int | |
Maximum number of iterations to perform. | |
eps : float or ndarray | |
If `hessp` is approximated, use this value for the step size. | |
return_all : bool, optional | |
Set to True to return a list of the best solution at each of the | |
iterations. | |
c1 : float, default: 1e-4 | |
Parameter for Armijo condition rule. | |
c2 : float, default: 0.9 | |
Parameter for curvature condition rule. | |
Notes | |
----- | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
""" | |
_check_unknown_options(unknown_options) | |
if jac is None: | |
raise ValueError('Jacobian is required for Newton-CG method') | |
fhess_p = hessp | |
fhess = hess | |
avextol = xtol | |
epsilon = eps | |
retall = return_all | |
x0 = asarray(x0).flatten() | |
# TODO: add hessp (callable or FD) to ScalarFunction? | |
sf = _prepare_scalar_function( | |
fun, x0, jac, args=args, epsilon=eps, hess=hess | |
) | |
f = sf.fun | |
fprime = sf.grad | |
_h = sf.hess(x0) | |
# Logic for hess/hessp | |
# - If a callable(hess) is provided, then use that | |
# - If hess is a FD_METHOD, or the output from hess(x) is a LinearOperator | |
# then create a hessp function using those. | |
# - If hess is None but you have callable(hessp) then use the hessp. | |
# - If hess and hessp are None then approximate hessp using the grad/jac. | |
if (hess in FD_METHODS or isinstance(_h, LinearOperator)): | |
fhess = None | |
def _hessp(x, p, *args): | |
return sf.hess(x).dot(p) | |
fhess_p = _hessp | |
def terminate(warnflag, msg): | |
if disp: | |
_print_success_message_or_warn(warnflag, msg) | |
print(" Current function value: %f" % old_fval) | |
print(" Iterations: %d" % k) | |
print(" Function evaluations: %d" % sf.nfev) | |
print(" Gradient evaluations: %d" % sf.ngev) | |
print(" Hessian evaluations: %d" % hcalls) | |
fval = old_fval | |
result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev, | |
njev=sf.ngev, nhev=hcalls, status=warnflag, | |
success=(warnflag == 0), message=msg, x=xk, | |
nit=k) | |
if retall: | |
result['allvecs'] = allvecs | |
return result | |
hcalls = 0 | |
if maxiter is None: | |
maxiter = len(x0)*200 | |
cg_maxiter = 20*len(x0) | |
xtol = len(x0) * avextol | |
# Make sure we enter the while loop. | |
update_l1norm = np.finfo(float).max | |
xk = np.copy(x0) | |
if retall: | |
allvecs = [xk] | |
k = 0 | |
gfk = None | |
old_fval = f(x0) | |
old_old_fval = None | |
float64eps = np.finfo(np.float64).eps | |
while update_l1norm > xtol: | |
if k >= maxiter: | |
msg = "Warning: " + _status_message['maxiter'] | |
return terminate(1, msg) | |
# Compute a search direction pk by applying the CG method to | |
# del2 f(xk) p = - grad f(xk) starting from 0. | |
b = -fprime(xk) | |
maggrad = np.linalg.norm(b, ord=1) | |
eta = min(0.5, math.sqrt(maggrad)) | |
termcond = eta * maggrad | |
xsupi = zeros(len(x0), dtype=x0.dtype) | |
ri = -b | |
psupi = -ri | |
i = 0 | |
dri0 = np.dot(ri, ri) | |
if fhess is not None: # you want to compute hessian once. | |
A = sf.hess(xk) | |
hcalls += 1 | |
for k2 in range(cg_maxiter): | |
if np.add.reduce(np.abs(ri)) <= termcond: | |
break | |
if fhess is None: | |
if fhess_p is None: | |
Ap = approx_fhess_p(xk, psupi, fprime, epsilon) | |
else: | |
Ap = fhess_p(xk, psupi, *args) | |
hcalls += 1 | |
else: | |
# hess was supplied as a callable or hessian update strategy, so | |
# A is a dense numpy array or sparse matrix | |
Ap = A.dot(psupi) | |
# check curvature | |
Ap = asarray(Ap).squeeze() # get rid of matrices... | |
curv = np.dot(psupi, Ap) | |
if 0 <= curv <= 3 * float64eps: | |
break | |
elif curv < 0: | |
if (i > 0): | |
break | |
else: | |
# fall back to steepest descent direction | |
xsupi = dri0 / (-curv) * b | |
break | |
alphai = dri0 / curv | |
xsupi += alphai * psupi | |
ri += alphai * Ap | |
dri1 = np.dot(ri, ri) | |
betai = dri1 / dri0 | |
psupi = -ri + betai * psupi | |
i += 1 | |
dri0 = dri1 # update np.dot(ri,ri) for next time. | |
else: | |
# curvature keeps increasing, bail out | |
msg = ("Warning: CG iterations didn't converge. The Hessian is not " | |
"positive definite.") | |
return terminate(3, msg) | |
pk = xsupi # search direction is solution to system. | |
gfk = -b # gradient at xk | |
try: | |
alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \ | |
_line_search_wolfe12(f, fprime, xk, pk, gfk, | |
old_fval, old_old_fval, c1=c1, c2=c2) | |
except _LineSearchError: | |
# Line search failed to find a better solution. | |
msg = "Warning: " + _status_message['pr_loss'] | |
return terminate(2, msg) | |
update = alphak * pk | |
xk += update # upcast if necessary | |
if retall: | |
allvecs.append(xk) | |
k += 1 | |
intermediate_result = OptimizeResult(x=xk, fun=old_fval) | |
if _call_callback_maybe_halt(callback, intermediate_result): | |
return terminate(5, "") | |
update_l1norm = np.linalg.norm(update, ord=1) | |
else: | |
if np.isnan(old_fval) or np.isnan(update_l1norm): | |
return terminate(3, _status_message['nan']) | |
msg = _status_message['success'] | |
return terminate(0, msg) | |
def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500, | |
full_output=0, disp=1): | |
"""Bounded minimization for scalar functions. | |
Parameters | |
---------- | |
func : callable f(x,*args) | |
Objective function to be minimized (must accept and return scalars). | |
x1, x2 : float or array scalar | |
Finite optimization bounds. | |
args : tuple, optional | |
Extra arguments passed to function. | |
xtol : float, optional | |
The convergence tolerance. | |
maxfun : int, optional | |
Maximum number of function evaluations allowed. | |
full_output : bool, optional | |
If True, return optional outputs. | |
disp : int, optional | |
If non-zero, print messages. | |
0 : no message printing. | |
1 : non-convergence notification messages only. | |
2 : print a message on convergence too. | |
3 : print iteration results. | |
Returns | |
------- | |
xopt : ndarray | |
Parameters (over given interval) which minimize the | |
objective function. | |
fval : number | |
(Optional output) The function value evaluated at the minimizer. | |
ierr : int | |
(Optional output) An error flag (0 if converged, 1 if maximum number of | |
function calls reached). | |
numfunc : int | |
(Optional output) The number of function calls made. | |
See also | |
-------- | |
minimize_scalar: Interface to minimization algorithms for scalar | |
univariate functions. See the 'Bounded' `method` in particular. | |
Notes | |
----- | |
Finds a local minimizer of the scalar function `func` in the | |
interval x1 < xopt < x2 using Brent's method. (See `brent` | |
for auto-bracketing.) | |
References | |
---------- | |
.. [1] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods | |
for Mathematical Computations." Prentice-Hall Series in Automatic | |
Computation 259 (1977). | |
.. [2] Brent, Richard P. Algorithms for Minimization Without Derivatives. | |
Courier Corporation, 2013. | |
Examples | |
-------- | |
`fminbound` finds the minimizer of the function in the given range. | |
The following examples illustrate this. | |
>>> from scipy import optimize | |
>>> def f(x): | |
... return (x-1)**2 | |
>>> minimizer = optimize.fminbound(f, -4, 4) | |
>>> minimizer | |
1.0 | |
>>> minimum = f(minimizer) | |
>>> minimum | |
0.0 | |
>>> res = optimize.fminbound(f, 3, 4, full_output=True) | |
>>> minimizer, fval, ierr, numfunc = res | |
>>> minimizer | |
3.000005960860986 | |
>>> minimum = f(minimizer) | |
>>> minimum, fval | |
(4.000023843479476, 4.000023843479476) | |
""" | |
options = {'xatol': xtol, | |
'maxiter': maxfun, | |
'disp': disp} | |
res = _minimize_scalar_bounded(func, (x1, x2), args, **options) | |
if full_output: | |
return res['x'], res['fun'], res['status'], res['nfev'] | |
else: | |
return res['x'] | |
def _minimize_scalar_bounded(func, bounds, args=(), | |
xatol=1e-5, maxiter=500, disp=0, | |
**unknown_options): | |
""" | |
Options | |
------- | |
maxiter : int | |
Maximum number of iterations to perform. | |
disp: int, optional | |
If non-zero, print messages. | |
0 : no message printing. | |
1 : non-convergence notification messages only. | |
2 : print a message on convergence too. | |
3 : print iteration results. | |
xatol : float | |
Absolute error in solution `xopt` acceptable for convergence. | |
""" | |
_check_unknown_options(unknown_options) | |
maxfun = maxiter | |
# Test bounds are of correct form | |
if len(bounds) != 2: | |
raise ValueError('bounds must have two elements.') | |
x1, x2 = bounds | |
if not (is_finite_scalar(x1) and is_finite_scalar(x2)): | |
raise ValueError("Optimization bounds must be finite scalars.") | |
if x1 > x2: | |
raise ValueError("The lower bound exceeds the upper bound.") | |
flag = 0 | |
header = ' Func-count x f(x) Procedure' | |
step = ' initial' | |
sqrt_eps = sqrt(2.2e-16) | |
golden_mean = 0.5 * (3.0 - sqrt(5.0)) | |
a, b = x1, x2 | |
fulc = a + golden_mean * (b - a) | |
nfc, xf = fulc, fulc | |
rat = e = 0.0 | |
x = xf | |
fx = func(x, *args) | |
num = 1 | |
fmin_data = (1, xf, fx) | |
fu = np.inf | |
ffulc = fnfc = fx | |
xm = 0.5 * (a + b) | |
tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0 | |
tol2 = 2.0 * tol1 | |
if disp > 2: | |
print(" ") | |
print(header) | |
print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) | |
while (np.abs(xf - xm) > (tol2 - 0.5 * (b - a))): | |
golden = 1 | |
# Check for parabolic fit | |
if np.abs(e) > tol1: | |
golden = 0 | |
r = (xf - nfc) * (fx - ffulc) | |
q = (xf - fulc) * (fx - fnfc) | |
p = (xf - fulc) * q - (xf - nfc) * r | |
q = 2.0 * (q - r) | |
if q > 0.0: | |
p = -p | |
q = np.abs(q) | |
r = e | |
e = rat | |
# Check for acceptability of parabola | |
if ((np.abs(p) < np.abs(0.5*q*r)) and (p > q*(a - xf)) and | |
(p < q * (b - xf))): | |
rat = (p + 0.0) / q | |
x = xf + rat | |
step = ' parabolic' | |
if ((x - a) < tol2) or ((b - x) < tol2): | |
si = np.sign(xm - xf) + ((xm - xf) == 0) | |
rat = tol1 * si | |
else: # do a golden-section step | |
golden = 1 | |
if golden: # do a golden-section step | |
if xf >= xm: | |
e = a - xf | |
else: | |
e = b - xf | |
rat = golden_mean*e | |
step = ' golden' | |
si = np.sign(rat) + (rat == 0) | |
x = xf + si * np.maximum(np.abs(rat), tol1) | |
fu = func(x, *args) | |
num += 1 | |
fmin_data = (num, x, fu) | |
if disp > 2: | |
print("%5.0f %12.6g %12.6g %s" % (fmin_data + (step,))) | |
if fu <= fx: | |
if x >= xf: | |
a = xf | |
else: | |
b = xf | |
fulc, ffulc = nfc, fnfc | |
nfc, fnfc = xf, fx | |
xf, fx = x, fu | |
else: | |
if x < xf: | |
a = x | |
else: | |
b = x | |
if (fu <= fnfc) or (nfc == xf): | |
fulc, ffulc = nfc, fnfc | |
nfc, fnfc = x, fu | |
elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc): | |
fulc, ffulc = x, fu | |
xm = 0.5 * (a + b) | |
tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0 | |
tol2 = 2.0 * tol1 | |
if num >= maxfun: | |
flag = 1 | |
break | |
if np.isnan(xf) or np.isnan(fx) or np.isnan(fu): | |
flag = 2 | |
fval = fx | |
if disp > 0: | |
_endprint(x, flag, fval, maxfun, xatol, disp) | |
result = OptimizeResult(fun=fval, status=flag, success=(flag == 0), | |
message={0: 'Solution found.', | |
1: 'Maximum number of function calls ' | |
'reached.', | |
2: _status_message['nan']}.get(flag, ''), | |
x=xf, nfev=num, nit=num) | |
return result | |
class Brent: | |
#need to rethink design of __init__ | |
def __init__(self, func, args=(), tol=1.48e-8, maxiter=500, | |
full_output=0, disp=0): | |
self.func = func | |
self.args = args | |
self.tol = tol | |
self.maxiter = maxiter | |
self._mintol = 1.0e-11 | |
self._cg = 0.3819660 | |
self.xmin = None | |
self.fval = None | |
self.iter = 0 | |
self.funcalls = 0 | |
self.disp = disp | |
# need to rethink design of set_bracket (new options, etc.) | |
def set_bracket(self, brack=None): | |
self.brack = brack | |
def get_bracket_info(self): | |
#set up | |
func = self.func | |
args = self.args | |
brack = self.brack | |
### BEGIN core bracket_info code ### | |
### carefully DOCUMENT any CHANGES in core ## | |
if brack is None: | |
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) | |
elif len(brack) == 2: | |
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], | |
xb=brack[1], args=args) | |
elif len(brack) == 3: | |
xa, xb, xc = brack | |
if (xa > xc): # swap so xa < xc can be assumed | |
xc, xa = xa, xc | |
if not ((xa < xb) and (xb < xc)): | |
raise ValueError( | |
"Bracketing values (xa, xb, xc) do not" | |
" fulfill this requirement: (xa < xb) and (xb < xc)" | |
) | |
fa = func(*((xa,) + args)) | |
fb = func(*((xb,) + args)) | |
fc = func(*((xc,) + args)) | |
if not ((fb < fa) and (fb < fc)): | |
raise ValueError( | |
"Bracketing values (xa, xb, xc) do not fulfill" | |
" this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))" | |
) | |
funcalls = 3 | |
else: | |
raise ValueError("Bracketing interval must be " | |
"length 2 or 3 sequence.") | |
### END core bracket_info code ### | |
return xa, xb, xc, fa, fb, fc, funcalls | |
def optimize(self): | |
# set up for optimization | |
func = self.func | |
xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info() | |
_mintol = self._mintol | |
_cg = self._cg | |
################################# | |
#BEGIN CORE ALGORITHM | |
################################# | |
x = w = v = xb | |
fw = fv = fx = fb | |
if (xa < xc): | |
a = xa | |
b = xc | |
else: | |
a = xc | |
b = xa | |
deltax = 0.0 | |
iter = 0 | |
if self.disp > 2: | |
print(" ") | |
print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}") | |
print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}") | |
while (iter < self.maxiter): | |
tol1 = self.tol * np.abs(x) + _mintol | |
tol2 = 2.0 * tol1 | |
xmid = 0.5 * (a + b) | |
# check for convergence | |
if np.abs(x - xmid) < (tol2 - 0.5 * (b - a)): | |
break | |
# XXX In the first iteration, rat is only bound in the true case | |
# of this conditional. This used to cause an UnboundLocalError | |
# (gh-4140). It should be set before the if (but to what?). | |
if (np.abs(deltax) <= tol1): | |
if (x >= xmid): | |
deltax = a - x # do a golden section step | |
else: | |
deltax = b - x | |
rat = _cg * deltax | |
else: # do a parabolic step | |
tmp1 = (x - w) * (fx - fv) | |
tmp2 = (x - v) * (fx - fw) | |
p = (x - v) * tmp2 - (x - w) * tmp1 | |
tmp2 = 2.0 * (tmp2 - tmp1) | |
if (tmp2 > 0.0): | |
p = -p | |
tmp2 = np.abs(tmp2) | |
dx_temp = deltax | |
deltax = rat | |
# check parabolic fit | |
if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and | |
(np.abs(p) < np.abs(0.5 * tmp2 * dx_temp))): | |
rat = p * 1.0 / tmp2 # if parabolic step is useful. | |
u = x + rat | |
if ((u - a) < tol2 or (b - u) < tol2): | |
if xmid - x >= 0: | |
rat = tol1 | |
else: | |
rat = -tol1 | |
else: | |
if (x >= xmid): | |
deltax = a - x # if it's not do a golden section step | |
else: | |
deltax = b - x | |
rat = _cg * deltax | |
if (np.abs(rat) < tol1): # update by at least tol1 | |
if rat >= 0: | |
u = x + tol1 | |
else: | |
u = x - tol1 | |
else: | |
u = x + rat | |
fu = func(*((u,) + self.args)) # calculate new output value | |
funcalls += 1 | |
if (fu > fx): # if it's bigger than current | |
if (u < x): | |
a = u | |
else: | |
b = u | |
if (fu <= fw) or (w == x): | |
v = w | |
w = u | |
fv = fw | |
fw = fu | |
elif (fu <= fv) or (v == x) or (v == w): | |
v = u | |
fv = fu | |
else: | |
if (u >= x): | |
a = x | |
else: | |
b = x | |
v = w | |
w = x | |
x = u | |
fv = fw | |
fw = fx | |
fx = fu | |
if self.disp > 2: | |
print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}") | |
iter += 1 | |
################################# | |
#END CORE ALGORITHM | |
################################# | |
self.xmin = x | |
self.fval = fx | |
self.iter = iter | |
self.funcalls = funcalls | |
def get_result(self, full_output=False): | |
if full_output: | |
return self.xmin, self.fval, self.iter, self.funcalls | |
else: | |
return self.xmin | |
def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500): | |
""" | |
Given a function of one variable and a possible bracket, return | |
a local minimizer of the function isolated to a fractional precision | |
of tol. | |
Parameters | |
---------- | |
func : callable f(x,*args) | |
Objective function. | |
args : tuple, optional | |
Additional arguments (if present). | |
brack : tuple, optional | |
Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and | |
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair | |
``(xa, xb)`` to be used as initial points for a downhill bracket search | |
(see `scipy.optimize.bracket`). | |
The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``. | |
tol : float, optional | |
Relative error in solution `xopt` acceptable for convergence. | |
full_output : bool, optional | |
If True, return all output args (xmin, fval, iter, | |
funcalls). | |
maxiter : int, optional | |
Maximum number of iterations in solution. | |
Returns | |
------- | |
xmin : ndarray | |
Optimum point. | |
fval : float | |
(Optional output) Optimum function value. | |
iter : int | |
(Optional output) Number of iterations. | |
funcalls : int | |
(Optional output) Number of objective function evaluations made. | |
See also | |
-------- | |
minimize_scalar: Interface to minimization algorithms for scalar | |
univariate functions. See the 'Brent' `method` in particular. | |
Notes | |
----- | |
Uses inverse parabolic interpolation when possible to speed up | |
convergence of golden section method. | |
Does not ensure that the minimum lies in the range specified by | |
`brack`. See `scipy.optimize.fminbound`. | |
Examples | |
-------- | |
We illustrate the behaviour of the function when `brack` is of | |
size 2 and 3 respectively. In the case where `brack` is of the | |
form ``(xa, xb)``, we can see for the given values, the output does | |
not necessarily lie in the range ``(xa, xb)``. | |
>>> def f(x): | |
... return (x-1)**2 | |
>>> from scipy import optimize | |
>>> minimizer = optimize.brent(f, brack=(1, 2)) | |
>>> minimizer | |
1 | |
>>> res = optimize.brent(f, brack=(-1, 0.5, 2), full_output=True) | |
>>> xmin, fval, iter, funcalls = res | |
>>> f(xmin), fval | |
(0.0, 0.0) | |
""" | |
options = {'xtol': tol, | |
'maxiter': maxiter} | |
res = _minimize_scalar_brent(func, brack, args, **options) | |
if full_output: | |
return res['x'], res['fun'], res['nit'], res['nfev'] | |
else: | |
return res['x'] | |
def _minimize_scalar_brent(func, brack=None, args=(), xtol=1.48e-8, | |
maxiter=500, disp=0, | |
**unknown_options): | |
""" | |
Options | |
------- | |
maxiter : int | |
Maximum number of iterations to perform. | |
xtol : float | |
Relative error in solution `xopt` acceptable for convergence. | |
disp: int, optional | |
If non-zero, print messages. | |
0 : no message printing. | |
1 : non-convergence notification messages only. | |
2 : print a message on convergence too. | |
3 : print iteration results. | |
Notes | |
----- | |
Uses inverse parabolic interpolation when possible to speed up | |
convergence of golden section method. | |
""" | |
_check_unknown_options(unknown_options) | |
tol = xtol | |
if tol < 0: | |
raise ValueError('tolerance should be >= 0, got %r' % tol) | |
brent = Brent(func=func, args=args, tol=tol, | |
full_output=True, maxiter=maxiter, disp=disp) | |
brent.set_bracket(brack) | |
brent.optimize() | |
x, fval, nit, nfev = brent.get_result(full_output=True) | |
success = nit < maxiter and not (np.isnan(x) or np.isnan(fval)) | |
if success: | |
message = ("\nOptimization terminated successfully;\n" | |
"The returned value satisfies the termination criteria\n" | |
f"(using xtol = {xtol} )") | |
else: | |
if nit >= maxiter: | |
message = "\nMaximum number of iterations exceeded" | |
if np.isnan(x) or np.isnan(fval): | |
message = f"{_status_message['nan']}" | |
if disp: | |
_print_success_message_or_warn(not success, message) | |
return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev, | |
success=success, message=message) | |
def golden(func, args=(), brack=None, tol=_epsilon, | |
full_output=0, maxiter=5000): | |
""" | |
Return the minimizer of a function of one variable using the golden section | |
method. | |
Given a function of one variable and a possible bracketing interval, | |
return a minimizer of the function isolated to a fractional precision of | |
tol. | |
Parameters | |
---------- | |
func : callable func(x,*args) | |
Objective function to minimize. | |
args : tuple, optional | |
Additional arguments (if present), passed to func. | |
brack : tuple, optional | |
Either a triple ``(xa, xb, xc)`` where ``xa < xb < xc`` and | |
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair (xa, xb) | |
to be used as initial points for a downhill bracket search (see | |
`scipy.optimize.bracket`). | |
The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``. | |
tol : float, optional | |
x tolerance stop criterion | |
full_output : bool, optional | |
If True, return optional outputs. | |
maxiter : int | |
Maximum number of iterations to perform. | |
Returns | |
------- | |
xmin : ndarray | |
Optimum point. | |
fval : float | |
(Optional output) Optimum function value. | |
funcalls : int | |
(Optional output) Number of objective function evaluations made. | |
See also | |
-------- | |
minimize_scalar: Interface to minimization algorithms for scalar | |
univariate functions. See the 'Golden' `method` in particular. | |
Notes | |
----- | |
Uses analog of bisection method to decrease the bracketed | |
interval. | |
Examples | |
-------- | |
We illustrate the behaviour of the function when `brack` is of | |
size 2 and 3, respectively. In the case where `brack` is of the | |
form (xa,xb), we can see for the given values, the output need | |
not necessarily lie in the range ``(xa, xb)``. | |
>>> def f(x): | |
... return (x-1)**2 | |
>>> from scipy import optimize | |
>>> minimizer = optimize.golden(f, brack=(1, 2)) | |
>>> minimizer | |
1 | |
>>> res = optimize.golden(f, brack=(-1, 0.5, 2), full_output=True) | |
>>> xmin, fval, funcalls = res | |
>>> f(xmin), fval | |
(9.925165290385052e-18, 9.925165290385052e-18) | |
""" | |
options = {'xtol': tol, 'maxiter': maxiter} | |
res = _minimize_scalar_golden(func, brack, args, **options) | |
if full_output: | |
return res['x'], res['fun'], res['nfev'] | |
else: | |
return res['x'] | |
def _minimize_scalar_golden(func, brack=None, args=(), | |
xtol=_epsilon, maxiter=5000, disp=0, | |
**unknown_options): | |
""" | |
Options | |
------- | |
xtol : float | |
Relative error in solution `xopt` acceptable for convergence. | |
maxiter : int | |
Maximum number of iterations to perform. | |
disp: int, optional | |
If non-zero, print messages. | |
0 : no message printing. | |
1 : non-convergence notification messages only. | |
2 : print a message on convergence too. | |
3 : print iteration results. | |
""" | |
_check_unknown_options(unknown_options) | |
tol = xtol | |
if brack is None: | |
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args) | |
elif len(brack) == 2: | |
xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0], | |
xb=brack[1], args=args) | |
elif len(brack) == 3: | |
xa, xb, xc = brack | |
if (xa > xc): # swap so xa < xc can be assumed | |
xc, xa = xa, xc | |
if not ((xa < xb) and (xb < xc)): | |
raise ValueError( | |
"Bracketing values (xa, xb, xc) do not" | |
" fulfill this requirement: (xa < xb) and (xb < xc)" | |
) | |
fa = func(*((xa,) + args)) | |
fb = func(*((xb,) + args)) | |
fc = func(*((xc,) + args)) | |
if not ((fb < fa) and (fb < fc)): | |
raise ValueError( | |
"Bracketing values (xa, xb, xc) do not fulfill" | |
" this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))" | |
) | |
funcalls = 3 | |
else: | |
raise ValueError("Bracketing interval must be length 2 or 3 sequence.") | |
_gR = 0.61803399 # golden ratio conjugate: 2.0/(1.0+sqrt(5.0)) | |
_gC = 1.0 - _gR | |
x3 = xc | |
x0 = xa | |
if (np.abs(xc - xb) > np.abs(xb - xa)): | |
x1 = xb | |
x2 = xb + _gC * (xc - xb) | |
else: | |
x2 = xb | |
x1 = xb - _gC * (xb - xa) | |
f1 = func(*((x1,) + args)) | |
f2 = func(*((x2,) + args)) | |
funcalls += 2 | |
nit = 0 | |
if disp > 2: | |
print(" ") | |
print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}") | |
for i in range(maxiter): | |
if np.abs(x3 - x0) <= tol * (np.abs(x1) + np.abs(x2)): | |
break | |
if (f2 < f1): | |
x0 = x1 | |
x1 = x2 | |
x2 = _gR * x1 + _gC * x3 | |
f1 = f2 | |
f2 = func(*((x2,) + args)) | |
else: | |
x3 = x2 | |
x2 = x1 | |
x1 = _gR * x2 + _gC * x0 | |
f2 = f1 | |
f1 = func(*((x1,) + args)) | |
funcalls += 1 | |
if disp > 2: | |
if (f1 < f2): | |
xmin, fval = x1, f1 | |
else: | |
xmin, fval = x2, f2 | |
print(f"{funcalls:^12g} {xmin:^12.6g} {fval:^12.6g}") | |
nit += 1 | |
# end of iteration loop | |
if (f1 < f2): | |
xmin = x1 | |
fval = f1 | |
else: | |
xmin = x2 | |
fval = f2 | |
success = nit < maxiter and not (np.isnan(fval) or np.isnan(xmin)) | |
if success: | |
message = ("\nOptimization terminated successfully;\n" | |
"The returned value satisfies the termination criteria\n" | |
f"(using xtol = {xtol} )") | |
else: | |
if nit >= maxiter: | |
message = "\nMaximum number of iterations exceeded" | |
if np.isnan(xmin) or np.isnan(fval): | |
message = f"{_status_message['nan']}" | |
if disp: | |
_print_success_message_or_warn(not success, message) | |
return OptimizeResult(fun=fval, nfev=funcalls, x=xmin, nit=nit, | |
success=success, message=message) | |
def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000): | |
""" | |
Bracket the minimum of a function. | |
Given a function and distinct initial points, search in the | |
downhill direction (as defined by the initial points) and return | |
three points that bracket the minimum of the function. | |
Parameters | |
---------- | |
func : callable f(x,*args) | |
Objective function to minimize. | |
xa, xb : float, optional | |
Initial points. Defaults `xa` to 0.0, and `xb` to 1.0. | |
A local minimum need not be contained within this interval. | |
args : tuple, optional | |
Additional arguments (if present), passed to `func`. | |
grow_limit : float, optional | |
Maximum grow limit. Defaults to 110.0 | |
maxiter : int, optional | |
Maximum number of iterations to perform. Defaults to 1000. | |
Returns | |
------- | |
xa, xb, xc : float | |
Final points of the bracket. | |
fa, fb, fc : float | |
Objective function values at the bracket points. | |
funcalls : int | |
Number of function evaluations made. | |
Raises | |
------ | |
BracketError | |
If no valid bracket is found before the algorithm terminates. | |
See notes for conditions of a valid bracket. | |
Notes | |
----- | |
The algorithm attempts to find three strictly ordered points (i.e. | |
:math:`x_a < x_b < x_c` or :math:`x_c < x_b < x_a`) satisfying | |
:math:`f(x_b) ≤ f(x_a)` and :math:`f(x_b) ≤ f(x_c)`, where one of the | |
inequalities must be satistfied strictly and all :math:`x_i` must be | |
finite. | |
Examples | |
-------- | |
This function can find a downward convex region of a function: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.optimize import bracket | |
>>> def f(x): | |
... return 10*x**2 + 3*x + 5 | |
>>> x = np.linspace(-2, 2) | |
>>> y = f(x) | |
>>> init_xa, init_xb = 0.1, 1 | |
>>> xa, xb, xc, fa, fb, fc, funcalls = bracket(f, xa=init_xa, xb=init_xb) | |
>>> plt.axvline(x=init_xa, color="k", linestyle="--") | |
>>> plt.axvline(x=init_xb, color="k", linestyle="--") | |
>>> plt.plot(x, y, "-k") | |
>>> plt.plot(xa, fa, "bx") | |
>>> plt.plot(xb, fb, "rx") | |
>>> plt.plot(xc, fc, "bx") | |
>>> plt.show() | |
Note that both initial points were to the right of the minimum, and the | |
third point was found in the "downhill" direction: the direction | |
in which the function appeared to be decreasing (to the left). | |
The final points are strictly ordered, and the function value | |
at the middle point is less than the function values at the endpoints; | |
it follows that a minimum must lie within the bracket. | |
""" | |
_gold = 1.618034 # golden ratio: (1.0+sqrt(5.0))/2.0 | |
_verysmall_num = 1e-21 | |
# convert to numpy floats if not already | |
xa, xb = np.asarray([xa, xb]) | |
fa = func(*(xa,) + args) | |
fb = func(*(xb,) + args) | |
if (fa < fb): # Switch so fa > fb | |
xa, xb = xb, xa | |
fa, fb = fb, fa | |
xc = xb + _gold * (xb - xa) | |
fc = func(*((xc,) + args)) | |
funcalls = 3 | |
iter = 0 | |
while (fc < fb): | |
tmp1 = (xb - xa) * (fb - fc) | |
tmp2 = (xb - xc) * (fb - fa) | |
val = tmp2 - tmp1 | |
if np.abs(val) < _verysmall_num: | |
denom = 2.0 * _verysmall_num | |
else: | |
denom = 2.0 * val | |
w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom | |
wlim = xb + grow_limit * (xc - xb) | |
msg = ("No valid bracket was found before the iteration limit was " | |
"reached. Consider trying different initial points or " | |
"increasing `maxiter`.") | |
if iter > maxiter: | |
raise RuntimeError(msg) | |
iter += 1 | |
if (w - xc) * (xb - w) > 0.0: | |
fw = func(*((w,) + args)) | |
funcalls += 1 | |
if (fw < fc): | |
xa = xb | |
xb = w | |
fa = fb | |
fb = fw | |
break | |
elif (fw > fb): | |
xc = w | |
fc = fw | |
break | |
w = xc + _gold * (xc - xb) | |
fw = func(*((w,) + args)) | |
funcalls += 1 | |
elif (w - wlim)*(wlim - xc) >= 0.0: | |
w = wlim | |
fw = func(*((w,) + args)) | |
funcalls += 1 | |
elif (w - wlim)*(xc - w) > 0.0: | |
fw = func(*((w,) + args)) | |
funcalls += 1 | |
if (fw < fc): | |
xb = xc | |
xc = w | |
w = xc + _gold * (xc - xb) | |
fb = fc | |
fc = fw | |
fw = func(*((w,) + args)) | |
funcalls += 1 | |
else: | |
w = xc + _gold * (xc - xb) | |
fw = func(*((w,) + args)) | |
funcalls += 1 | |
xa = xb | |
xb = xc | |
xc = w | |
fa = fb | |
fb = fc | |
fc = fw | |
# three conditions for a valid bracket | |
cond1 = (fb < fc and fb <= fa) or (fb < fa and fb <= fc) | |
cond2 = (xa < xb < xc or xc < xb < xa) | |
cond3 = np.isfinite(xa) and np.isfinite(xb) and np.isfinite(xc) | |
msg = ("The algorithm terminated without finding a valid bracket. " | |
"Consider trying different initial points.") | |
if not (cond1 and cond2 and cond3): | |
e = BracketError(msg) | |
e.data = (xa, xb, xc, fa, fb, fc, funcalls) | |
raise e | |
return xa, xb, xc, fa, fb, fc, funcalls | |
class BracketError(RuntimeError): | |
pass | |
def _recover_from_bracket_error(solver, fun, bracket, args, **options): | |
# `bracket` was originally written without checking whether the resulting | |
# bracket is valid. `brent` and `golden` built on top of it without | |
# checking the returned bracket for validity, and their output can be | |
# incorrect without warning/error if the original bracket is invalid. | |
# gh-14858 noticed the problem, and the following is the desired | |
# behavior: | |
# - `scipy.optimize.bracket`, `scipy.optimize.brent`, and | |
# `scipy.optimize.golden` should raise an error if the bracket is | |
# invalid, as opposed to silently returning garbage | |
# - `scipy.optimize.minimize_scalar` should return with `success=False` | |
# and other information | |
# The changes that would be required to achieve this the traditional | |
# way (`return`ing all the required information from bracket all the way | |
# up to `minimizer_scalar`) are extensive and invasive. (See a6aa40d.) | |
# We can achieve the same thing by raising the error in `bracket`, but | |
# storing the information needed by `minimize_scalar` in the error object, | |
# and intercepting it here. | |
try: | |
res = solver(fun, bracket, args, **options) | |
except BracketError as e: | |
msg = str(e) | |
xa, xb, xc, fa, fb, fc, funcalls = e.data | |
xs, fs = [xa, xb, xc], [fa, fb, fc] | |
if np.any(np.isnan([xs, fs])): | |
x, fun = np.nan, np.nan | |
else: | |
imin = np.argmin(fs) | |
x, fun = xs[imin], fs[imin] | |
return OptimizeResult(fun=fun, nfev=funcalls, x=x, | |
nit=0, success=False, message=msg) | |
return res | |
def _line_for_search(x0, alpha, lower_bound, upper_bound): | |
""" | |
Given a parameter vector ``x0`` with length ``n`` and a direction | |
vector ``alpha`` with length ``n``, and lower and upper bounds on | |
each of the ``n`` parameters, what are the bounds on a scalar | |
``l`` such that ``lower_bound <= x0 + alpha * l <= upper_bound``. | |
Parameters | |
---------- | |
x0 : np.array. | |
The vector representing the current location. | |
Note ``np.shape(x0) == (n,)``. | |
alpha : np.array. | |
The vector representing the direction. | |
Note ``np.shape(alpha) == (n,)``. | |
lower_bound : np.array. | |
The lower bounds for each parameter in ``x0``. If the ``i``th | |
parameter in ``x0`` is unbounded below, then ``lower_bound[i]`` | |
should be ``-np.inf``. | |
Note ``np.shape(lower_bound) == (n,)``. | |
upper_bound : np.array. | |
The upper bounds for each parameter in ``x0``. If the ``i``th | |
parameter in ``x0`` is unbounded above, then ``upper_bound[i]`` | |
should be ``np.inf``. | |
Note ``np.shape(upper_bound) == (n,)``. | |
Returns | |
------- | |
res : tuple ``(lmin, lmax)`` | |
The bounds for ``l`` such that | |
``lower_bound[i] <= x0[i] + alpha[i] * l <= upper_bound[i]`` | |
for all ``i``. | |
""" | |
# get nonzero indices of alpha so we don't get any zero division errors. | |
# alpha will not be all zero, since it is called from _linesearch_powell | |
# where we have a check for this. | |
nonzero, = alpha.nonzero() | |
lower_bound, upper_bound = lower_bound[nonzero], upper_bound[nonzero] | |
x0, alpha = x0[nonzero], alpha[nonzero] | |
low = (lower_bound - x0) / alpha | |
high = (upper_bound - x0) / alpha | |
# positive and negative indices | |
pos = alpha > 0 | |
lmin_pos = np.where(pos, low, 0) | |
lmin_neg = np.where(pos, 0, high) | |
lmax_pos = np.where(pos, high, 0) | |
lmax_neg = np.where(pos, 0, low) | |
lmin = np.max(lmin_pos + lmin_neg) | |
lmax = np.min(lmax_pos + lmax_neg) | |
# if x0 is outside the bounds, then it is possible that there is | |
# no way to get back in the bounds for the parameters being updated | |
# with the current direction alpha. | |
# when this happens, lmax < lmin. | |
# If this is the case, then we can just return (0, 0) | |
return (lmin, lmax) if lmax >= lmin else (0, 0) | |
def _linesearch_powell(func, p, xi, tol=1e-3, | |
lower_bound=None, upper_bound=None, fval=None): | |
"""Line-search algorithm using fminbound. | |
Find the minimum of the function ``func(x0 + alpha*direc)``. | |
lower_bound : np.array. | |
The lower bounds for each parameter in ``x0``. If the ``i``th | |
parameter in ``x0`` is unbounded below, then ``lower_bound[i]`` | |
should be ``-np.inf``. | |
Note ``np.shape(lower_bound) == (n,)``. | |
upper_bound : np.array. | |
The upper bounds for each parameter in ``x0``. If the ``i``th | |
parameter in ``x0`` is unbounded above, then ``upper_bound[i]`` | |
should be ``np.inf``. | |
Note ``np.shape(upper_bound) == (n,)``. | |
fval : number. | |
``fval`` is equal to ``func(p)``, the idea is just to avoid | |
recomputing it so we can limit the ``fevals``. | |
""" | |
def myfunc(alpha): | |
return func(p + alpha*xi) | |
# if xi is zero, then don't optimize | |
if not np.any(xi): | |
return ((fval, p, xi) if fval is not None else (func(p), p, xi)) | |
elif lower_bound is None and upper_bound is None: | |
# non-bounded minimization | |
res = _recover_from_bracket_error(_minimize_scalar_brent, | |
myfunc, None, tuple(), xtol=tol) | |
alpha_min, fret = res.x, res.fun | |
xi = alpha_min * xi | |
return squeeze(fret), p + xi, xi | |
else: | |
bound = _line_for_search(p, xi, lower_bound, upper_bound) | |
if np.isneginf(bound[0]) and np.isposinf(bound[1]): | |
# equivalent to unbounded | |
return _linesearch_powell(func, p, xi, fval=fval, tol=tol) | |
elif not np.isneginf(bound[0]) and not np.isposinf(bound[1]): | |
# we can use a bounded scalar minimization | |
res = _minimize_scalar_bounded(myfunc, bound, xatol=tol / 100) | |
xi = res.x * xi | |
return squeeze(res.fun), p + xi, xi | |
else: | |
# only bounded on one side. use the tangent function to convert | |
# the infinity bound to a finite bound. The new bounded region | |
# is a subregion of the region bounded by -np.pi/2 and np.pi/2. | |
bound = np.arctan(bound[0]), np.arctan(bound[1]) | |
res = _minimize_scalar_bounded( | |
lambda x: myfunc(np.tan(x)), | |
bound, | |
xatol=tol / 100) | |
xi = np.tan(res.x) * xi | |
return squeeze(res.fun), p + xi, xi | |
def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, | |
maxfun=None, full_output=0, disp=1, retall=0, callback=None, | |
direc=None): | |
""" | |
Minimize a function using modified Powell's method. | |
This method only uses function values, not derivatives. | |
Parameters | |
---------- | |
func : callable f(x,*args) | |
Objective function to be minimized. | |
x0 : ndarray | |
Initial guess. | |
args : tuple, optional | |
Extra arguments passed to func. | |
xtol : float, optional | |
Line-search error tolerance. | |
ftol : float, optional | |
Relative error in ``func(xopt)`` acceptable for convergence. | |
maxiter : int, optional | |
Maximum number of iterations to perform. | |
maxfun : int, optional | |
Maximum number of function evaluations to make. | |
full_output : bool, optional | |
If True, ``fopt``, ``xi``, ``direc``, ``iter``, ``funcalls``, and | |
``warnflag`` are returned. | |
disp : bool, optional | |
If True, print convergence messages. | |
retall : bool, optional | |
If True, return a list of the solution at each iteration. | |
callback : callable, optional | |
An optional user-supplied function, called after each | |
iteration. Called as ``callback(xk)``, where ``xk`` is the | |
current parameter vector. | |
direc : ndarray, optional | |
Initial fitting step and parameter order set as an (N, N) array, where N | |
is the number of fitting parameters in `x0`. Defaults to step size 1.0 | |
fitting all parameters simultaneously (``np.eye((N, N))``). To | |
prevent initial consideration of values in a step or to change initial | |
step size, set to 0 or desired step size in the Jth position in the Mth | |
block, where J is the position in `x0` and M is the desired evaluation | |
step, with steps being evaluated in index order. Step size and ordering | |
will change freely as minimization proceeds. | |
Returns | |
------- | |
xopt : ndarray | |
Parameter which minimizes `func`. | |
fopt : number | |
Value of function at minimum: ``fopt = func(xopt)``. | |
direc : ndarray | |
Current direction set. | |
iter : int | |
Number of iterations. | |
funcalls : int | |
Number of function calls made. | |
warnflag : int | |
Integer warning flag: | |
1 : Maximum number of function evaluations. | |
2 : Maximum number of iterations. | |
3 : NaN result encountered. | |
4 : The result is out of the provided bounds. | |
allvecs : list | |
List of solutions at each iteration. | |
See also | |
-------- | |
minimize: Interface to unconstrained minimization algorithms for | |
multivariate functions. See the 'Powell' method in particular. | |
Notes | |
----- | |
Uses a modification of Powell's method to find the minimum of | |
a function of N variables. Powell's method is a conjugate | |
direction method. | |
The algorithm has two loops. The outer loop merely iterates over the inner | |
loop. The inner loop minimizes over each current direction in the direction | |
set. At the end of the inner loop, if certain conditions are met, the | |
direction that gave the largest decrease is dropped and replaced with the | |
difference between the current estimated x and the estimated x from the | |
beginning of the inner-loop. | |
The technical conditions for replacing the direction of greatest | |
increase amount to checking that | |
1. No further gain can be made along the direction of greatest increase | |
from that iteration. | |
2. The direction of greatest increase accounted for a large sufficient | |
fraction of the decrease in the function value from that iteration of | |
the inner loop. | |
References | |
---------- | |
Powell M.J.D. (1964) An efficient method for finding the minimum of a | |
function of several variables without calculating derivatives, | |
Computer Journal, 7 (2):155-162. | |
Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.: | |
Numerical Recipes (any edition), Cambridge University Press | |
Examples | |
-------- | |
>>> def f(x): | |
... return x**2 | |
>>> from scipy import optimize | |
>>> minimum = optimize.fmin_powell(f, -1) | |
Optimization terminated successfully. | |
Current function value: 0.000000 | |
Iterations: 2 | |
Function evaluations: 16 | |
>>> minimum | |
array(0.0) | |
""" | |
opts = {'xtol': xtol, | |
'ftol': ftol, | |
'maxiter': maxiter, | |
'maxfev': maxfun, | |
'disp': disp, | |
'direc': direc, | |
'return_all': retall} | |
callback = _wrap_callback(callback) | |
res = _minimize_powell(func, x0, args, callback=callback, **opts) | |
if full_output: | |
retlist = (res['x'], res['fun'], res['direc'], res['nit'], | |
res['nfev'], res['status']) | |
if retall: | |
retlist += (res['allvecs'], ) | |
return retlist | |
else: | |
if retall: | |
return res['x'], res['allvecs'] | |
else: | |
return res['x'] | |
def _minimize_powell(func, x0, args=(), callback=None, bounds=None, | |
xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None, | |
disp=False, direc=None, return_all=False, | |
**unknown_options): | |
""" | |
Minimization of scalar function of one or more variables using the | |
modified Powell algorithm. | |
Parameters | |
---------- | |
fun : callable | |
The objective function to be minimized. | |
``fun(x, *args) -> float`` | |
where ``x`` is a 1-D array with shape (n,) and ``args`` | |
is a tuple of the fixed parameters needed to completely | |
specify the function. | |
x0 : ndarray, shape (n,) | |
Initial guess. Array of real elements of size (n,), | |
where ``n`` is the number of independent variables. | |
args : tuple, optional | |
Extra arguments passed to the objective function and its | |
derivatives (`fun`, `jac` and `hess` functions). | |
method : str or callable, optional | |
The present documentation is specific to ``method='powell'``, but other | |
options are available. See documentation for `scipy.optimize.minimize`. | |
bounds : sequence or `Bounds`, optional | |
Bounds on decision variables. There are two ways to specify the bounds: | |
1. Instance of `Bounds` class. | |
2. Sequence of ``(min, max)`` pairs for each element in `x`. None | |
is used to specify no bound. | |
If bounds are not provided, then an unbounded line search will be used. | |
If bounds are provided and the initial guess is within the bounds, then | |
every function evaluation throughout the minimization procedure will be | |
within the bounds. If bounds are provided, the initial guess is outside | |
the bounds, and `direc` is full rank (or left to default), then some | |
function evaluations during the first iteration may be outside the | |
bounds, but every function evaluation after the first iteration will be | |
within the bounds. If `direc` is not full rank, then some parameters | |
may not be optimized and the solution is not guaranteed to be within | |
the bounds. | |
options : dict, optional | |
A dictionary of solver options. All methods accept the following | |
generic options: | |
maxiter : int | |
Maximum number of iterations to perform. Depending on the | |
method each iteration may use several function evaluations. | |
disp : bool | |
Set to True to print convergence messages. | |
See method-specific options for ``method='powell'`` below. | |
callback : callable, optional | |
Called after each iteration. The signature is: | |
``callback(xk)`` | |
where ``xk`` is the current parameter vector. | |
Returns | |
------- | |
res : OptimizeResult | |
The optimization result represented as a ``OptimizeResult`` object. | |
Important attributes are: ``x`` the solution array, ``success`` a | |
Boolean flag indicating if the optimizer exited successfully and | |
``message`` which describes the cause of the termination. See | |
`OptimizeResult` for a description of other attributes. | |
Options | |
------- | |
disp : bool | |
Set to True to print convergence messages. | |
xtol : float | |
Relative error in solution `xopt` acceptable for convergence. | |
ftol : float | |
Relative error in ``fun(xopt)`` acceptable for convergence. | |
maxiter, maxfev : int | |
Maximum allowed number of iterations and function evaluations. | |
Will default to ``N*1000``, where ``N`` is the number of | |
variables, if neither `maxiter` or `maxfev` is set. If both | |
`maxiter` and `maxfev` are set, minimization will stop at the | |
first reached. | |
direc : ndarray | |
Initial set of direction vectors for the Powell method. | |
return_all : bool, optional | |
Set to True to return a list of the best solution at each of the | |
iterations. | |
""" | |
_check_unknown_options(unknown_options) | |
maxfun = maxfev | |
retall = return_all | |
x = asarray(x0).flatten() | |
if retall: | |
allvecs = [x] | |
N = len(x) | |
# If neither are set, then set both to default | |
if maxiter is None and maxfun is None: | |
maxiter = N * 1000 | |
maxfun = N * 1000 | |
elif maxiter is None: | |
# Convert remaining Nones, to np.inf, unless the other is np.inf, in | |
# which case use the default to avoid unbounded iteration | |
if maxfun == np.inf: | |
maxiter = N * 1000 | |
else: | |
maxiter = np.inf | |
elif maxfun is None: | |
if maxiter == np.inf: | |
maxfun = N * 1000 | |
else: | |
maxfun = np.inf | |
# we need to use a mutable object here that we can update in the | |
# wrapper function | |
fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun) | |
if direc is None: | |
direc = eye(N, dtype=float) | |
else: | |
direc = asarray(direc, dtype=float) | |
if np.linalg.matrix_rank(direc) != direc.shape[0]: | |
warnings.warn("direc input is not full rank, some parameters may " | |
"not be optimized", | |
OptimizeWarning, stacklevel=3) | |
if bounds is None: | |
# don't make these arrays of all +/- inf. because | |
# _linesearch_powell will do an unnecessary check of all the elements. | |
# just keep them None, _linesearch_powell will not have to check | |
# all the elements. | |
lower_bound, upper_bound = None, None | |
else: | |
# bounds is standardized in _minimize.py. | |
lower_bound, upper_bound = bounds.lb, bounds.ub | |
if np.any(lower_bound > x0) or np.any(x0 > upper_bound): | |
warnings.warn("Initial guess is not within the specified bounds", | |
OptimizeWarning, stacklevel=3) | |
fval = squeeze(func(x)) | |
x1 = x.copy() | |
iter = 0 | |
while True: | |
try: | |
fx = fval | |
bigind = 0 | |
delta = 0.0 | |
for i in range(N): | |
direc1 = direc[i] | |
fx2 = fval | |
fval, x, direc1 = _linesearch_powell(func, x, direc1, | |
tol=xtol * 100, | |
lower_bound=lower_bound, | |
upper_bound=upper_bound, | |
fval=fval) | |
if (fx2 - fval) > delta: | |
delta = fx2 - fval | |
bigind = i | |
iter += 1 | |
if retall: | |
allvecs.append(x) | |
intermediate_result = OptimizeResult(x=x, fun=fval) | |
if _call_callback_maybe_halt(callback, intermediate_result): | |
break | |
bnd = ftol * (np.abs(fx) + np.abs(fval)) + 1e-20 | |
if 2.0 * (fx - fval) <= bnd: | |
break | |
if fcalls[0] >= maxfun: | |
break | |
if iter >= maxiter: | |
break | |
if np.isnan(fx) and np.isnan(fval): | |
# Ended up in a nan-region: bail out | |
break | |
# Construct the extrapolated point | |
direc1 = x - x1 | |
x1 = x.copy() | |
# make sure that we don't go outside the bounds when extrapolating | |
if lower_bound is None and upper_bound is None: | |
lmax = 1 | |
else: | |
_, lmax = _line_for_search(x, direc1, lower_bound, upper_bound) | |
x2 = x + min(lmax, 1) * direc1 | |
fx2 = squeeze(func(x2)) | |
if (fx > fx2): | |
t = 2.0*(fx + fx2 - 2.0*fval) | |
temp = (fx - fval - delta) | |
t *= temp*temp | |
temp = fx - fx2 | |
t -= delta*temp*temp | |
if t < 0.0: | |
fval, x, direc1 = _linesearch_powell( | |
func, x, direc1, | |
tol=xtol * 100, | |
lower_bound=lower_bound, | |
upper_bound=upper_bound, | |
fval=fval | |
) | |
if np.any(direc1): | |
direc[bigind] = direc[-1] | |
direc[-1] = direc1 | |
except _MaxFuncCallError: | |
break | |
warnflag = 0 | |
msg = _status_message['success'] | |
# out of bounds is more urgent than exceeding function evals or iters, | |
# but I don't want to cause inconsistencies by changing the | |
# established warning flags for maxfev and maxiter, so the out of bounds | |
# warning flag becomes 3, but is checked for first. | |
if bounds and (np.any(lower_bound > x) or np.any(x > upper_bound)): | |
warnflag = 4 | |
msg = _status_message['out_of_bounds'] | |
elif fcalls[0] >= maxfun: | |
warnflag = 1 | |
msg = _status_message['maxfev'] | |
elif iter >= maxiter: | |
warnflag = 2 | |
msg = _status_message['maxiter'] | |
elif np.isnan(fval) or np.isnan(x).any(): | |
warnflag = 3 | |
msg = _status_message['nan'] | |
if disp: | |
_print_success_message_or_warn(warnflag, msg, RuntimeWarning) | |
print(" Current function value: %f" % fval) | |
print(" Iterations: %d" % iter) | |
print(" Function evaluations: %d" % fcalls[0]) | |
result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0], | |
status=warnflag, success=(warnflag == 0), | |
message=msg, x=x) | |
if retall: | |
result['allvecs'] = allvecs | |
return result | |
def _endprint(x, flag, fval, maxfun, xtol, disp): | |
if flag == 0: | |
if disp > 1: | |
print("\nOptimization terminated successfully;\n" | |
"The returned value satisfies the termination criteria\n" | |
"(using xtol = ", xtol, ")") | |
return | |
if flag == 1: | |
msg = ("\nMaximum number of function evaluations exceeded --- " | |
"increase maxfun argument.\n") | |
elif flag == 2: | |
msg = "\n{}".format(_status_message['nan']) | |
_print_success_message_or_warn(flag, msg) | |
return | |
def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin, | |
disp=False, workers=1): | |
"""Minimize a function over a given range by brute force. | |
Uses the "brute force" method, i.e., computes the function's value | |
at each point of a multidimensional grid of points, to find the global | |
minimum of the function. | |
The function is evaluated everywhere in the range with the datatype of the | |
first call to the function, as enforced by the ``vectorize`` NumPy | |
function. The value and type of the function evaluation returned when | |
``full_output=True`` are affected in addition by the ``finish`` argument | |
(see Notes). | |
The brute force approach is inefficient because the number of grid points | |
increases exponentially - the number of grid points to evaluate is | |
``Ns ** len(x)``. Consequently, even with coarse grid spacing, even | |
moderately sized problems can take a long time to run, and/or run into | |
memory limitations. | |
Parameters | |
---------- | |
func : callable | |
The objective function to be minimized. Must be in the | |
form ``f(x, *args)``, where ``x`` is the argument in | |
the form of a 1-D array and ``args`` is a tuple of any | |
additional fixed parameters needed to completely specify | |
the function. | |
ranges : tuple | |
Each component of the `ranges` tuple must be either a | |
"slice object" or a range tuple of the form ``(low, high)``. | |
The program uses these to create the grid of points on which | |
the objective function will be computed. See `Note 2` for | |
more detail. | |
args : tuple, optional | |
Any additional fixed parameters needed to completely specify | |
the function. | |
Ns : int, optional | |
Number of grid points along the axes, if not otherwise | |
specified. See `Note2`. | |
full_output : bool, optional | |
If True, return the evaluation grid and the objective function's | |
values on it. | |
finish : callable, optional | |
An optimization function that is called with the result of brute force | |
minimization as initial guess. `finish` should take `func` and | |
the initial guess as positional arguments, and take `args` as | |
keyword arguments. It may additionally take `full_output` | |
and/or `disp` as keyword arguments. Use None if no "polishing" | |
function is to be used. See Notes for more details. | |
disp : bool, optional | |
Set to True to print convergence messages from the `finish` callable. | |
workers : int or map-like callable, optional | |
If `workers` is an int the grid is subdivided into `workers` | |
sections and evaluated in parallel (uses | |
`multiprocessing.Pool <multiprocessing>`). | |
Supply `-1` to use all cores available to the Process. | |
Alternatively supply a map-like callable, such as | |
`multiprocessing.Pool.map` for evaluating the grid in parallel. | |
This evaluation is carried out as ``workers(func, iterable)``. | |
Requires that `func` be pickleable. | |
.. versionadded:: 1.3.0 | |
Returns | |
------- | |
x0 : ndarray | |
A 1-D array containing the coordinates of a point at which the | |
objective function had its minimum value. (See `Note 1` for | |
which point is returned.) | |
fval : float | |
Function value at the point `x0`. (Returned when `full_output` is | |
True.) | |
grid : tuple | |
Representation of the evaluation grid. It has the same | |
length as `x0`. (Returned when `full_output` is True.) | |
Jout : ndarray | |
Function values at each point of the evaluation | |
grid, i.e., ``Jout = func(*grid)``. (Returned | |
when `full_output` is True.) | |
See Also | |
-------- | |
basinhopping, differential_evolution | |
Notes | |
----- | |
*Note 1*: The program finds the gridpoint at which the lowest value | |
of the objective function occurs. If `finish` is None, that is the | |
point returned. When the global minimum occurs within (or not very far | |
outside) the grid's boundaries, and the grid is fine enough, that | |
point will be in the neighborhood of the global minimum. | |
However, users often employ some other optimization program to | |
"polish" the gridpoint values, i.e., to seek a more precise | |
(local) minimum near `brute's` best gridpoint. | |
The `brute` function's `finish` option provides a convenient way to do | |
that. Any polishing program used must take `brute's` output as its | |
initial guess as a positional argument, and take `brute's` input values | |
for `args` as keyword arguments, otherwise an error will be raised. | |
It may additionally take `full_output` and/or `disp` as keyword arguments. | |
`brute` assumes that the `finish` function returns either an | |
`OptimizeResult` object or a tuple in the form: | |
``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing | |
value of the argument, ``Jmin`` is the minimum value of the objective | |
function, "..." may be some other returned values (which are not used | |
by `brute`), and ``statuscode`` is the status code of the `finish` program. | |
Note that when `finish` is not None, the values returned are those | |
of the `finish` program, *not* the gridpoint ones. Consequently, | |
while `brute` confines its search to the input grid points, | |
the `finish` program's results usually will not coincide with any | |
gridpoint, and may fall outside the grid's boundary. Thus, if a | |
minimum only needs to be found over the provided grid points, make | |
sure to pass in `finish=None`. | |
*Note 2*: The grid of points is a `numpy.mgrid` object. | |
For `brute` the `ranges` and `Ns` inputs have the following effect. | |
Each component of the `ranges` tuple can be either a slice object or a | |
two-tuple giving a range of values, such as (0, 5). If the component is a | |
slice object, `brute` uses it directly. If the component is a two-tuple | |
range, `brute` internally converts it to a slice object that interpolates | |
`Ns` points from its low-value to its high-value, inclusive. | |
Examples | |
-------- | |
We illustrate the use of `brute` to seek the global minimum of a function | |
of two variables that is given as the sum of a positive-definite | |
quadratic and two deep "Gaussian-shaped" craters. Specifically, define | |
the objective function `f` as the sum of three other functions, | |
``f = f1 + f2 + f3``. We suppose each of these has a signature | |
``(z, *params)``, where ``z = (x, y)``, and ``params`` and the functions | |
are as defined below. | |
>>> import numpy as np | |
>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5) | |
>>> def f1(z, *params): | |
... x, y = z | |
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params | |
... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f) | |
>>> def f2(z, *params): | |
... x, y = z | |
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params | |
... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale)) | |
>>> def f3(z, *params): | |
... x, y = z | |
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params | |
... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale)) | |
>>> def f(z, *params): | |
... return f1(z, *params) + f2(z, *params) + f3(z, *params) | |
Thus, the objective function may have local minima near the minimum | |
of each of the three functions of which it is composed. To | |
use `fmin` to polish its gridpoint result, we may then continue as | |
follows: | |
>>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25)) | |
>>> from scipy import optimize | |
>>> resbrute = optimize.brute(f, rranges, args=params, full_output=True, | |
... finish=optimize.fmin) | |
>>> resbrute[0] # global minimum | |
array([-1.05665192, 1.80834843]) | |
>>> resbrute[1] # function value at global minimum | |
-3.4085818767 | |
Note that if `finish` had been set to None, we would have gotten the | |
gridpoint [-1.0 1.75] where the rounded function value is -2.892. | |
""" | |
N = len(ranges) | |
if N > 40: | |
raise ValueError("Brute Force not possible with more " | |
"than 40 variables.") | |
lrange = list(ranges) | |
for k in range(N): | |
if not isinstance(lrange[k], slice): | |
if len(lrange[k]) < 3: | |
lrange[k] = tuple(lrange[k]) + (complex(Ns),) | |
lrange[k] = slice(*lrange[k]) | |
if (N == 1): | |
lrange = lrange[0] | |
grid = np.mgrid[lrange] | |
# obtain an array of parameters that is iterable by a map-like callable | |
inpt_shape = grid.shape | |
if (N > 1): | |
grid = np.reshape(grid, (inpt_shape[0], np.prod(inpt_shape[1:]))).T | |
if not np.iterable(args): | |
args = (args,) | |
wrapped_func = _Brute_Wrapper(func, args) | |
# iterate over input arrays, possibly in parallel | |
with MapWrapper(pool=workers) as mapper: | |
Jout = np.array(list(mapper(wrapped_func, grid))) | |
if (N == 1): | |
grid = (grid,) | |
Jout = np.squeeze(Jout) | |
elif (N > 1): | |
Jout = np.reshape(Jout, inpt_shape[1:]) | |
grid = np.reshape(grid.T, inpt_shape) | |
Nshape = shape(Jout) | |
indx = argmin(Jout.ravel(), axis=-1) | |
Nindx = np.empty(N, int) | |
xmin = np.empty(N, float) | |
for k in range(N - 1, -1, -1): | |
thisN = Nshape[k] | |
Nindx[k] = indx % Nshape[k] | |
indx = indx // thisN | |
for k in range(N): | |
xmin[k] = grid[k][tuple(Nindx)] | |
Jmin = Jout[tuple(Nindx)] | |
if (N == 1): | |
grid = grid[0] | |
xmin = xmin[0] | |
if callable(finish): | |
# set up kwargs for `finish` function | |
finish_args = _getfullargspec(finish).args | |
finish_kwargs = dict() | |
if 'full_output' in finish_args: | |
finish_kwargs['full_output'] = 1 | |
if 'disp' in finish_args: | |
finish_kwargs['disp'] = disp | |
elif 'options' in finish_args: | |
# pass 'disp' as `options` | |
# (e.g., if `finish` is `minimize`) | |
finish_kwargs['options'] = {'disp': disp} | |
# run minimizer | |
res = finish(func, xmin, args=args, **finish_kwargs) | |
if isinstance(res, OptimizeResult): | |
xmin = res.x | |
Jmin = res.fun | |
success = res.success | |
else: | |
xmin = res[0] | |
Jmin = res[1] | |
success = res[-1] == 0 | |
if not success: | |
if disp: | |
warnings.warn("Either final optimization did not succeed or `finish` " | |
"does not return `statuscode` as its last argument.", | |
RuntimeWarning, stacklevel=2) | |
if full_output: | |
return xmin, Jmin, grid, Jout | |
else: | |
return xmin | |
class _Brute_Wrapper: | |
""" | |
Object to wrap user cost function for optimize.brute, allowing picklability | |
""" | |
def __init__(self, f, args): | |
self.f = f | |
self.args = [] if args is None else args | |
def __call__(self, x): | |
# flatten needed for one dimensional case. | |
return self.f(np.asarray(x).flatten(), *self.args) | |
def show_options(solver=None, method=None, disp=True): | |
""" | |
Show documentation for additional options of optimization solvers. | |
These are method-specific options that can be supplied through the | |
``options`` dict. | |
Parameters | |
---------- | |
solver : str | |
Type of optimization solver. One of 'minimize', 'minimize_scalar', | |
'root', 'root_scalar', 'linprog', or 'quadratic_assignment'. | |
method : str, optional | |
If not given, shows all methods of the specified solver. Otherwise, | |
show only the options for the specified method. Valid values | |
corresponds to methods' names of respective solver (e.g., 'BFGS' for | |
'minimize'). | |
disp : bool, optional | |
Whether to print the result rather than returning it. | |
Returns | |
------- | |
text | |
Either None (for disp=True) or the text string (disp=False) | |
Notes | |
----- | |
The solver-specific methods are: | |
`scipy.optimize.minimize` | |
- :ref:`Nelder-Mead <optimize.minimize-neldermead>` | |
- :ref:`Powell <optimize.minimize-powell>` | |
- :ref:`CG <optimize.minimize-cg>` | |
- :ref:`BFGS <optimize.minimize-bfgs>` | |
- :ref:`Newton-CG <optimize.minimize-newtoncg>` | |
- :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` | |
- :ref:`TNC <optimize.minimize-tnc>` | |
- :ref:`COBYLA <optimize.minimize-cobyla>` | |
- :ref:`SLSQP <optimize.minimize-slsqp>` | |
- :ref:`dogleg <optimize.minimize-dogleg>` | |
- :ref:`trust-ncg <optimize.minimize-trustncg>` | |
`scipy.optimize.root` | |
- :ref:`hybr <optimize.root-hybr>` | |
- :ref:`lm <optimize.root-lm>` | |
- :ref:`broyden1 <optimize.root-broyden1>` | |
- :ref:`broyden2 <optimize.root-broyden2>` | |
- :ref:`anderson <optimize.root-anderson>` | |
- :ref:`linearmixing <optimize.root-linearmixing>` | |
- :ref:`diagbroyden <optimize.root-diagbroyden>` | |
- :ref:`excitingmixing <optimize.root-excitingmixing>` | |
- :ref:`krylov <optimize.root-krylov>` | |
- :ref:`df-sane <optimize.root-dfsane>` | |
`scipy.optimize.minimize_scalar` | |
- :ref:`brent <optimize.minimize_scalar-brent>` | |
- :ref:`golden <optimize.minimize_scalar-golden>` | |
- :ref:`bounded <optimize.minimize_scalar-bounded>` | |
`scipy.optimize.root_scalar` | |
- :ref:`bisect <optimize.root_scalar-bisect>` | |
- :ref:`brentq <optimize.root_scalar-brentq>` | |
- :ref:`brenth <optimize.root_scalar-brenth>` | |
- :ref:`ridder <optimize.root_scalar-ridder>` | |
- :ref:`toms748 <optimize.root_scalar-toms748>` | |
- :ref:`newton <optimize.root_scalar-newton>` | |
- :ref:`secant <optimize.root_scalar-secant>` | |
- :ref:`halley <optimize.root_scalar-halley>` | |
`scipy.optimize.linprog` | |
- :ref:`simplex <optimize.linprog-simplex>` | |
- :ref:`interior-point <optimize.linprog-interior-point>` | |
- :ref:`revised simplex <optimize.linprog-revised_simplex>` | |
- :ref:`highs <optimize.linprog-highs>` | |
- :ref:`highs-ds <optimize.linprog-highs-ds>` | |
- :ref:`highs-ipm <optimize.linprog-highs-ipm>` | |
`scipy.optimize.quadratic_assignment` | |
- :ref:`faq <optimize.qap-faq>` | |
- :ref:`2opt <optimize.qap-2opt>` | |
Examples | |
-------- | |
We can print documentations of a solver in stdout: | |
>>> from scipy.optimize import show_options | |
>>> show_options(solver="minimize") | |
... | |
Specifying a method is possible: | |
>>> show_options(solver="minimize", method="Nelder-Mead") | |
... | |
We can also get the documentations as a string: | |
>>> show_options(solver="minimize", method="Nelder-Mead", disp=False) | |
Minimization of scalar function of one or more variables using the ... | |
""" | |
import textwrap | |
doc_routines = { | |
'minimize': ( | |
('bfgs', 'scipy.optimize._optimize._minimize_bfgs'), | |
('cg', 'scipy.optimize._optimize._minimize_cg'), | |
('cobyla', 'scipy.optimize._cobyla_py._minimize_cobyla'), | |
('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'), | |
('l-bfgs-b', 'scipy.optimize._lbfgsb_py._minimize_lbfgsb'), | |
('nelder-mead', 'scipy.optimize._optimize._minimize_neldermead'), | |
('newton-cg', 'scipy.optimize._optimize._minimize_newtoncg'), | |
('powell', 'scipy.optimize._optimize._minimize_powell'), | |
('slsqp', 'scipy.optimize._slsqp_py._minimize_slsqp'), | |
('tnc', 'scipy.optimize._tnc._minimize_tnc'), | |
('trust-ncg', | |
'scipy.optimize._trustregion_ncg._minimize_trust_ncg'), | |
('trust-constr', | |
'scipy.optimize._trustregion_constr.' | |
'_minimize_trustregion_constr'), | |
('trust-exact', | |
'scipy.optimize._trustregion_exact._minimize_trustregion_exact'), | |
('trust-krylov', | |
'scipy.optimize._trustregion_krylov._minimize_trust_krylov'), | |
), | |
'root': ( | |
('hybr', 'scipy.optimize._minpack_py._root_hybr'), | |
('lm', 'scipy.optimize._root._root_leastsq'), | |
('broyden1', 'scipy.optimize._root._root_broyden1_doc'), | |
('broyden2', 'scipy.optimize._root._root_broyden2_doc'), | |
('anderson', 'scipy.optimize._root._root_anderson_doc'), | |
('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'), | |
('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'), | |
('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'), | |
('krylov', 'scipy.optimize._root._root_krylov_doc'), | |
('df-sane', 'scipy.optimize._spectral._root_df_sane'), | |
), | |
'root_scalar': ( | |
('bisect', 'scipy.optimize._root_scalar._root_scalar_bisect_doc'), | |
('brentq', 'scipy.optimize._root_scalar._root_scalar_brentq_doc'), | |
('brenth', 'scipy.optimize._root_scalar._root_scalar_brenth_doc'), | |
('ridder', 'scipy.optimize._root_scalar._root_scalar_ridder_doc'), | |
('toms748', 'scipy.optimize._root_scalar._root_scalar_toms748_doc'), | |
('secant', 'scipy.optimize._root_scalar._root_scalar_secant_doc'), | |
('newton', 'scipy.optimize._root_scalar._root_scalar_newton_doc'), | |
('halley', 'scipy.optimize._root_scalar._root_scalar_halley_doc'), | |
), | |
'linprog': ( | |
('simplex', 'scipy.optimize._linprog._linprog_simplex_doc'), | |
('interior-point', 'scipy.optimize._linprog._linprog_ip_doc'), | |
('revised simplex', 'scipy.optimize._linprog._linprog_rs_doc'), | |
('highs-ipm', 'scipy.optimize._linprog._linprog_highs_ipm_doc'), | |
('highs-ds', 'scipy.optimize._linprog._linprog_highs_ds_doc'), | |
('highs', 'scipy.optimize._linprog._linprog_highs_doc'), | |
), | |
'quadratic_assignment': ( | |
('faq', 'scipy.optimize._qap._quadratic_assignment_faq'), | |
('2opt', 'scipy.optimize._qap._quadratic_assignment_2opt'), | |
), | |
'minimize_scalar': ( | |
('brent', 'scipy.optimize._optimize._minimize_scalar_brent'), | |
('bounded', 'scipy.optimize._optimize._minimize_scalar_bounded'), | |
('golden', 'scipy.optimize._optimize._minimize_scalar_golden'), | |
), | |
} | |
if solver is None: | |
text = ["\n\n\n========\n", "minimize\n", "========\n"] | |
text.append(show_options('minimize', disp=False)) | |
text.extend(["\n\n===============\n", "minimize_scalar\n", | |
"===============\n"]) | |
text.append(show_options('minimize_scalar', disp=False)) | |
text.extend(["\n\n\n====\n", "root\n", | |
"====\n"]) | |
text.append(show_options('root', disp=False)) | |
text.extend(['\n\n\n=======\n', 'linprog\n', | |
'=======\n']) | |
text.append(show_options('linprog', disp=False)) | |
text = "".join(text) | |
else: | |
solver = solver.lower() | |
if solver not in doc_routines: | |
raise ValueError(f'Unknown solver {solver!r}') | |
if method is None: | |
text = [] | |
for name, _ in doc_routines[solver]: | |
text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"]) | |
text.append(show_options(solver, name, disp=False)) | |
text = "".join(text) | |
else: | |
method = method.lower() | |
methods = dict(doc_routines[solver]) | |
if method not in methods: | |
raise ValueError(f"Unknown method {method!r}") | |
name = methods[method] | |
# Import function object | |
parts = name.split('.') | |
mod_name = ".".join(parts[:-1]) | |
__import__(mod_name) | |
obj = getattr(sys.modules[mod_name], parts[-1]) | |
# Get doc | |
doc = obj.__doc__ | |
if doc is not None: | |
text = textwrap.dedent(doc).strip() | |
else: | |
text = "" | |
if disp: | |
print(text) | |
return | |
else: | |
return text | |