peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/fp16
/onebit
/zoadam.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import types | |
import torch | |
import numpy as np | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.utils.torch import required_torch_version | |
from deepspeed import comm as dist | |
class ZeroOneAdam(torch.optim.Optimizer): | |
"""Implements the 0/1 Adam algorithm. Currently GPU-only. | |
For usage example please see https://www.deepspeed.ai/tutorials/zero-one-adam/ | |
For technical details please read https://arxiv.org/abs/2202.06009 | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups. | |
lr (float, optional): learning rate. (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square. (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability. (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
var_freeze_step (int, optional): The latest step to update the variance, | |
using the notation from https://arxiv.org/abs/2202.06009, it denotes the | |
max{i|i in T_v}. Note that this is different from the freeze step from the | |
1-bit Adam. The var_freeze_step is usually the end of the learning rate warmup | |
and thus does not require tuning. (default: 100000) | |
var_update_scaler (int, optional): The interval to update the variance. Note that | |
the update policy for variance follows an exponential rule, where var_update_scaler | |
denotes the kappa in the 0/1 Adam paper. (default: 16) | |
local_step_scaler (int, optional): The interval to scale the local steps interval | |
according to the learning rate policy. (default: 32678) | |
local_step_clipper (int, optional): The largest interval for local steps with | |
learning rate policy. This corresponds to the variable H in the 0/1 Adam paper. | |
(default: 16) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) NOT SUPPORTED in 0/1 Adam! | |
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, | |
adds eps to the bias-corrected second moment estimate before | |
evaluating square root instead of adding it to the square root of | |
second moment estimate as in the original paper. (default: False) | |
cuda_aware (boolean, required): Set True if the underlying MPI implementation | |
supports CUDA-Aware communication. (default: False) | |
comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl') | |
.. _Adam\\: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__(self, | |
params, | |
deepspeed=None, | |
lr=1e-3, | |
bias_correction=True, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
eps_inside_sqrt=False, | |
weight_decay=0., | |
max_grad_norm=0., | |
var_freeze_step=100000, | |
var_update_scaler=16, | |
local_step_scaler=32678, | |
local_step_clipper=16, | |
amsgrad=False, | |
cuda_aware=False, | |
comm_backend_name='nccl'): | |
if amsgrad: | |
raise RuntimeError('0/1 Adam does not support the AMSGrad variant.') | |
defaults = dict(lr=lr, | |
bias_correction=bias_correction, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
max_grad_norm=max_grad_norm) | |
super(ZeroOneAdam, self).__init__(params, defaults) | |
self.eps_mode = 0 if eps_inside_sqrt else 1 | |
self.deepspeed = deepspeed | |
self.initialize = False | |
self.cuda_aware = cuda_aware | |
self.using_pipeline = False | |
self.var_freeze_step = var_freeze_step | |
self.var_update_scaler = var_update_scaler | |
self.local_step_scaler = local_step_scaler | |
self.local_step_clipper = local_step_clipper | |
self.freeze_key = False | |
self.reinitial_error_buffer = False | |
self.comm_backend_name = comm_backend_name | |
assert dist.is_initialized(), "Please initialize the torch distributed backend." | |
# Empty initializer. Set handle based on the comm backend as follows. | |
self.comm_backend_handle = None | |
if self.comm_backend_name == 'nccl': | |
assert ( | |
required_torch_version(min_version=1.8) | |
), "Please use torch 1.8 or greater to enable NCCL backend in 0/1 Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend" | |
from deepspeed.runtime.comm.nccl import NcclBackend | |
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce') | |
self.comm_backend_handle = NcclBackend(self.deepspeed.mpu) | |
elif self.comm_backend_name == 'mpi': | |
from deepspeed.runtime.comm.mpi import MpiBackend | |
self.comm_backend_handle = MpiBackend(cuda_aware) | |
elif self.comm_backend_name == 'hccl': | |
from deepspeed.runtime.comm.hccl import HcclBackend | |
self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce') | |
self.comm_backend_handle = HcclBackend(self.deepspeed.mpu) | |
self.size = self.comm_backend_handle.size | |
self.divider = int(self.size * 8 / np.gcd(self.size, 8)) | |
def step(self, closure=None, grads=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
grads (list of tensors, optional): weight gradient to use for the | |
optimizer update. If gradients have type torch.half, parameters | |
are expected to be in type torch.float. (default: None) | |
output params (list of tensors, optional): A reduced precision copy | |
of the updated weights written out in addition to the regular | |
updated weights. Have to be of same type as gradients. (default: None) | |
scale (float, optional): factor to divide gradient tensor values | |
by before applying to weights. (default: 1) | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
if grads is None: | |
grads_group = [None] * len(self.param_groups) | |
# backward compatibility | |
# assuming a list/generator of parameter means single group | |
elif isinstance(grads, types.GeneratorType): | |
grads_group = [grads] | |
elif type(grads[0]) != list: | |
grads_group = [grads] | |
else: | |
grads_group = grads | |
for group, grads_this_group in zip(self.param_groups, grads_group): | |
if grads_this_group is None: | |
grads_this_group = [None] * len(group['params']) | |
bias_correction = 1 if group['bias_correction'] else 0 | |
for p, grad in zip(group['params'], grads_this_group): | |
if p.grad is None and grad is None: | |
continue | |
if grad is None: | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('0/1 Adam does not support sparse gradients') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data) | |
if not self.initialize or 'worker_error' not in state.keys(): | |
# Some scalars to help scale the variance update/local step policies | |
state['var_interval'] = 1 | |
state['var_counter'] = 0 | |
state['local_step_interval'] = 1 | |
state['local_step_counter'] = 0 | |
state['lrs'] = 0 | |
state['tensor_size'] = torch.numel(p.data) | |
state['corrected_tensor_size'] = state['tensor_size'] | |
if state['tensor_size'] % (self.size * self.divider) != 0: | |
state['corrected_tensor_size'] += ((self.size * self.divider) - (state['tensor_size'] % | |
(self.size * self.divider))) | |
state['server_chunk_size'] = state['corrected_tensor_size'] // self.size | |
get_accelerator().empty_cache() | |
state['worker_error'] = torch.zeros(state['corrected_tensor_size'], device=p.device) | |
state['server_error'] = torch.zeros(state['server_chunk_size'], device=p.device) | |
# Accumulation of momentum, i.e., the u variable in the 0/1 Adam paper | |
state['momentum_accumulator'] = torch.zeros_like(p.data) | |
get_accelerator().empty_cache() | |
# self.freeze_key = True | |
if not self.initialize and dist.get_rank() == 0: | |
print("Cupy Buffers Initialized Successfully.") | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
comm_buffer = state['momentum_accumulator'] | |
beta1, beta2 = group['betas'] | |
state['step'] += 1 | |
if self.initialize: | |
if self.freeze_key is False: | |
if state['step'] % state['var_interval'] == 0: | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
else: | |
if self.size > 1: | |
with torch.no_grad(): | |
grad_onebit = self.comm_backend_handle.compressed_allreduce( | |
grad, state['worker_error'], state['server_error'], self.deepspeed.local_rank) | |
if 'exp_avg_mask' in group: | |
if grad_onebit.device != group['exp_avg_mask'].device: | |
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=grad_onebit.device) | |
grad_onebit.mul_(group['exp_avg_mask']) | |
exp_avg.mul_(beta1).add_(1 - beta1, grad_onebit) | |
else: | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
state['lrs'] += group['lr'] | |
grad = None | |
if not self.initialize: | |
if self.size > 1: | |
comm_buffer.set_( | |
self.comm_backend_handle.compressed_allreduce(comm_buffer, state['worker_error'], | |
state['server_error'], | |
self.deepspeed.local_rank)) | |
if 'exp_avg_mask' in group: | |
if comm_buffer.device != group['exp_avg_mask'].device: | |
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=comm_buffer.device) | |
comm_buffer.mul_(group['exp_avg_mask']) | |
if self.initialize: | |
update = exp_avg / (exp_avg_sq.sqrt() + group['eps']) | |
if group['weight_decay'] > 0.0: | |
update += group['weight_decay'] * p.data | |
with torch.no_grad(): | |
p.data.add_(-group['lr'] * update) | |
if self.freeze_key is True: | |
comm_buffer.add_(-group['lr'] * update) | |
if state['step'] % state['local_step_interval'] == 0 and self.freeze_key: | |
with torch.no_grad(): | |
p.data.add_(-1 * comm_buffer) | |
comm_buffer.mul_(exp_avg_sq.sqrt() + group['eps']) | |
if self.size > 1: | |
comm_buffer.copy_( | |
self.comm_backend_handle.compressed_allreduce(comm_buffer, state['worker_error'], | |
state['server_error'], | |
self.deepspeed.local_rank)) | |
if 'exp_avg_mask' in group: | |
if comm_buffer.device != group['exp_avg_mask'].device: | |
group['exp_avg_mask'] = group['exp_avg_mask'].to(device=comm_buffer.device) | |
comm_buffer.mul_(group['exp_avg_mask']) | |
exp_avg.zero_().add_(comm_buffer / state['lrs'], alpha=-1) | |
p.data.add_(comm_buffer / (exp_avg_sq.sqrt() + group['eps'])) | |
comm_buffer.zero_() | |
state['lrs'] = 0 | |
# According to 0/1 Adam theory, a fixed variance would allow more accurate estimation of momentum | |
# However, in practice, we can also disable the manual freezing of variance, since the interval of | |
# updating variance will increase exponentially, so that it has negligible effect on the estimation. | |
if self.freeze_key is False: | |
if state['step'] % state['var_interval'] == 0: | |
state['var_counter'] += 1 | |
if state['var_counter'] == self.var_update_scaler: | |
state['var_counter'] = 0 | |
state['var_interval'] *= 2 | |
if (state['step'] + 1) % state['var_interval'] == 0: | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = True | |
else: | |
self.deepspeed.enable_backward_allreduce = True | |
else: | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = False | |
else: | |
self.deepspeed.enable_backward_allreduce = False | |
else: | |
state['local_step_counter'] += 1 | |
if state['local_step_counter'] == self.local_step_scaler: | |
state['local_step_counter'] = 0 | |
state['local_step_interval'] = min(self.local_step_clipper, | |
state['local_step_interval'] * 2) | |
if not self.initialize: | |
print('Pop out errors', flush=True) | |
self.freeze_key = False | |
state.pop('worker_error') | |
state.pop('server_error') | |
if not self.initialize: | |
self.initialize = True | |
print(f"Finished the initialization step at rank {dist.get_rank()}") | |
return loss | |
if self.state[self.param_groups[0]['params'][0]]['step'] > self.var_freeze_step: | |
self.freeze_key = True | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = False | |
else: | |
self.deepspeed.enable_backward_allreduce = False | |
if self.freeze_key is True and self.reinitial_error_buffer is False: | |
# We need to reinitialize the error buffers when local step > 1 since | |
# the errors will be logged for different metrics (gradient vs. accumulated momentum). | |
for group in self.param_groups: | |
for p in group['params']: | |
self.state[p]['worker_error'].zero_() | |
self.state[p]['server_error'].zero_() | |
self.reinitial_error_buffer = True | |
return loss | |
def load_state_dict(self, state_dict): | |
""" | |
Overrides load_state_dict() to add special handling when loading checkpoints | |
""" | |
# Because at different stage exp_avg_mask may change (e.g., | |
# BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask | |
# in checkpoints but always use the one user provided in training script. | |
# (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.) | |
# Thus here we keep the exp_avg_mask unchanged when loading checkpoint | |
for i, group in enumerate(self.param_groups): | |
if 'exp_avg_mask' in group: | |
state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask'] | |
elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]: | |
state_dict['param_groups'][i].pop('exp_avg_mask') | |
super().load_state_dict(state_dict) | |
if self.state[self.param_groups[0]['params'][0]]['step'] < self.var_freeze_step: | |
self.var_freeze_key = False | |
if (self.state[self.param_groups[0]['params'][0]]['step'] + | |
1) % self.state[self.param_groups[0]['params'][0]]['var_interval'] == 0: | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = True | |
else: | |
self.deepspeed.enable_backward_allreduce = True | |
else: | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = False | |
else: | |
self.deepspeed.enable_backward_allreduce = False | |
else: | |
self.var_freeze_key = True | |
if self.using_pipeline: | |
self.deepspeed.pipeline_enable_backward_allreduce = False | |
else: | |
self.deepspeed.enable_backward_allreduce = False | |
self.reinitial_error_buffer = False | |
for group in self.param_groups: | |
for p in group['params']: | |
if 'worker_error' in self.state[p]: | |
self.state[p].pop('worker_error') | |
if 'server_error' in self.state[p]: | |
self.state[p].pop('server_error') | |
if 'momentum_accumulator' in self.state[p]: | |
self.state[p].pop('momentum_accumulator') | |