peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/constants.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
############################################# | |
# Routes | |
############################################# | |
ROUTE_TRAIN = "train" | |
ROUTE_EVAL = "eval" | |
ROUTE_PREDICT = "predict" | |
ROUTE_ENCODE = "encode" | |
############################################# | |
# Batch size | |
############################################# | |
TRAIN_BATCH_SIZE = "train_batch_size" | |
TRAIN_BATCH_SIZE_DEFAULT = None | |
############################################# | |
# Sparse attention | |
############################################# | |
SPARSE_ATTENTION = "sparse_attention" | |
SPARSE_DENSE_MODE = "dense" | |
SPARSE_FIXED_MODE = "fixed" | |
SPARSE_VARIABLE_MODE = "variable" | |
SPARSE_BIGBIRD_MODE = "bigbird" | |
SPARSE_BSLONGFORMER_MODE = "bslongformer" | |
SPARSE_MODE = "mode" | |
SPARSE_MODE_DEFAULT = SPARSE_FIXED_MODE | |
SPARSE_BLOCK = "block" | |
SPARSE_BLOCK_DEFAULT = 16 | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD = "different_layout_per_head" | |
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT = False | |
SPARSE_NUM_LOCAL_BLOCKS = "num_local_blocks" | |
SPARSE_NUM_LOCAL_BLOCKS_DEFAULT = 4 | |
SPARSE_NUM_GLOBAL_BLOCKS = "num_global_blocks" | |
SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT = 1 | |
SPARSE_ATTENTION_TYPE = "attention" | |
SPARSE_ATTENTION_TYPE_DEFAULT = "bidirectional" | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION = "horizontal_global_attention" | |
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT = False | |
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS = "num_different_global_patterns" | |
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS_DEFAULT = 1 | |
SPARSE_NUM_RANDOM_BLOCKS = "num_random_blocks" | |
SPARSE_NUM_RANDOM_BLOCKS_DEFAULT = 0 | |
SPARSE_LOCAL_WINDOW_BLOCKS = "local_window_blocks" | |
SPARSE_LOCAL_WINDOW_BLOCKS_DEFAULT = [4] | |
SPARSE_GLOBAL_BLOCK_INDICES = "global_block_indices" | |
SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT = [0] | |
SPARSE_GLOBAL_BLOCK_END_INDICES = "global_block_end_indices" | |
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT = None | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS = "num_sliding_window_blocks" | |
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT = 3 | |
############################################# | |
# Optimizer and lr scheduler | |
############################################# | |
OPTIMIZER = "optimizer" | |
OPTIMIZER_TYPE_DEFAULT = None | |
OPTIMIZER_PARAMS = "params" | |
TYPE = "type" | |
LEGACY_FUSION = "legacy_fusion" | |
LEGACY_FUSION_DEFAULT = False | |
SCHEDULER = "scheduler" | |
SCHEDULER_TYPE_DEFAULT = None | |
SCHEDULER_PARAMS = "params" | |
MAX_GRAD_NORM = 'max_grad_norm' | |
############################################# | |
# Optimizer and lr scheduler | |
############################################# | |
ZERO_ALLOW_UNTESTED_OPTIMIZER = "zero_allow_untested_optimizer" | |
ZERO_ALLOW_UNTESTED_OPTIMIZER_DEFAULT = False | |
ZERO_FORCE_DS_CPU_OPTIMIZER = "zero_force_ds_cpu_optimizer" | |
ZERO_FORCE_DS_CPU_OPTIMIZER_DEFAULT = True | |
# Steps | |
STEPS_PER_PRINT = "steps_per_print" | |
STEPS_PER_PRINT_DEFAULT = 10 | |
######################################### | |
# Training micro batch size per GPU | |
######################################### | |
# Batch size for one training step. This is used when the | |
# TRAIN_BATCH_SIZE cannot fit in GPU memory to determine | |
# the number of gradient accumulation steps. By default, this | |
# is set to None. Users can configure in ds_config.json as below example: | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU = ''' | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU is defined in this format: | |
"train_micro_batch_size_per_gpu": 1 | |
''' | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU = "train_micro_batch_size_per_gpu" | |
TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT = None | |
######################################### | |
# Gradient Accumulation | |
######################################### | |
# Gradient accumulation feature. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
GRADIENT_ACCUMULATION_FORMAT = ''' | |
Gradient Accumulation should be of the format: | |
"gradient_accumulation_steps": 1 | |
''' | |
GRADIENT_ACCUMULATION_STEPS = "gradient_accumulation_steps" | |
GRADIENT_ACCUMULATION_STEPS_DEFAULT = None | |
# DeepSpeed CSR gradient sparsity | |
SPARSE_GRADIENTS = "sparse_gradients" | |
SPARSE_GRADIENTS_DEFAULT = False | |
######################################### | |
# BFLOAT16 support | |
######################################### | |
# BFLOAT16 feature. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
BFLOAT16_FORMAT = ''' | |
BFLOAT16 parameters should be of the format: | |
"bf16": { | |
"enabled": true | |
} | |
''' | |
BFLOAT16 = "bf16" | |
BFLOAT16_OLD = "bfloat16" # keeping for backwards compatibility | |
BFLOAT16_ENABLED = "enabled" | |
BFLOAT16_ENABLED_DEFAULT = False | |
# BFLOAT16 optimizer immediate gradient update | |
BFLOAT16_IMMEDIATE_GRAD_UPDATE = "immediate_grad_update" | |
BFLOAT16_IMMEDIATE_GRAD_UPDATE_DEFAULT = False | |
######################################### | |
# FP16 support | |
######################################### | |
# FP16 feature. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
FP16_FORMAT = ''' | |
FP16 parameters should be of the format: | |
"fp16": { | |
"enabled": true, | |
"auto_cast": false, | |
"loss_scale": 0, | |
"initial_scale_power": 16, | |
"loss_scale_window": 1000, | |
"hysteresis": 2, | |
"consecutive_hysteresis": false, | |
"min_loss_scale": 1 | |
} | |
''' | |
FP16 = "fp16" | |
FP16_ENABLED = "enabled" | |
FP16_ENABLED_DEFAULT = False | |
# FP16 loss scale, zero means using dynamic scaling | |
FP16_LOSS_SCALE = "loss_scale" | |
FP16_LOSS_SCALE_DEFAULT = 0 | |
FP16_AUTO_CAST = "auto_cast" | |
FP16_AUTO_CAST_DEFAULT = False | |
# FP16 initial dynamic scale loss power | |
FP16_INITIAL_SCALE_POWER = "initial_scale_power" | |
FP16_INITIAL_SCALE_POWER_DEFAULT = 16 | |
# FP16 loss scale window | |
FP16_LOSS_SCALE_WINDOW = "loss_scale_window" | |
FP16_LOSS_SCALE_WINDOW_DEFAULT = 1000 | |
# FP16 hysteresis | |
FP16_HYSTERESIS = "hysteresis" | |
FP16_HYSTERESIS_DEFAULT = 2 | |
# FP16 consecutive hysteresis | |
FP16_CONSECUTIVE_HYSTERESIS = "consecutive_hysteresis" | |
FP16_CONSECUTIVE_HYSTERESIS_DEFAULT = False | |
# FP16 min loss scale | |
FP16_MIN_LOSS_SCALE = "min_loss_scale" | |
FP16_MIN_LOSS_SCALE_DEFAULT = 1 | |
# FP16 master and grads | |
FP16_MASTER_WEIGHTS_AND_GRADS = "fp16_master_weights_and_grads" | |
FP16_MASTER_WEIGHTS_AND_GRADS_DEFAULT = False | |
######################################### | |
# Apex AMP support | |
######################################### | |
# Use Apex AMP for mixed precision support, all parameters (other than 'enabled') will be passed to | |
# amp.initialize(model, optimizer, **amp_params) | |
# See apex documentation for supported parameters/features: https://nvidia.github.io/apex/amp.html#apex.amp.initialize | |
AMP_FORMAT = ''' | |
"amp" { | |
"enabled: true, | |
"opt_level": "O1", | |
... | |
} | |
''' | |
AMP = "amp" | |
AMP_ENABLED = "enabled" | |
AMP_ENABLED_DEFAULT = False | |
######################################### | |
# Gradient clipping | |
######################################### | |
# Gradient clipping. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
GRADIENT_CLIPPING_FORMAT = ''' | |
Gradient clipping should be enabled as: | |
"gradient_clipping": 1.0 | |
''' | |
GRADIENT_CLIPPING = 'gradient_clipping' | |
GRADIENT_CLIPPING_DEFAULT = 0. | |
######################################### | |
# Capture graph for short kernels sequences | |
######################################### | |
# Graph harvesting. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
GRAPH_HARVESTING_FORMAT = ''' | |
Graph harvesting should be enabled as: | |
"graph_harvesting": true | |
''' | |
GRAPH_HARVESTING = 'graph_harvesting' | |
GRAPH_HARVESTING_DEFAULT = False | |
######################################### | |
# Communication data type | |
######################################### | |
# Supported types: ['none', 'fp16', 'fp32'] | |
# By default, this feature is not enabled ('none' value) | |
# Users can configure in ds_config.json as below example: | |
COMMUNICATION_DATA_TYPE_FORMAT = ''' | |
Communication data type should be set as: | |
"communication_data_type": "fp32" | |
''' | |
COMMUNICATION_DATA_TYPE = "communication_data_type" | |
COMMUNICATION_DATA_TYPE_DEFAULT = None | |
########################################################### | |
# Gradient communication data type for sequence parallelism | |
########################################################### | |
# Supported types: ['fp16', 'bf16','fp32'] | |
# Default value is fp32 | |
# Users can configure in ds_config.json as below example: | |
SEQ_PARALLEL_COMMUNICATION_DATA_TYPE_FORMAT = ''' | |
Optional comm data type for seq paralleism should be set as: | |
"seq_parallel_communication_data_type": "fp32" | |
''' | |
SEQ_PARALLEL_COMMUNICATION_DATA_TYPE = "seq_parallel_comm_data_type" | |
SEQ_PARALLEL_COMMUNICATION_DATA_TYPE_DEFAULT = "fp32" | |
######################################### | |
# Scale/predivide gradients before allreduce | |
######################################### | |
# Prescale gradients. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
PRESCALE_GRADIENTS_FORMAT = ''' | |
Gradient prescaling should be enabled as: | |
"prescale_gradients": true | |
''' | |
PRESCALE_GRADIENTS = "prescale_gradients" | |
PRESCALE_GRADIENTS_DEFAULT = False | |
GRADIENT_PREDIVIDE_FACTOR_FORMAT = ''' | |
Gradient predivide factor should be enabled as: | |
"gradient_predivide_factor": 1.0 | |
''' | |
GRADIENT_PREDIVIDE_FACTOR = "gradient_predivide_factor" | |
GRADIENT_PREDIVIDE_FACTOR_DEFAULT = 1.0 | |
######################################### | |
# Disable AllGather | |
######################################### | |
# Disable AllGather. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
DISABLE_ALLGATHER_FORMAT = ''' | |
Disable AllGather should be enabled as: | |
"disable_allgather": true | |
''' | |
DISABLE_ALLGATHER = "disable_allgather" | |
DISABLE_ALLGATHER_DEFAULT = False | |
######################################### | |
# Dump DeepSpeed state | |
######################################### | |
# Dump State. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
DUMP_STATE_FORMAT = ''' | |
Dump state should be enabled as: | |
"dump_state": true | |
''' | |
DUMP_STATE = 'dump_state' | |
DUMP_STATE_DEFAULT = False | |
######################################### | |
# Vocabulary size | |
######################################### | |
# Vocabulary size. | |
# Users can configure in ds_config.json as below example: | |
VOCABULARY_SIZE_FORMAT = ''' | |
Vocabulary size can be specified as: | |
"vocabulary_size": 1024 | |
''' | |
VOCABULARY_SIZE = 'vocabulary_size' | |
VOCABULARY_SIZE_DEFAULT = None | |
######################################### | |
# Wall block breakdown | |
######################################### | |
# Wall clock breakdown. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
WALL_CLOCK_BREAKDOWN_FORMAT = ''' | |
Wall block breakdown should be enabled as: | |
"wall_clock_breakdown": true | |
''' | |
WALL_CLOCK_BREAKDOWN = 'wall_clock_breakdown' | |
WALL_CLOCK_BREAKDOWN_DEFAULT = False | |
MEMORY_BREAKDOWN = 'memory_breakdown' | |
MEMORY_BREAKDOWN_DEFAULT = False | |
######################################### | |
# Eigenvalue | |
######################################### | |
# Eigenvalue computation. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
EIGENVALUE_FORMAT = ''' | |
Tensorboard can be specified as: | |
"eigenvalue": { | |
"enabled": true, | |
"verbose": true, | |
"max_iter": 100, | |
"tol": 1e-2, | |
"stability": 1e-6 | |
} | |
''' | |
EIGENVALUE = "eigenvalue" | |
# Tensorboard enable signal | |
EIGENVALUE_ENABLED = "enabled" | |
EIGENVALUE_ENABLED_DEFAULT = False | |
EIGENVALUE_VERBOSE = "verbose" | |
EIGENVALUE_VERBOSE_DEFAULT = False | |
EIGENVALUE_MAX_ITER = "max_iter" | |
EIGENVALUE_MAX_ITER_DEFAULT = 100 | |
EIGENVALUE_TOL = "tol" | |
EIGENVALUE_TOL_DEFAULT = 1e-2 | |
EIGENVALUE_STABILITY = "stability" | |
EIGENVALUE_STABILITY_DEFAULT = 1e-6 | |
EIGENVALUE_GAS_BOUNDARY_RESOLUTION = "gas_boundary_resolution" | |
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT = 1 | |
EIGENVALUE_LAYER_NAME = "layer_name" | |
EIGENVALUE_LAYER_NAME_DEFAULT = "bert.encoder.layer" | |
EIGENVALUE_LAYER_NUM = "layer_num" | |
EIGENVALUE_LAYER_NUM_DEFAULT = 0 | |
######################################### | |
# Progressive Layer Drop (PLD) | |
######################################### | |
PROGRESSIVE_LAYER_DROP = "progressive_layer_drop" | |
# PLD enable signal | |
PLD_ENABLED = "enabled" | |
PLD_ENABLED_DEFAULT = False | |
PLD_THETA = "theta" | |
PLD_THETA_DEFAULT = 1.0 | |
PLD_GAMMA = "gamma" | |
PLD_GAMMA_DEFAULT = 0.001 | |
######################################### | |
# Validation modes | |
######################################### | |
class ValidationMode: | |
WARN = "WARN" | |
IGNORE = "IGNORE" | |
FAIL = "FAIL" | |
######################################### | |
# Checkpoint config params | |
######################################### | |
# "checkpoint": { | |
# tag_validation=["Ignore"|"Warn"|"Fail"] | |
# load_universal=false | |
# use_node_local_storage=false | |
# parallel_write: { | |
# pipeline_stage: [True|False] | |
# } | |
# } | |
CHECKPOINT = "checkpoint" | |
CHECKPOINT_TAG_VALIDATION = "tag_validation" | |
CHECKPOINT_TAG_VALIDATION_DEFAULT = ValidationMode.WARN | |
CHECKPOINT_TAG_VALIDATION_MODES = [ValidationMode.WARN, ValidationMode.IGNORE, ValidationMode.FAIL] | |
LOAD_UNIVERSAL_CHECKPOINT = "load_universal" | |
LOAD_UNIVERSAL_CHECKPOINT_DEFAULT = False | |
USE_NODE_LOCAL_STORAGE_CHECKPOINT = "use_node_local_storage" | |
USE_NODE_LOCAL_STORAGE_CHECKPOINT_DEFAULT = False | |
CHECKPOINT_PARALLEL_WRITE = "parallel_write" | |
CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE = "pipeline_stage" | |
CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE_DEFAULT = False | |
######################################### | |
# Data types config params | |
######################################### | |
# "data_types": { | |
# grad_accum_dtype=["bf16"|"fp16"|"fp32"] | |
# } | |
# } | |
DATA_TYPES = "data_types" | |
GRAD_ACCUM_DTYPE = "grad_accum_dtype" | |
GRAD_ACCUM_DTYPE_DEFAULT = None | |
######################################### | |
# Drop the last incomplete Batch | |
# ######################################### | |
# dataloader_drop_last. By default, this feature is not enabled. | |
# Users can configure in ds_config.json as below example: | |
DATALOADER_DROP_LAST_FORMAT = ''' | |
The last incomplete batch can be dropped by setting: | |
"dataloader_drop_last": True | |
''' | |
DATALOADER_DROP_LAST = "dataloader_drop_last" | |
DATALOADER_DROP_LAST_DEFAULT = False | |
######################################### | |
# PIPELINE PARALLELISM | |
######################################### | |
PIPE_REPLICATED = 'ds_pipe_replicated' | |
######################################### | |
# DATA PARALLELISM | |
######################################### | |
DATA_PARALLEL_GROUP = "data_parallel_group" | |
GLOBAL_RANK = "global_rank" | |
######################################### | |
# EXPERT-DATA PARALLELISM TOPO Config | |
######################################### | |
USE_DATA_BEFORE_EXPERT_PARALLEL = "use_data_before_expert_parallelism" | |
USE_DATA_BEFORE_EXPERT_PARALLEL_DEFAULT = False | |