peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/bf16_optimizer.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from collections import OrderedDict | |
import torch | |
import sys | |
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors | |
from deepspeed import comm as dist | |
from deepspeed.runtime.constants import PIPE_REPLICATED | |
from deepspeed.runtime.base_optimizer import ZeROOptimizer | |
from packaging import version as pkg_version | |
from deepspeed.git_version_info import version | |
from deepspeed.runtime.utils import (get_global_norm_of_tensors, clip_tensors_by_global_norm, DummyOptim, | |
align_dense_tensors, all_gather_dp_groups, is_model_parallel_parameter, | |
see_memory_usage, graph_process, get_norm_with_moe_layers) | |
from deepspeed.utils import link_hp_params, lazy_init_hp_params_optimizer_state, fragment_address, groups | |
from deepspeed.moe.utils import is_moe_param, is_moe_param_group | |
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank | |
from deepspeed.checkpoint import enable_universal_checkpoint | |
from deepspeed.checkpoint.constants import (DS_VERSION, PARTITION_COUNT, BASE_OPTIMIZER_STATE, | |
SINGLE_PARTITION_OF_FP32_GROUPS, CLIP_GRAD, GROUP_PADDINGS, | |
PARAM_SLICE_MAPPINGS) | |
setattr(sys.modules[__name__], 'fragment_address', fragment_address) | |
class BF16_Optimizer(ZeROOptimizer): | |
def __init__(self, | |
init_optimizer, | |
param_names, | |
mpu=None, | |
clip_grad=0.0, | |
norm_type=2, | |
allgather_bucket_size=5000000000, | |
dp_process_group=None, | |
timers=None, | |
grad_acc_dtype=None, | |
graph_harvesting=False, | |
immediate_grad_update=False, | |
has_moe_layers=False): | |
super().__init__() | |
see_memory_usage('begin bf16_optimizer', force=True) | |
self.timers = timers | |
self.optimizer = init_optimizer | |
self.param_names = param_names | |
self.using_real_optimizer = not isinstance(self.optimizer, DummyOptim) | |
assert grad_acc_dtype in [torch.float32, torch.bfloat16 | |
], f"BF16Optimizer: Unsupported gradient accumulation data type: {grad_acc_dtype}" | |
self.grad_acc_dtype = grad_acc_dtype | |
self.immediate_grad_update = immediate_grad_update | |
self.clip_grad = clip_grad | |
self.norm_type = norm_type | |
self.mpu = mpu | |
self.allgather_bucket_size = int(allgather_bucket_size) | |
self.dp_process_group = dp_process_group | |
self.dp_rank = dist.get_rank(group=self.dp_process_group) | |
self.has_moe_layers = has_moe_layers | |
self.non_expert_gradients = [] | |
self.real_dp_process_group = [dp_process_group for i in range(len(self.optimizer.param_groups))] | |
if self.has_moe_layers: | |
self._configure_moe_settings() | |
# Use torch (un)flatten ops | |
self.flatten = _flatten_dense_tensors | |
self.unflatten = _unflatten_dense_tensors | |
#align nccl all-gather send buffers to 4-bye boundary | |
self.nccl_start_alignment_factor = 2 # 4-byte alignment/sizeof(fp16) = 2 | |
# Build BF16/FP32 groups | |
self.bf16_groups = [] | |
self.bf16_groups_flat = [] | |
self.bf16_partitioned_groups = [] | |
self.fp32_groups_flat_partition = [] | |
# Maintain different fp32 gradients views for convenience | |
self.fp32_groups_gradients = [] | |
self.fp32_groups_gradient_dict = {} | |
self.fp32_groups_gradients_flat = [] | |
self.fp32_groups_actual_gradients_flat = [] | |
self.fp32_groups_gradient_flat_partition = [] | |
self.fp32_groups_has_gradients = [] | |
self.group_paddings = [] | |
self.graph_harvesting = graph_harvesting | |
if self.using_real_optimizer: | |
self._setup_for_real_optimizer() | |
see_memory_usage('end bf16_optimizer', force=True) | |
def _configure_moe_settings(self): | |
assert any( | |
[is_moe_param_group(group) for group in self.optimizer.param_groups] | |
), "The model has moe layers, but None of the param groups are marked as MoE. Create a param group with 'moe' key set to True before creating optimizer" | |
for i, group in enumerate(self.optimizer.param_groups): | |
if is_moe_param_group(group): | |
assert all([is_moe_param(param) | |
for param in group['params']]), "All params in MoE group must be MoE params" | |
self.real_dp_process_group[i] = groups._get_expert_data_parallel_group(group['name']) | |
self.expert_gradients = {} | |
if self.has_moe_layers: | |
for key in groups._get_expert_data_parallel_group_dict().keys(): | |
self.expert_gradients[key] = [] | |
def _setup_for_real_optimizer(self): | |
self.partition_count = [dist.get_world_size(group=pg) for pg in self.real_dp_process_group] | |
for i, param_group in enumerate(self.optimizer.param_groups): | |
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i]) | |
see_memory_usage(f'before initializing group {i}', force=True) | |
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) | |
# grab the original list | |
trainable_parameters = [param for param in param_group['params'] if param.requires_grad] | |
self.bf16_groups.append(trainable_parameters) | |
# create flat bf16 params | |
self.bf16_groups_flat.append( | |
self._flatten_dense_tensors_aligned(self.bf16_groups[i], | |
self.nccl_start_alignment_factor * real_dp_world_size)) | |
# Make bf16 params point to flat tensor storage | |
self._update_storage_to_flattened_tensor(tensor_list=self.bf16_groups[i], | |
flat_tensor=self.bf16_groups_flat[i]) | |
# divide flat weights into equal sized partitions | |
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size | |
bf16_dp_partitions = [ | |
self.bf16_groups_flat[i].narrow(0, dp_index * partition_size, partition_size) | |
for dp_index in range(real_dp_world_size) | |
] | |
self.bf16_partitioned_groups.append(bf16_dp_partitions) | |
# create fp32 params partition | |
self.fp32_groups_flat_partition.append(bf16_dp_partitions[partition_id].clone().float().detach()) | |
self.fp32_groups_flat_partition[i].requires_grad = True | |
num_elem_list = [t.numel() for t in self.bf16_groups[i]] | |
# create fp32 gradients | |
fp32_flat_buffer = torch.zeros_like(self.bf16_groups_flat[i], dtype=self.grad_acc_dtype) | |
self.fp32_groups_gradients_flat.append(fp32_flat_buffer) | |
if self.has_moe_layers and is_moe_param_group(param_group): | |
self.expert_gradients[param_group['name']].append(fp32_flat_buffer) | |
else: | |
self.non_expert_gradients.append(fp32_flat_buffer) | |
# track individual fp32 gradients for entire model | |
fp32_gradients = self._split_flat_tensor(flat_tensor=self.fp32_groups_gradients_flat[i], | |
num_elem_list=num_elem_list) | |
self.fp32_groups_gradients.append(fp32_gradients) | |
self.fp32_groups_gradient_dict[i] = fp32_gradients | |
# flat tensor corresponding to actual fp32 gradients (i.e., minus alignment padding) | |
length_without_padding = sum(num_elem_list) | |
self.fp32_groups_actual_gradients_flat.append( | |
torch.narrow(self.fp32_groups_gradients_flat[i], 0, 0, length_without_padding)) | |
# flat tensor corresponding to gradient partition | |
self.fp32_groups_gradient_flat_partition.append( | |
torch.narrow(self.fp32_groups_gradients_flat[i], 0, partition_id * partition_size, partition_size)) | |
# track fp32 gradient updates | |
self.fp32_groups_has_gradients.append([False] * len(self.bf16_groups[i])) | |
# Record padding required for alignment | |
if partition_id == dist.get_world_size(group=self.real_dp_process_group[i]) - 1: | |
padding = self.bf16_groups_flat[i].numel() - length_without_padding | |
else: | |
padding = 0 | |
self.group_paddings.append(padding) | |
# update optimizer param groups to reference fp32 params partition | |
param_group['params'] = [self.fp32_groups_flat_partition[i]] | |
see_memory_usage(f'after initializing group {i}', force=True) | |
see_memory_usage('before initialize_optimizer', force=True) | |
self.initialize_optimizer_states() | |
see_memory_usage('end initialize_optimizer', force=True) | |
if self.immediate_grad_update: | |
self.create_grad_acc_hooks() | |
# Need optimizer states initialized before linking lp to optimizer state | |
self._link_all_hp_params() | |
self._hp_optimizer_states_linked = False | |
self._enable_universal_checkpoint() | |
self._param_slice_mappings = self._create_param_mapping() | |
def _enable_universal_checkpoint(self): | |
for lp_param_group in self.bf16_groups: | |
enable_universal_checkpoint(param_list=lp_param_group) | |
def _create_param_mapping(self): | |
param_mapping = [] | |
for i, _ in enumerate(self.optimizer.param_groups): | |
param_mapping_per_group = OrderedDict() | |
for lp in self.bf16_groups[i]: | |
if lp._hp_mapping is not None: | |
lp_name = self.param_names[lp] | |
param_mapping_per_group[lp_name] = lp._hp_mapping.get_hp_fragment_address() | |
param_mapping.append(param_mapping_per_group) | |
return param_mapping | |
def _link_all_hp_params(self): | |
for i, _ in enumerate(self.optimizer.param_groups): | |
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i]) | |
# Link bf16 and fp32 params in partition | |
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) | |
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size | |
flat_hp_partition = self.fp32_groups_flat_partition[i] | |
link_hp_params(lp_param_list=self.bf16_groups[i], | |
flat_hp_partition=flat_hp_partition, | |
gradient_dict=self.fp32_groups_gradient_dict, | |
offload_gradient_dict=None, | |
use_offload=False, | |
param_group_index=i, | |
partition_start=partition_id * partition_size, | |
partition_size=partition_size, | |
dp_group=self.real_dp_process_group[i]) | |
def _lazy_init_hp_params_optimizer_state(self): | |
if not self._hp_optimizer_states_linked: | |
for i, _ in enumerate(self.optimizer.param_groups): | |
lazy_init_hp_params_optimizer_state(self.bf16_groups[i], self.fp32_groups_flat_partition[i], | |
self.optimizer.state) | |
self._hp_optimizer_states_linked = True | |
def initialize_optimizer_states(self): | |
"""Take an optimizer step with zero-valued gradients to allocate internal | |
optimizer state. | |
This helps prevent memory fragmentation by allocating optimizer state at the | |
beginning of training instead of after activations have been allocated. | |
""" | |
for param_partition, grad_partition in zip(self.fp32_groups_flat_partition, | |
self.fp32_groups_gradient_flat_partition): | |
# In case of grad acc dtype different than FP32, need to cast to high precision. | |
param_partition.grad = grad_partition.to( | |
param_partition.dtype) if grad_partition.dtype != param_partition.dtype else grad_partition | |
if self.grad_acc_dtype is not torch.float32: | |
for param_partition in self.fp32_groups_flat_partition: | |
param_partition.grad = None | |
self.clear_hp_grads() | |
def _split_flat_tensor(self, flat_tensor, num_elem_list): | |
assert sum(num_elem_list) <= flat_tensor.numel() | |
tensor_list = [] | |
offset = 0 | |
for num_elem in num_elem_list: | |
dense_tensor = torch.narrow(flat_tensor, 0, offset, num_elem) | |
tensor_list.append(dense_tensor) | |
offset += num_elem | |
return tensor_list | |
def _update_storage_to_flattened_tensor(self, tensor_list, flat_tensor): | |
updated_params = self.unflatten(flat_tensor, tensor_list) | |
for p, q in zip(tensor_list, updated_params): | |
p.data = q.data | |
def _flatten_dense_tensors_aligned(self, tensor_list, alignment): | |
return self.flatten(align_dense_tensors(tensor_list, alignment)) | |
def step(self, closure=None): | |
if closure is not None: | |
raise NotImplementedError(f'{self.__class__} does not support closure.') | |
non_expert_grads_for_norm, expert_grads_for_norm = self.get_grads_for_norm() | |
non_expert_groups_norm = get_global_norm_of_tensors(input_tensors=non_expert_grads_for_norm, | |
mpu=self.mpu, | |
norm_type=self.norm_type, | |
use_graph=self.graph_harvesting) | |
all_groups_norm = non_expert_groups_norm | |
if self.has_moe_layers: | |
all_groups_norm = get_norm_with_moe_layers(non_expert_groups_norm, | |
mpu=self.mpu, | |
expert_tensors=expert_grads_for_norm, | |
norm_type=self.norm_type) | |
self._global_grad_norm = all_groups_norm | |
assert all_groups_norm > 0. | |
if self.clip_grad > 0.: | |
clip_tensors_by_global_norm(input_tensors=self.get_grads_for_norm(for_clipping=True), | |
max_norm=self.clip_grad, | |
global_norm=all_groups_norm, | |
mpu=self.mpu, | |
use_graph=self.graph_harvesting) | |
self.optimizer.step() | |
# We need to link optimizer state after the first step() call | |
self._lazy_init_hp_params_optimizer_state() | |
self.update_lp_params() | |
self.clear_hp_grads() | |
def backward(self, loss, update_hp_grads=True, clear_lp_grads=False, **bwd_kwargs): | |
"""Perform a backward pass and copy the low-precision gradients to the | |
high-precision copy. | |
We copy/accumulate to the high-precision grads now to prevent accumulating in the | |
bf16 grads after successive backward() calls (i.e., grad accumulation steps > 1) | |
The low-precision grads are deallocated during this procedure. | |
""" | |
self.clear_lp_grads() | |
loss.backward(**bwd_kwargs) | |
if update_hp_grads: | |
self.update_hp_grads(clear_lp_grads=clear_lp_grads) | |
def _update_hp_grad(self, lp, group_idx, param_idx, clear_lp_grads): | |
if lp.grad is None: | |
return | |
hp_grad = self.fp32_groups_gradients[group_idx][param_idx] | |
assert hp_grad is not None, \ | |
f'high precision param has no gradient, lp param_id = {id(lp)} group_info = [{group_idx}][{param_idx}]' | |
hp_grad.data.add_(lp.grad.data.to(hp_grad.dtype).view(hp_grad.shape)) | |
lp._hp_grad = hp_grad | |
self.fp32_groups_has_gradients[group_idx][param_idx] = True | |
# clear gradients | |
if clear_lp_grads: | |
lp.grad.zero_() | |
def _update_hp_grads_func(self, clear_lp_grads=False): | |
for i, group in enumerate(self.bf16_groups): | |
for j, lp in enumerate(group): | |
self._update_hp_grad(lp, i, j, clear_lp_grads) | |
def update_hp_grads(self, clear_lp_grads=False): | |
if self.immediate_grad_update: | |
return | |
if self.graph_harvesting: | |
graph_process(False, self._update_hp_grads_func, clear_lp_grads) | |
else: | |
self._update_hp_grads_func(clear_lp_grads) | |
#cpu op | |
for i, group in enumerate(self.bf16_groups): | |
for j, lp in enumerate(group): | |
if lp.grad is None: | |
continue | |
self.fp32_groups_has_gradients[i][j] = True | |
def get_grads_for_reduction(self): | |
if self.has_moe_layers: | |
return self.non_expert_gradients, self.expert_gradients | |
return self.non_expert_gradients, {} | |
def get_grads_for_norm(self, for_clipping=False): | |
""" | |
Returns: | |
tuple[list[Tensor], dict[ep_name, List[Tensor]] | list: | |
If for_clipping, return all gradients. | |
Otherwise, separate and return dict of expert_grad and list of non_expert_grad | |
""" | |
# (grads, expert_group_name) | |
expert_grads_for_norm = {} | |
# grads | |
non_expert_grads_for_norm = [] | |
all_grads_for_clip = [] | |
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=self.mpu) | |
assert len(self.bf16_groups) == len(self.optimizer.param_groups) | |
for i, group in enumerate(self.bf16_groups): | |
for j, lp in enumerate(group): | |
if not for_clipping: | |
if hasattr(lp, PIPE_REPLICATED) and lp.ds_pipe_replicated: | |
continue | |
# skip duplicated parameters. perform norm only on cards with tp_rank=0. | |
# non-duplicated parameters include: | |
# - Parameters with tp: Use allreducesum of mp_group. | |
# - Moe Parameters with ep: Use allreducesum of ep_group. | |
if not (tensor_mp_rank == 0 or is_model_parallel_parameter(lp) or is_moe_param(lp)): | |
continue | |
if not self.fp32_groups_has_gradients[i][j]: | |
continue | |
if not for_clipping: | |
param_group = self.optimizer.param_groups[i] | |
if self.has_moe_layers and is_moe_param_group(param_group): | |
if param_group['name'] not in expert_grads_for_norm: | |
expert_grads_for_norm[param_group['name']] = [] | |
expert_grads_for_norm[param_group['name']].append(self.fp32_groups_gradients[i][j]) | |
else: | |
non_expert_grads_for_norm.append(self.fp32_groups_gradients[i][j]) | |
else: | |
all_grads_for_clip.append(self.fp32_groups_gradients[i][j]) | |
if not for_clipping: | |
return non_expert_grads_for_norm, expert_grads_for_norm | |
return all_grads_for_clip | |
def update_lp_params(self): | |
for i, (bf16_partitions, | |
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)): | |
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) | |
bf16_partitions[partition_id].data.copy_(fp32_partition.data) | |
# print_rank_0(f'update_lp_params {i=} {partition_id=}', force=True) | |
# if i == 0: | |
# print_rank_0(f'{fp32_partition[:10]=}', force=True) | |
all_gather_dp_groups(groups_flat=self.bf16_groups_flat, | |
partitioned_param_groups=self.bf16_partitioned_groups, | |
dp_process_group=self.real_dp_process_group, | |
start_alignment_factor=self.nccl_start_alignment_factor, | |
allgather_bucket_size=self.allgather_bucket_size) | |
def clear_hp_grads(self): | |
for flat_gradients in self.fp32_groups_gradients_flat: | |
flat_gradients.zero_() | |
for i, group in enumerate(self.fp32_groups_gradients): | |
self.fp32_groups_has_gradients[i] = [False] * len(group) | |
def clear_lp_grads(self): | |
# using zero_() fixed memory address for graph replay | |
set_to_none = False if self.graph_harvesting else True | |
zero_grads_list = [] | |
for group in self.bf16_groups: | |
for param in group: | |
if set_to_none: | |
param.grad = None | |
elif param.grad is not None: | |
if param.grad.grad_fn is not None: | |
param.grad.detach_() | |
zero_grads_list.append(param.grad) | |
if not set_to_none and len(zero_grads_list) > 0: | |
torch._foreach_zero_(zero_grads_list) | |
def state_dict(self): | |
state_dict = {} | |
state_dict[CLIP_GRAD] = self.clip_grad | |
state_dict[BASE_OPTIMIZER_STATE] = self.optimizer.state_dict() | |
state_dict[SINGLE_PARTITION_OF_FP32_GROUPS] = self.fp32_groups_flat_partition | |
state_dict[GROUP_PADDINGS] = self.group_paddings | |
state_dict[PARTITION_COUNT] = self.partition_count | |
state_dict[DS_VERSION] = version | |
state_dict[PARAM_SLICE_MAPPINGS] = self._param_slice_mappings | |
return state_dict | |
# Restore base optimizer fp32 weights bfloat16 weights | |
def _restore_from_bit16_weights(self): | |
for i, group in enumerate(self.bf16_groups): | |
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) | |
for bf16_partitions, fp32_partition in zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition): | |
fp32_partition.data.copy_(bf16_partitions[partition_id].data) | |
def refresh_fp32_params(self): | |
self._restore_from_bit16_weights() | |
def load_state_dict(self, | |
state_dict_list, | |
checkpoint_folder, | |
load_optimizer_states=True, | |
load_from_fp32_weights=False, | |
load_serial=None): | |
if checkpoint_folder: | |
self._load_universal_checkpoint(checkpoint_folder, load_optimizer_states, load_from_fp32_weights) | |
else: | |
self._load_legacy_checkpoint(state_dict_list, load_optimizer_states, load_from_fp32_weights) | |
def _load_legacy_checkpoint(self, state_dict_list, load_optimizer_states=True, load_from_fp32_weights=False): | |
dp_rank = dist.get_rank(group=self.dp_process_group) | |
current_rank_sd = state_dict_list[dp_rank] | |
ckpt_version = current_rank_sd.get(DS_VERSION, False) | |
assert ckpt_version, f"Empty ds_version in checkpoint, not clear how to proceed" | |
ckpt_version = pkg_version.parse(ckpt_version) | |
self.clip_grad = current_rank_sd.get(CLIP_GRAD, self.clip_grad) | |
if load_optimizer_states: | |
print(f"_load_legacy_checkpoint current_rank_sd[BASE_OPTIMIZER_STATE]") | |
self.optimizer.load_state_dict(current_rank_sd[BASE_OPTIMIZER_STATE]) | |
if load_from_fp32_weights: | |
for current, saved in zip(self.fp32_groups_flat_partition, | |
current_rank_sd[SINGLE_PARTITION_OF_FP32_GROUPS]): | |
src_tensor = _get_padded_tensor(saved, current.numel()) | |
current.data.copy_(src_tensor.data) | |
if load_optimizer_states: | |
self._link_all_hp_params() | |
def _load_universal_checkpoint(self, checkpoint_folder, load_optimizer_states, load_from_fp32_weights): | |
self.load_hp_checkpoint_state_from_checkpoint_dir("bf16_groups", checkpoint_folder) | |
def _load_global_state(self, sd): | |
pass | |
def param_groups(self): | |
"""Forward the wrapped optimizer's parameters.""" | |
return self.optimizer.param_groups | |
def accumulate_hp_grads_and_remove_lp(self, lp_param, group_idx, param_idx): | |
assert self.immediate_grad_update | |
self._update_hp_grad(lp_param, group_idx, param_idx, clear_lp_grads=True) | |
def create_grad_acc_hooks(self): | |
self.grad_accs = [] | |
for i, param_group in enumerate(self.bf16_groups): | |
for j, param in enumerate(param_group): | |
if param.requires_grad: | |
def wrapper(param, i, j): | |
param_tmp = param.expand_as(param) | |
grad_acc = param_tmp.grad_fn.next_functions[0][0] | |
def accumulate_hp_grads_and_remove_lp(*notneeded): | |
self.accumulate_hp_grads_and_remove_lp(param, i, j) | |
grad_acc.register_hook(accumulate_hp_grads_and_remove_lp) | |
self.grad_accs.append(grad_acc) | |
wrapper(param, i, j) | |
def _get_padded_tensor(src_tensor, size): | |
if src_tensor.numel() >= size: | |
return src_tensor | |
padded_tensor = torch.zeros(size, dtype=src_tensor.dtype, device=src_tensor.device) | |
slice_tensor = torch.narrow(padded_tensor, 0, 0, src_tensor.numel()) | |
slice_tensor.data.copy_(src_tensor.data) | |
return padded_tensor | |