peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/weight_quantizer.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from ..module_inject.replace_policy import HFBertLayerPolicy, replace_policies | |
from deepspeed.accelerator import get_accelerator | |
class WeightQuantization(object): | |
def __init__(self, mlp_extra_grouping=True, mp_size=1): | |
self.dense_scales = [] | |
self.qkv_scales = [] | |
self.mlp4hh_scales = [] | |
self.mlph4h_scales = [] | |
self.mlp_extra_grouping = mlp_extra_grouping | |
self.mp_size = mp_size | |
def quantize_data(self, data, quantize_bits, groups, key=None): | |
data_groups = torch.split(data.float().view(-1), data.numel() // groups) | |
max_d = [max(g.max(), g.min().abs()) for g in data_groups] | |
data_scale = [float(1 << quantize_bits) / (2 * mx + 1e-5) for mx in max_d] | |
data_int = [(g * s) for g, s in zip(data_groups, data_scale)] | |
data_int = [ | |
di.round().clamp(-(1 << (quantize_bits - 1)), (((1 << (quantize_bits - 1)) - 1))) for di in data_int | |
] | |
data_int = torch.cat(data_int).reshape(data.shape) | |
data_int = data_int.to(torch.int8) | |
data_scale = torch.cat([s.unsqueeze(0).unsqueeze(0) for s in data_scale]) | |
return data_int, data_scale | |
def is_mlp(self, data, merge_count=1): | |
return ((self.mp_size *data.shape[0] * merge_count) / data.shape[1] == 4 or \ | |
(self.mp_size *data.shape[1] * merge_count) / data.shape[0] == 4) | |
def is_qkv(self, data): | |
return ((self.mp_size * data.shape[0]) / data.shape[1] == 3 or \ | |
(self.mp_size * data.shape[1]) / data.shape[0] == 3) | |
def Quantize(self, value_list, quantize_bits, groups, key, merge_dim=0): | |
if self.mlp_extra_grouping and self.is_mlp(value_list[0], merge_count=len(value_list)): | |
groups *= 2 | |
q_scale = [] | |
index = 0 | |
for data in value_list: | |
data_int, data_scale = self.quantize_data(data, quantize_bits, groups, key) | |
q_scale.append(data_scale) | |
value_list[index] = data_int | |
index += 1 | |
q_scale = (1 / | |
torch.cat(q_scale, dim=merge_dim).to(get_accelerator().current_device_name()).view(-1).unsqueeze(0)) | |
if "mlp.dense_4h_to_h.weight" in key: | |
self.mlp4hh_scales.append(q_scale) | |
elif "mlp.dense_h_to_4h.weight" in key: | |
self.mlph4h_scales.append(q_scale) | |
elif "attention.query_key_value.weight" in key: | |
self.qkv_scales.append(q_scale) | |
else: | |
self.dense_scales.append(q_scale) | |
return value_list | |
def merge_layer_scales(self, layer_scales): | |
max_dim = max([s.shape[-1] for s in layer_scales]) | |
layer_scales = [ | |
torch.cat((s, torch.zeros((1, max_dim - s.shape[-1]), device=get_accelerator().current_device_name())), | |
dim=-1) if s.shape[-1] < max_dim else s for s in layer_scales | |
] | |
return torch.cat(layer_scales).unsqueeze(0) | |
def merge_scales(self): | |
all_scales = [] | |
for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \ | |
zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales): | |
all_scales.append(self.merge_layer_scales([qkv_scale, dense_scale, mh4h_scale, m4hh_scale])) | |
return torch.cat(all_scales) | |
def merge_scales_split(self, split_count): | |
all_scales = [[] for _ in range(split_count)] | |
for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \ | |
zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales): | |
dense_scale = torch.split(dense_scale, dense_scale.numel() // split_count) | |
qkv_scale = torch.split(qkv_scale, qkv_scale.numel() // split_count) | |
m4hh_scale = torch.split(m4hh_scale, m4hh_scale.numel() // split_count) | |
mh4h_scale = torch.split(mh4h_scale, mh4h_scale.numel() // split_count) | |
for s in range(split_count): | |
all_scales[s].append( | |
torch.cat([ | |
torch.cat((qkv_scale[s], torch.zeros_like(qkv_scale[s])), dim=1), | |
torch.cat((dense_scale[s], torch.zeros_like(dense_scale[s])), dim=1), mh4h_scale[s], | |
m4hh_scale[s] | |
]).unsqueeze(0)) | |
for scales_a in all_scales: | |
torch.cat(scales_a) | |
return all_scales | |
def sd_quantize_megatron(self, sd, quantize_bits, groups): | |
keys = sd.keys() | |
for key in keys: | |
value_list = [sd[key]] | |
if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key or \ | |
"mlp.dense_h_to_4h.weight" in key or "attention.query_key_value.weight" in key: | |
value_list = self.Quantize(value_list, quantize_bits, groups, key=key) | |
sd[key] = value_list[0] | |
all_scales = self.merge_scales() | |
return sd, all_scales | |
def model_quantize(self, model, quantize_policy, quantize_bits, groups): | |
all_scales = [] | |
def quantize_fn(layer, policy_cls): | |
policy = policy_cls(layer) | |
_, qkvw, _, dense_w, _, _ = policy.attention() | |
_, _h4h_w, _, _4hh_w, _ = policy.mlp() | |
keys = [qkvw, dense_w, _h4h_w, _4hh_w] | |
layer_scales = [] | |
for key in range(len(keys)): | |
if self.mlp_extra_grouping and self.is_mlp(keys[key]): | |
data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 2) | |
elif policy_cls is HFBertLayerPolicy and self.is_qkv(keys[key]): | |
data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 3) | |
else: | |
data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups) | |
keys[key].copy_(data_quantized) | |
layer_scales.append((1 / data_scale.to(get_accelerator().current_device_name()).view(-1).unsqueeze(0))) | |
all_scales.append(self.merge_layer_scales(layer_scales)) | |
return layer | |
def _quantize_module(model, policies): | |
for name, child in model.named_children(): | |
if child.__class__ in policies: | |
quantize_fn, replace_policy = policies[child.__class__] | |
setattr(model, name, quantize_fn(child, replace_policy)) | |
else: | |
_quantize_module(child, policies) | |
return model | |
policy = {} | |
if quantize_policy is not None: | |
for layer_name, replace_policy in quantize_policy.items(): | |
policy.update({layer_name: (quantize_fn, replace_policy)}) | |
else: | |
for plcy in replace_policies: | |
policy.update({plcy._orig_layer_class: (quantize_fn, plcy)}) | |
quantized_module = _quantize_module(model, policy) | |
return quantized_module, torch.cat(all_scales) | |