peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/lr_schedules.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
""" | |
Implementation of learning rate schedules. | |
Taken and modified from PyTorch v1.0.1 source | |
https://github.com/pytorch/pytorch/blob/v1.1.0/torch/optim/lr_scheduler.py | |
""" | |
import argparse | |
from torch.optim import Optimizer | |
import math | |
from deepspeed.utils import logger | |
LR_SCHEDULE = 'lr_schedule' | |
LR_RANGE_TEST = 'LRRangeTest' | |
ONE_CYCLE = 'OneCycle' | |
WARMUP_LR = 'WarmupLR' | |
WARMUP_DECAY_LR = 'WarmupDecayLR' | |
WARMUP_COSINE_LR = 'WarmupCosineLR' | |
VALID_LR_SCHEDULES = [LR_RANGE_TEST, ONE_CYCLE, WARMUP_LR, WARMUP_DECAY_LR, WARMUP_COSINE_LR] | |
LR_RANGE_TEST_MIN_LR = 'lr_range_test_min_lr' | |
LR_RANGE_TEST_STEP_RATE = 'lr_range_test_step_rate' | |
LR_RANGE_TEST_STEP_SIZE = 'lr_range_test_step_size' | |
LR_RANGE_TEST_STAIRCASE = 'lr_range_test_staircase' | |
EDGE_VALUE = 'edge_value' | |
MID_VALUE = 'mid_value' | |
CYCLE_FIRST_STEP_SIZE = 'cycle_first_step_size' | |
CYCLE_FIRST_STAIR_COUNT = 'cycle_first_stair_count' | |
CYCLE_SECOND_STEP_SIZE = 'cycle_second_step_size' | |
CYCLE_SECOND_STAIR_COUNT = 'cycle_second_stair_count' | |
DECAY_STEP_SIZE = 'decay_step_size' | |
CYCLE_MIN_LR = 'cycle_min_lr' | |
CYCLE_MAX_LR = 'cycle_max_lr' | |
DECAY_LR_RATE = 'decay_lr_rate' | |
CYCLE_MIN_MOM = 'cycle_min_mom' | |
CYCLE_MAX_MOM = 'cycle_max_mom' | |
DECAY_MOM_RATE = 'decay_mom_rate' | |
WARMUP_MIN_LR = 'warmup_min_lr' | |
WARMUP_MAX_LR = 'warmup_max_lr' | |
WARMUP_NUM_STEPS = 'warmup_num_steps' | |
WARMUP_TYPE = 'warmup_type' | |
WARMUP_LOG_RATE = 'log' | |
WARMUP_LINEAR_RATE = 'linear' | |
WARMUP_MIN_RATIO = 'warmup_min_ratio' | |
COS_MIN_RATIO = 'cos_min_ratio' | |
TOTAL_NUM_STEPS = 'total_num_steps' | |
def add_tuning_arguments(parser): | |
group = parser.add_argument_group('Convergence Tuning', 'Convergence tuning configurations') | |
# LR scheduler | |
group.add_argument('--lr_schedule', type=str, default=None, help='LR schedule for training.') | |
# Learning rate range test | |
group.add_argument("--lr_range_test_min_lr", type=float, default=0.001, help='Starting lr value.') | |
group.add_argument("--lr_range_test_step_rate", type=float, default=1.0, help='scaling rate for LR range test.') | |
group.add_argument("--lr_range_test_step_size", type=int, default=1000, help='training steps per LR change.') | |
group.add_argument("--lr_range_test_staircase", | |
type=bool, | |
default=False, | |
help='use staircase scaling for LR range test.') | |
# OneCycle schedule | |
group.add_argument("--cycle_first_step_size", | |
type=int, | |
default=1000, | |
help='size of first step of 1Cycle schedule (training steps).') | |
group.add_argument("--cycle_first_stair_count", | |
type=int, | |
default=-1, | |
help='first stair count for 1Cycle schedule.') | |
group.add_argument("--cycle_second_step_size", | |
type=int, | |
default=-1, | |
help='size of second step of 1Cycle schedule (default first_step_size).') | |
group.add_argument("--cycle_second_stair_count", | |
type=int, | |
default=-1, | |
help='second stair count for 1Cycle schedule.') | |
group.add_argument("--decay_step_size", | |
type=int, | |
default=1000, | |
help='size of intervals for applying post cycle decay (training steps).') | |
# 1Cycle LR | |
group.add_argument("--cycle_min_lr", type=float, default=0.01, help='1Cycle LR lower bound.') | |
group.add_argument("--cycle_max_lr", type=float, default=0.1, help='1Cycle LR upper bound.') | |
group.add_argument("--decay_lr_rate", type=float, default=0.0, help='post cycle LR decay rate.') | |
# 1Cycle Momentum | |
group.add_argument('--cycle_momentum', default=False, action='store_true', help='Enable 1Cycle momentum schedule.') | |
group.add_argument("--cycle_min_mom", type=float, default=0.8, help='1Cycle momentum lower bound.') | |
group.add_argument("--cycle_max_mom", type=float, default=0.9, help='1Cycle momentum upper bound.') | |
group.add_argument("--decay_mom_rate", type=float, default=0.0, help='post cycle momentum decay rate.') | |
# Warmup LR | |
group.add_argument('--warmup_min_lr', type=float, default=0, help='WarmupLR minimum/initial LR value') | |
group.add_argument('--warmup_max_lr', type=float, default=0.001, help='WarmupLR maximum LR value.') | |
group.add_argument('--warmup_num_steps', type=int, default=1000, help='WarmupLR step count for LR warmup.') | |
group.add_argument('--warmup_type', | |
type=str, | |
default=WARMUP_LOG_RATE, | |
help='WarmupLR increasing function during warmup') | |
# WarmUP cos LR | |
group.add_argument("--warmup_min_ratio", type=float, default=0.01, help='Cosine LR lower bound.') | |
group.add_argument("--cos_min_ratio", type=float, default=0.01, help='Cosine LR lower bound.') | |
return parser | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser = add_tuning_arguments(parser) | |
lr_sched_args, unknown_args = parser.parse_known_args() | |
return lr_sched_args, unknown_args | |
def override_lr_range_test_params(args, params): | |
if hasattr(args, LR_RANGE_TEST_MIN_LR) and args.lr_range_test_min_lr is not None: | |
params[LR_RANGE_TEST_MIN_LR] = args.lr_range_test_min_lr | |
if hasattr(args, LR_RANGE_TEST_STEP_RATE) and args.lr_range_test_step_rate is not None: | |
params[LR_RANGE_TEST_STEP_RATE] = args.lr_range_test_step_rate | |
if hasattr(args, LR_RANGE_TEST_STEP_SIZE) and args.lr_range_test_step_size is not None: | |
params[LR_RANGE_TEST_STEP_SIZE] = args.lr_range_test_step_size | |
if hasattr(args, LR_RANGE_TEST_STAIRCASE) and args.lr_range_test_staircase is not None: | |
params[LR_RANGE_TEST_STAIRCASE] = args.lr_range_test_staircase | |
def override_1cycle_params(args, params): | |
if hasattr(args, CYCLE_FIRST_STEP_SIZE) and args.cycle_first_step_size is not None: | |
params[CYCLE_FIRST_STEP_SIZE] = args.cycle_first_step_size | |
if hasattr(args, CYCLE_FIRST_STAIR_COUNT) and args.cycle_first_stair_count is not None: | |
params[CYCLE_FIRST_STAIR_COUNT] = args.cycle_first_stair_count | |
if hasattr(args, CYCLE_SECOND_STEP_SIZE) and args.cycle_second_step_size is not None: | |
params[CYCLE_SECOND_STEP_SIZE] = args.cycle_second_step_size | |
if hasattr(args, CYCLE_SECOND_STAIR_COUNT) and args.cycle_second_stair_count is not None: | |
params[CYCLE_SECOND_STAIR_COUNT] = args.cycle_second_stair_count | |
if hasattr(args, DECAY_STEP_SIZE) and args.decay_step_size is not None: | |
params[DECAY_STEP_SIZE] = args.decay_step_size | |
# 1Cycle LR params | |
if hasattr(args, CYCLE_MIN_LR) and args.cycle_min_lr is not None: | |
params[CYCLE_MIN_LR] = args.cycle_min_lr | |
if hasattr(args, CYCLE_MAX_LR) and args.cycle_max_lr is not None: | |
params[CYCLE_MAX_LR] = args.cycle_max_lr | |
if hasattr(args, DECAY_LR_RATE) and args.decay_lr_rate is not None: | |
params[DECAY_LR_RATE] = args.decay_lr_rate | |
# 1Cycle MOM params | |
if hasattr(args, CYCLE_MIN_MOM) and args.cycle_min_mom is not None: | |
params[CYCLE_MIN_MOM] = args.cycle_min_mom | |
if hasattr(args, CYCLE_MAX_MOM) and args.cycle_max_mom is not None: | |
params[CYCLE_MAX_MOM] = args.cycle_max_mom | |
if hasattr(args, DECAY_MOM_RATE) and args.decay_mom_rate is not None: | |
params[DECAY_MOM_RATE] = args.decay_mom_rate | |
def override_warmupLR_params(args, params): | |
if hasattr(args, WARMUP_MIN_LR) and args.warmup_min_lr is not None: | |
params[WARMUP_MIN_LR] = args.warmup_min_lr | |
if hasattr(args, WARMUP_MAX_LR) and args.warmup_max_lr is not None: | |
params[WARMUP_MAX_LR] = args.warmup_max_lr | |
if hasattr(args, WARMUP_NUM_STEPS) and args.warmup_num_steps is not None: | |
params[WARMUP_NUM_STEPS] = args.warmup_num_steps | |
if hasattr(args, WARMUP_TYPE) and args.warmup_type is not None: | |
params[WARMUP_TYPE] = args.warmup_type | |
def override_params(args, params): | |
# LR range test params | |
override_lr_range_test_params(args, params) | |
# 1Cycle params | |
override_1cycle_params(args, params) | |
# WarmupLR params | |
override_warmupLR_params(args, params) | |
def get_config_from_args(args): | |
if not hasattr(args, LR_SCHEDULE) or args.lr_schedule is None: | |
return None, '--{} not specified on command line'.format(LR_SCHEDULE) | |
if not args.lr_schedule in VALID_LR_SCHEDULES: | |
return None, '{} is not supported LR schedule'.format(args.lr_schedule) | |
config = {} | |
config['type'] = args.lr_schedule | |
config['params'] = {} | |
if args.lr_schedule == LR_RANGE_TEST: | |
override_lr_range_test_params(args, config['params']) | |
elif args.lr_schedule == ONE_CYCLE: | |
override_1cycle_params(args, config['params']) | |
else: | |
override_warmupLR_params(args, config['params']) | |
return config, None | |
def get_lr_from_config(config): | |
if not 'type' in config: | |
return None, 'LR schedule type not defined in config' | |
if not 'params' in config: | |
return None, 'LR schedule params not defined in config' | |
lr_schedule = config['type'] | |
lr_params = config['params'] | |
if not lr_schedule in VALID_LR_SCHEDULES: | |
return None, '{} is not a valid LR schedule'.format(lr_schedule) | |
if lr_schedule == LR_RANGE_TEST: | |
return lr_params[LR_RANGE_TEST_MIN_LR], '' | |
if lr_schedule == ONE_CYCLE: | |
return lr_params[CYCLE_MAX_LR], '' | |
# Warmup LR | |
return lr_params[WARMUP_MAX_LR], '' | |
""" | |
Only optimizers that are subclass of torch.optim.Optimizer are supported. So check the passed optimizer and wrapped | |
optimizer to see if requirement is satisfied. | |
TODO: Looking under the hood to examine the wrapped optimizer is a hack that requires a better long-term fix. | |
""" | |
def get_torch_optimizer(optimizer): | |
if isinstance(optimizer, Optimizer): | |
return optimizer | |
if hasattr(optimizer, 'optimizer') and isinstance(optimizer.optimizer, Optimizer): | |
return optimizer.optimizer | |
raise TypeError('{} is not a subclass of torch.optim.Optimizer'.format(type(optimizer).__name__)) | |
class LRRangeTest(object): | |
"""Sets the learning rate of each parameter group according to | |
learning rate range test (LRRT) policy. The policy increases learning | |
rate starting from a base value with a constant frequency, as detailed in | |
the paper `A disciplined approach to neural network hyper-parameters: Part1`_. | |
LRRT policy is used for finding maximum LR that trains a model without divergence, and can be used to | |
configure the LR boundaries for Cyclic LR schedules. | |
LRRT changes the learning rate after every batch. | |
`step` should be called after a batch has been used for training. | |
Args: | |
optimizer (Optimizer): Wrapped optimizer. | |
lr_range_test_min_lr (float or list): Initial learning rate which is the | |
lower boundary in the range test for each parameter group. | |
lr_range_test_step_size (int): Interval of training steps to increase learning rate. Default: 2000 | |
lr_range_test_step_rate (float): Scaling rate for range test. Default: 1.0 | |
lr_range_test_staircase (bool): Scale in staircase fashion, rather than continuous. Default: False. | |
last_batch_iteration (int): The index of the last batch. This parameter is used when | |
resuming a training job. Since `step()` should be invoked after each | |
batch instead of after each epoch, this number represents the total | |
number of *batches* computed, not the total number of epochs computed. | |
When last_batch_iteration=-1, the schedule is started from the beginning. | |
Default: -1 | |
Example: | |
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) | |
>>> scheduler = LRRangeTest(optimizer) | |
>>> data_loader = torch.utils.data.DataLoader(...) | |
>>> for epoch in range(10): | |
>>> for batch in data_loader: | |
>>> train_batch(...) | |
>>> scheduler.step() | |
_A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: | |
https://arxiv.org/abs/1803.09820 | |
""" | |
def __init__(self, | |
optimizer: Optimizer, | |
lr_range_test_min_lr: float = 1e-3, | |
lr_range_test_step_size: int = 2000, | |
lr_range_test_step_rate: float = 1.0, | |
lr_range_test_staircase: bool = False, | |
last_batch_iteration: int = -1): | |
self.optimizer = get_torch_optimizer(optimizer) | |
if isinstance(lr_range_test_min_lr, list) or isinstance(lr_range_test_min_lr, tuple): | |
if len(lr_range_test_min_lr) != len(self.optimizer.param_groups): | |
raise ValueError("expected {} lr_range_test_min_lr, got {}".format(len(self.optimizer.param_groups), | |
len(lr_range_test_min_lr))) | |
self.min_lr = list(lr_range_test_min_lr) | |
else: | |
self.min_lr = [lr_range_test_min_lr] * len(self.optimizer.param_groups) | |
self.step_size = lr_range_test_step_size | |
self.step_rate = lr_range_test_step_rate | |
self.last_batch_iteration = last_batch_iteration | |
self.staircase = lr_range_test_staircase | |
self.interval_fn = self._staircase_interval if lr_range_test_staircase else self._continuous_interval | |
if last_batch_iteration == -1: | |
self._update_optimizer(self.min_lr) | |
def _staircase_interval(self): | |
return math.floor(float(self.last_batch_iteration + 1) / self.step_size) | |
def _continuous_interval(self): | |
return float(self.last_batch_iteration + 1) / self.step_size | |
def _get_increase(self): | |
return (1 + self.step_rate * self.interval_fn()) | |
def get_lr(self): | |
lr_increase = self._get_increase() | |
return [lr_range_test_min_lr * lr_increase for lr_range_test_min_lr in self.min_lr] | |
def get_last_lr(self): | |
""" Return last computed learning rate by current scheduler. | |
""" | |
assert getattr(self, '_last_lr', None) is not None, "need to call step() first" | |
return self._last_lr | |
def _update_optimizer(self, group_lrs): | |
for param_group, lr in zip(self.optimizer.param_groups, group_lrs): | |
param_group['lr'] = lr | |
def step(self, batch_iteration=None): | |
if batch_iteration is None: | |
batch_iteration = self.last_batch_iteration + 1 | |
self.last_batch_iteration = batch_iteration | |
self._update_optimizer(self.get_lr()) | |
self._last_lr = [group['lr'] for group in self.optimizer.param_groups] | |
def state_dict(self): | |
return {'last_batch_iteration': self.last_batch_iteration} | |
def load_state_dict(self, sd): | |
self.last_batch_iteration = sd['last_batch_iteration'] | |
class OneCycle(object): | |
"""Sets the learning rate of each parameter group according to | |
1Cycle learning rate policy (1CLR). 1CLR is a variation of the | |
Cyclical Learning Rate (CLR) policy that involves one cycle followed by | |
decay. The policy simultaneously cycles the learning rate (and momentum) | |
between two boundaries with a constant frequency, as detailed in | |
the paper `A disciplined approach to neural network hyper-parameters`_. | |
1CLR policy changes the learning rate after every batch. | |
`step` should be called after a batch has been used for training. | |
This implementation was adapted from the github repo: `pytorch/pytorch`_ | |
Args: | |
optimizer (Optimizer): Wrapped optimizer. | |
cycle_min_lr (float or list): Initial learning rate which is the | |
lower boundary in the cycle for each parameter group. | |
cycle_max_lr (float or list): Upper learning rate boundaries in the cycle | |
for each parameter group. Functionally, | |
it defines the cycle amplitude (cycle_max_lr - cycle_min_lr). | |
The lr at any cycle is the sum of cycle_min_lr | |
and some scaling of the amplitude; therefore | |
cycle_max_lr may not actually be reached depending on | |
scaling function. | |
decay_lr_rate(float): Decay rate for learning rate. Default: 0. | |
cycle_first_step_size (int): Number of training iterations in the | |
increasing half of a cycle. Default: 2000 | |
cycle_second_step_size (int): Number of training iterations in the | |
decreasing half of a cycle. If cycle_second_step_size is None, | |
it is set to cycle_first_step_size. Default: None | |
cycle_first_stair_count(int): Number of stairs in first half of cycle phase. This means | |
lr/mom are changed in staircase fashion. Default 0, means staircase disabled. | |
cycle_second_stair_count(int): Number of stairs in second half of cycle phase. This means | |
lr/mom are changed in staircase fashion. Default 0, means staircase disabled. | |
decay_step_size (int): Intervals for applying decay in decay phase. Default: 0, means no decay. | |
cycle_momentum (bool): If ``True``, momentum is cycled inversely | |
to learning rate between 'cycle_min_mom' and 'cycle_max_mom'. | |
Default: True | |
cycle_min_mom (float or list): Initial momentum which is the | |
lower boundary in the cycle for each parameter group. | |
Default: 0.8 | |
cycle_max_mom (float or list): Upper momentum boundaries in the cycle | |
for each parameter group. Functionally, | |
it defines the cycle amplitude (cycle_max_mom - cycle_min_mom). | |
The momentum at any cycle is the difference of cycle_max_mom | |
and some scaling of the amplitude; therefore | |
cycle_min_mom may not actually be reached depending on | |
scaling function. Default: 0.9 | |
decay_mom_rate (float): Decay rate for momentum. Default: 0. | |
last_batch_iteration (int): The index of the last batch. This parameter is used when | |
resuming a training job. Since `step()` should be invoked after each | |
batch instead of after each epoch, this number represents the total | |
number of *batches* computed, not the total number of epochs computed. | |
When last_batch_iteration=-1, the schedule is started from the beginning. | |
Default: -1 | |
Example: | |
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) | |
>>> scheduler = OneCycle(optimizer, 0.0001, 0.0010) | |
>>> data_loader = torch.utils.data.DataLoader(...) | |
>>> for epoch in range(10): | |
>>> for batch in data_loader: | |
>>> train_batch(...) | |
>>> scheduler.step() | |
.. _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: https://arxiv.org/abs/1803.09820 | |
""" | |
def __init__(self, | |
optimizer, | |
cycle_min_lr, | |
cycle_max_lr, | |
decay_lr_rate=0., | |
cycle_first_step_size=2000, | |
cycle_second_step_size=None, | |
cycle_first_stair_count=0, | |
cycle_second_stair_count=None, | |
decay_step_size=0, | |
cycle_momentum=True, | |
cycle_min_mom=0.8, | |
cycle_max_mom=0.9, | |
decay_mom_rate=0., | |
last_batch_iteration=-1): | |
self.optimizer = get_torch_optimizer(optimizer) | |
# Initialize cycle shape | |
self._initialize_cycle(cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count, | |
cycle_second_stair_count, decay_step_size) | |
# Initialize cycle lr | |
self._initialize_lr(self.optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration) | |
# Initialize cyclic momentum | |
self.cycle_momentum = cycle_momentum | |
if cycle_momentum: | |
self._initialize_momentum(self.optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, | |
last_batch_iteration) | |
# Initialize batch iteration tracker | |
self.last_batch_iteration = last_batch_iteration | |
# Configure cycle shape | |
def _initialize_cycle(self, cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count, | |
cycle_second_stair_count, decay_step_size): | |
cycle_first_step_size = float(cycle_first_step_size) | |
cycle_second_step_size = float( | |
cycle_second_step_size) if cycle_second_step_size is not None else cycle_first_step_size | |
self.total_size = cycle_first_step_size + cycle_second_step_size | |
self.step_ratio = cycle_first_step_size / self.total_size | |
self.first_stair_count = cycle_first_stair_count | |
self.second_stair_count = cycle_first_stair_count if cycle_second_stair_count is None else cycle_second_stair_count | |
self.decay_step_size = decay_step_size | |
if math.isclose(self.decay_step_size, 0): | |
self.skip_lr_decay = True | |
self.skip_mom_decay = True | |
else: | |
self.skip_lr_decay = False | |
self.skip_mom_decay = False | |
# Configure lr schedule | |
def _initialize_lr(self, optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration): | |
self.min_lrs = [cycle_min_lr] * len(optimizer.param_groups) | |
if last_batch_iteration == -1: | |
for lr, group in zip(self.min_lrs, optimizer.param_groups): | |
group['lr'] = lr | |
self.max_lrs = [cycle_max_lr] * len(optimizer.param_groups) | |
self.decay_lr_rate = decay_lr_rate | |
if math.isclose(self.decay_lr_rate, 0): | |
self.skip_lr_decay = True | |
# Configure momentum schedule | |
def _initialize_momentum(self, optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, last_batch_iteration): | |
if 'betas' not in optimizer.defaults: | |
optimizer_name = type(optimizer).__name__ | |
logger.warn( | |
f"cycle_momentum is disabled because optimizer {optimizer_name} does not support momentum, no betas attribute in defaults" | |
) | |
self.cycle_momentum = False | |
return | |
self.decay_mom_rate = decay_mom_rate | |
self.min_moms = [(cycle_min_mom, 0.99)] * len(optimizer.param_groups) | |
self.max_moms = [(cycle_max_mom, 0.99)] * len(optimizer.param_groups) | |
if last_batch_iteration == -1: | |
for momentum, group in zip(self.min_moms, optimizer.param_groups): | |
group['betas'] = momentum | |
if math.isclose(self.decay_mom_rate, 0): | |
self.skip_mom_decay = True | |
def _get_scale_factor(self): | |
batch_iteration = (self.last_batch_iteration + 1) | |
cycle = math.floor(1 + batch_iteration / self.total_size) | |
x = 1. + batch_iteration / self.total_size - cycle | |
if x <= self.step_ratio: | |
scale_factor = x / self.step_ratio | |
else: | |
scale_factor = (x - 1) / (self.step_ratio - 1) | |
return scale_factor | |
def _get_cycle_mom(self): | |
scale_factor = self._get_scale_factor() | |
momentums = [] | |
for base_betas, max_betas in zip(self.min_moms, self.max_moms): | |
cycle_min_mom = base_betas[0] | |
cycle_max_mom = max_betas[0] | |
base_height = (cycle_max_mom - cycle_min_mom) * scale_factor | |
momentum = cycle_max_mom - base_height | |
momentums.append((momentum, base_betas[1])) | |
return momentums | |
def _get_cycle_lr(self): | |
scale_factor = self._get_scale_factor() | |
lrs = [] | |
for cycle_min_lr, cycle_max_lr in zip(self.min_lrs, self.max_lrs): | |
base_height = (cycle_max_lr - cycle_min_lr) * scale_factor | |
lr = cycle_min_lr + base_height | |
lrs.append(lr) | |
return lrs | |
def _get_decay_mom(self, decay_batch_iteration): | |
if self.skip_mom_decay: | |
return self.max_moms | |
decay_interval = decay_batch_iteration / self.decay_step_size | |
mom_decay_factor = (1 + self.decay_mom_rate * decay_interval) | |
momentums = [(beta0 * mom_decay_factor, beta1) for beta0, beta1 in self.max_moms] | |
return momentums | |
def _get_decay_lr(self, decay_batch_iteration): | |
"""Calculates the learning rate at batch index. This function is used | |
after the cycle completes and post cycle decaying of lr/mom is enabled. | |
This function treats `self.last_batch_iteration` as the last batch index. | |
""" | |
if self.skip_lr_decay: | |
return self.min_lrs | |
decay_interval = decay_batch_iteration / self.decay_step_size | |
lr_decay_factor = (1 + self.decay_lr_rate * decay_interval) | |
lrs = [cycle_min_lr / lr_decay_factor for cycle_min_lr in self.min_lrs] | |
return lrs | |
def get_lr(self): | |
"""Calculates the learning rate at batch index. This function treats | |
`self.last_batch_iteration` as the last batch index. | |
""" | |
if self.last_batch_iteration < self.total_size: | |
return self._get_cycle_lr() | |
return self._get_decay_lr(self.last_batch_iteration - self.total_size + 1) | |
def get_mom(self): | |
"""Calculates the momentum at batch index. This function treats | |
`self.last_batch_iteration` as the last batch index. | |
""" | |
if not self.cycle_momentum: | |
return None | |
if self.last_batch_iteration < self.total_size: | |
return self._get_cycle_mom() | |
return self._get_decay_mom(self.last_batch_iteration - self.total_size + 1) | |
def get_last_lr(self): | |
""" Return last computed learning rate by current scheduler. | |
""" | |
assert getattr(self, '_last_lr', None) is not None, "need to call step() first" | |
return self._last_lr | |
def step(self, batch_iteration=None): | |
""" Updates the optimizer with the learning rate for the last batch index. | |
`self.last_batch_iteration` is treated as the last batch index. | |
If self.cycle_momentum is true, also updates optimizer momentum. | |
""" | |
if batch_iteration is None: | |
batch_iteration = self.last_batch_iteration + 1 | |
self.last_batch_iteration = batch_iteration | |
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): | |
param_group['lr'] = lr | |
self._last_lr = [group['lr'] for group in self.optimizer.param_groups] | |
if self.cycle_momentum: | |
momentums = self.get_mom() | |
for param_group, momentum in zip(self.optimizer.param_groups, momentums): | |
param_group['betas'] = momentum | |
def state_dict(self): | |
return {'last_batch_iteration': self.last_batch_iteration} | |
def load_state_dict(self, sd): | |
self.last_batch_iteration = sd['last_batch_iteration'] | |
class WarmupLR(object): | |
"""Increase the learning rate of each parameter group from min lr to max lr | |
over warmup_num_steps steps, and then fix at max lr. | |
Args: | |
optimizer (Optimizer): Wrapped optimizer. | |
warmup_min_lr (float or list): minimum learning rate. Default: 0 | |
warmup_max_lr (float or list): maximum learning rate. Default: 0.001 | |
warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000 | |
warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log | |
last_batch_iteration (int): The index of the last batch. Default: -1. | |
Example: | |
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) | |
>>> scheduler = WarmupLR(optimizer) | |
>>> data_loader = torch.utils.data.DataLoader(...) | |
>>> for epoch in range(10): | |
>>> for batch in data_loader: | |
>>> train_batch(...) | |
>>> scheduler.step() | |
""" | |
def __init__(self, | |
optimizer: Optimizer, | |
warmup_min_lr: float = 0.0, | |
warmup_max_lr: float = 0.001, | |
warmup_num_steps: int = 1000, | |
warmup_type: str = WARMUP_LOG_RATE, | |
last_batch_iteration: int = -1): | |
self.optimizer = get_torch_optimizer(optimizer) | |
self.min_lrs = self._format_param(self.optimizer, warmup_min_lr, "min_lr") | |
self.max_lrs = self._format_param(self.optimizer, warmup_max_lr, "max_lr") | |
self.delta_lrs = [big - small for big, small in zip(self.max_lrs, self.min_lrs)] | |
self.warmup_num_steps = max(2, warmup_num_steps) | |
# Currently only support linear and log function | |
if warmup_type not in {WARMUP_LOG_RATE, WARMUP_LINEAR_RATE}: | |
logger.warning(f"Using unknown warmup_type: {warmup_type}. The increasing function " | |
f"is set to default (log)") | |
warmup_type = WARMUP_LOG_RATE | |
self.warmup_type = warmup_type | |
self.inverse_log_warm_up = 1.0 / math.log(self.warmup_num_steps) | |
self.last_batch_iteration = last_batch_iteration | |
def get_lr(self): | |
if self.last_batch_iteration < 0: | |
logger.warning("Attempting to get learning rate from scheduler before it has started") | |
return [0.0] | |
gamma = self._get_gamma() | |
return [min_lr + (delta_lr * gamma) for min_lr, delta_lr in zip(self.min_lrs, self.delta_lrs)] | |
def get_last_lr(self): | |
""" Return last computed learning rate by current scheduler. | |
""" | |
assert getattr(self, '_last_lr', None) is not None, "need to call step() first" | |
return self._last_lr | |
def step(self, last_batch_iteration=None): | |
if last_batch_iteration is None: | |
last_batch_iteration = self.last_batch_iteration + 1 | |
self.last_batch_iteration = last_batch_iteration | |
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): | |
param_group['lr'] = lr | |
self._last_lr = [group['lr'] for group in self.optimizer.param_groups] | |
def state_dict(self): | |
return {'last_batch_iteration': self.last_batch_iteration} | |
def load_state_dict(self, sd): | |
self.last_batch_iteration = sd['last_batch_iteration'] | |
def _get_gamma(self): | |
if self.last_batch_iteration < self.warmup_num_steps: | |
if self.warmup_type == WARMUP_LOG_RATE: | |
return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) | |
elif self.warmup_type == WARMUP_LINEAR_RATE: | |
return self.last_batch_iteration / self.warmup_num_steps | |
return 1.0 | |
def _format_param(self, optimizer, param_value, param_name): | |
if isinstance(param_value, list) or isinstance(param_value, tuple): | |
if len(param_value) != len(optimizer.param_groups): | |
raise ValueError("expected {} value for {}, got {}".format(len(optimizer.param_groups), param_name, | |
FileNotFoundError(param_value))) | |
return list(param_value) | |
return [param_value] * len(optimizer.param_groups) | |
class WarmupDecayLR(WarmupLR): | |
"""Increase the learning rate of each parameter group from min lr to max lr | |
over warmup_num_steps steps, and then decay at linear rate over the remaining training steps. | |
Args: | |
optimizer (Optimizer): Wrapped optimizer. | |
total_num_steps (int): total number of training steps | |
warmup_min_lr (float or list): minimum learning rate. Default: 0 | |
warmup_max_lr (float or list): maximum learning rate. Default: 0.001 | |
warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000 | |
warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log | |
last_batch_iteration (int): The index of the last batch. Default: -1. | |
Example: | |
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) | |
>>> scheduler = WarmupDecayLR(optimizer, 1000000) | |
>>> data_loader = torch.utils.data.DataLoader(...) | |
>>> for epoch in range(10): | |
>>> for batch in data_loader: | |
>>> train_batch(...) | |
>>> scheduler.step() | |
""" | |
def __init__(self, | |
optimizer: Optimizer, | |
total_num_steps: int, | |
warmup_min_lr: float = 0.0, | |
warmup_max_lr: float = 0.001, | |
warmup_num_steps: int = 1000, | |
warmup_type: str = WARMUP_LOG_RATE, | |
last_batch_iteration: int = -1): | |
self.total_num_steps = total_num_steps | |
super(WarmupDecayLR, self).__init__(optimizer, warmup_min_lr, warmup_max_lr, warmup_num_steps, warmup_type, | |
last_batch_iteration) | |
if self.total_num_steps < self.warmup_num_steps: | |
logger.warning('total_num_steps {} is less than warmup_num_steps {}'.format( | |
total_num_steps, warmup_num_steps)) | |
def _get_gamma(self): | |
if self.last_batch_iteration < self.warmup_num_steps: | |
if self.warmup_type == WARMUP_LOG_RATE: | |
return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) | |
elif self.warmup_type == WARMUP_LINEAR_RATE: | |
return self.last_batch_iteration / self.warmup_num_steps | |
return max( | |
0.0, | |
float(self.total_num_steps - self.last_batch_iteration) / | |
float(max(1.0, self.total_num_steps - self.warmup_num_steps))) | |
class WarmupCosineLR(object): | |
"""Increase the learning rate of each parameter group from min lr ratio to max lr ratio | |
over warmup_num_steps steps, and then decay at cosine rate over the remaining training steps to min cosine ratio. | |
Args: | |
optimizer (Optimizer): Wrapped optimizer. | |
total_num_steps (int): total number of training steps | |
warmup_min_ratio (float or list): warmup start learning rate ratio. Default: 0 | |
warmup_num_steps (int): number of steps to warm up from warmup_min_ratio to 1.0. Default: 1000 | |
warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log | |
cos_min_ratio (float): cosine end learning rate ratio. Default: 0.0001 | |
last_batch_iteration (int): The index of the last batch. Default: -1. | |
Example: | |
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) | |
>>> scheduler = WarmupCosineLR(optimizer, 1000000) | |
>>> data_loader = torch.utils.data.DataLoader(...) | |
>>> for epoch in range(10): | |
>>> for batch in data_loader: | |
>>> train_batch(...) | |
>>> scheduler.step() | |
""" | |
def __init__(self, | |
optimizer: Optimizer, | |
total_num_steps: int, | |
warmup_min_ratio: float = 0.0, | |
warmup_num_steps: int = 1000, | |
cos_min_ratio: float = 0.0001, | |
warmup_type: str = WARMUP_LOG_RATE, | |
last_batch_iteration: int = -1): | |
self.optimizer = get_torch_optimizer(optimizer) | |
self.total_num_steps = total_num_steps | |
self.last_batch_iteration = last_batch_iteration | |
self.cos_min_ratio = cos_min_ratio | |
self.warmup_type = warmup_type | |
self.warmup_min_ratio = warmup_min_ratio | |
self.warmup_num_steps = max(2, warmup_num_steps) | |
self.inverse_log_warm_up = 1.0 / math.log(self.warmup_num_steps) | |
if self.total_num_steps < self.warmup_num_steps: | |
logger.warning('total_num_steps {} is less than warmup_num_steps {}'.format( | |
total_num_steps, warmup_num_steps)) | |
self.org_lrs = [group['lr'] for group in self.optimizer.param_groups] | |
def get_lr_ratio(self): | |
if self.last_batch_iteration < 0: | |
logger.warning("Attempting to get learning rate from scheduler before it has started") | |
return [0.0] | |
if self.last_batch_iteration < self.warmup_num_steps: | |
if self.warmup_type == WARMUP_LOG_RATE: | |
ratio = self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) | |
elif self.warmup_type == WARMUP_LINEAR_RATE: | |
ratio = self.last_batch_iteration / self.warmup_num_steps | |
ratio_delta = 1. - self.warmup_min_ratio | |
ratio = self.warmup_min_ratio + ratio * ratio_delta | |
return ratio | |
real_last_step = self.last_batch_iteration - self.warmup_num_steps + 1 | |
real_total_steps = self.total_num_steps - self.warmup_num_steps | |
ratio_delta = 1. - self.cos_min_ratio | |
ratio = (1 + math.cos(math.pi * real_last_step / real_total_steps)) / 2 | |
ratio = max(0.0, self.cos_min_ratio + ratio_delta * ratio) | |
return ratio | |
def step(self, last_batch_iteration=None): | |
if last_batch_iteration is None: | |
last_batch_iteration = self.last_batch_iteration + 1 | |
self.last_batch_iteration = last_batch_iteration | |
lrs = self.get_lr() | |
for param_group, lr in zip(self.optimizer.param_groups, lrs): | |
param_group['lr'] = lr | |
self._last_lr = [group['lr'] for group in self.optimizer.param_groups] | |
def get_lr(self): | |
if self.last_batch_iteration < 0: | |
logger.warning("Attempting to get learning rate from scheduler before it has started") | |
return [0.0] | |
lr_ratio = self.get_lr_ratio() | |
return [org_lr * lr_ratio for org_lr in self.org_lrs] | |
def get_last_lr(self): | |
""" Return last computed learning rate by current scheduler. | |
""" | |
assert getattr(self, '_last_lr', None) is not None, "need to call step() first" | |
return self._last_lr | |
def state_dict(self): | |
return {'last_batch_iteration': self.last_batch_iteration} | |
def load_state_dict(self, sd): | |
self.last_batch_iteration = sd['last_batch_iteration'] | |
def _format_param(self, optimizer, param_value, param_name): | |
if isinstance(param_value, list) or isinstance(param_value, tuple): | |
if len(param_value) != len(optimizer.param_groups): | |
raise ValueError("expected {} value for {}, got {}".format(len(optimizer.param_groups), param_name, | |
FileNotFoundError(param_value))) | |
return list(param_value) | |
return [param_value] * len(optimizer.param_groups) | |