peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/tests
/test_regression.py
from itertools import product | |
import numpy as np | |
import pytest | |
from numpy.testing import assert_allclose | |
from scipy import optimize | |
from scipy.special import factorial, xlogy | |
from sklearn.dummy import DummyRegressor | |
from sklearn.exceptions import UndefinedMetricWarning | |
from sklearn.metrics import ( | |
d2_absolute_error_score, | |
d2_pinball_score, | |
d2_tweedie_score, | |
explained_variance_score, | |
make_scorer, | |
max_error, | |
mean_absolute_error, | |
mean_absolute_percentage_error, | |
mean_pinball_loss, | |
mean_squared_error, | |
mean_squared_log_error, | |
mean_tweedie_deviance, | |
median_absolute_error, | |
r2_score, | |
root_mean_squared_error, | |
root_mean_squared_log_error, | |
) | |
from sklearn.metrics._regression import _check_reg_targets | |
from sklearn.model_selection import GridSearchCV | |
from sklearn.utils._testing import ( | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
def test_regression_metrics(n_samples=50): | |
y_true = np.arange(n_samples) | |
y_pred = y_true + 1 | |
y_pred_2 = y_true - 1 | |
assert_almost_equal(mean_squared_error(y_true, y_pred), 1.0) | |
assert_almost_equal( | |
mean_squared_log_error(y_true, y_pred), | |
mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred)), | |
) | |
assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.0) | |
assert_almost_equal(mean_pinball_loss(y_true, y_pred), 0.5) | |
assert_almost_equal(mean_pinball_loss(y_true, y_pred_2), 0.5) | |
assert_almost_equal(mean_pinball_loss(y_true, y_pred, alpha=0.4), 0.6) | |
assert_almost_equal(mean_pinball_loss(y_true, y_pred_2, alpha=0.4), 0.4) | |
assert_almost_equal(median_absolute_error(y_true, y_pred), 1.0) | |
mape = mean_absolute_percentage_error(y_true, y_pred) | |
assert np.isfinite(mape) | |
assert mape > 1e6 | |
assert_almost_equal(max_error(y_true, y_pred), 1.0) | |
assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) | |
assert_almost_equal(r2_score(y_true, y_pred, force_finite=False), 0.995, 2) | |
assert_almost_equal(explained_variance_score(y_true, y_pred), 1.0) | |
assert_almost_equal( | |
explained_variance_score(y_true, y_pred, force_finite=False), 1.0 | |
) | |
assert_almost_equal( | |
mean_tweedie_deviance(y_true, y_pred, power=0), | |
mean_squared_error(y_true, y_pred), | |
) | |
assert_almost_equal( | |
d2_tweedie_score(y_true, y_pred, power=0), r2_score(y_true, y_pred) | |
) | |
dev_median = np.abs(y_true - np.median(y_true)).sum() | |
assert_array_almost_equal( | |
d2_absolute_error_score(y_true, y_pred), | |
1 - np.abs(y_true - y_pred).sum() / dev_median, | |
) | |
alpha = 0.2 | |
pinball_loss = lambda y_true, y_pred, alpha: alpha * np.maximum( | |
y_true - y_pred, 0 | |
) + (1 - alpha) * np.maximum(y_pred - y_true, 0) | |
y_quantile = np.percentile(y_true, q=alpha * 100) | |
assert_almost_equal( | |
d2_pinball_score(y_true, y_pred, alpha=alpha), | |
1 | |
- pinball_loss(y_true, y_pred, alpha).sum() | |
/ pinball_loss(y_true, y_quantile, alpha).sum(), | |
) | |
assert_almost_equal( | |
d2_absolute_error_score(y_true, y_pred), | |
d2_pinball_score(y_true, y_pred, alpha=0.5), | |
) | |
# Tweedie deviance needs positive y_pred, except for p=0, | |
# p>=2 needs positive y_true | |
# results evaluated by sympy | |
y_true = np.arange(1, 1 + n_samples) | |
y_pred = 2 * y_true | |
n = n_samples | |
assert_almost_equal( | |
mean_tweedie_deviance(y_true, y_pred, power=-1), | |
5 / 12 * n * (n**2 + 2 * n + 1), | |
) | |
assert_almost_equal( | |
mean_tweedie_deviance(y_true, y_pred, power=1), (n + 1) * (1 - np.log(2)) | |
) | |
assert_almost_equal( | |
mean_tweedie_deviance(y_true, y_pred, power=2), 2 * np.log(2) - 1 | |
) | |
assert_almost_equal( | |
mean_tweedie_deviance(y_true, y_pred, power=3 / 2), | |
((6 * np.sqrt(2) - 8) / n) * np.sqrt(y_true).sum(), | |
) | |
assert_almost_equal( | |
mean_tweedie_deviance(y_true, y_pred, power=3), np.sum(1 / y_true) / (4 * n) | |
) | |
dev_mean = 2 * np.mean(xlogy(y_true, 2 * y_true / (n + 1))) | |
assert_almost_equal( | |
d2_tweedie_score(y_true, y_pred, power=1), | |
1 - (n + 1) * (1 - np.log(2)) / dev_mean, | |
) | |
dev_mean = 2 * np.log((n + 1) / 2) - 2 / n * np.log(factorial(n)) | |
assert_almost_equal( | |
d2_tweedie_score(y_true, y_pred, power=2), 1 - (2 * np.log(2) - 1) / dev_mean | |
) | |
def test_root_mean_squared_error_multioutput_raw_value(): | |
# non-regression test for | |
# https://github.com/scikit-learn/scikit-learn/pull/16323 | |
mse = mean_squared_error([[1]], [[10]], multioutput="raw_values") | |
rmse = root_mean_squared_error([[1]], [[10]], multioutput="raw_values") | |
assert np.sqrt(mse) == pytest.approx(rmse) | |
def test_multioutput_regression(): | |
y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) | |
y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) | |
error = mean_squared_error(y_true, y_pred) | |
assert_almost_equal(error, (1.0 / 3 + 2.0 / 3 + 2.0 / 3) / 4.0) | |
error = root_mean_squared_error(y_true, y_pred) | |
assert_almost_equal(error, 0.454, decimal=2) | |
error = mean_squared_log_error(y_true, y_pred) | |
assert_almost_equal(error, 0.200, decimal=2) | |
error = root_mean_squared_log_error(y_true, y_pred) | |
assert_almost_equal(error, 0.315, decimal=2) | |
# mean_absolute_error and mean_squared_error are equal because | |
# it is a binary problem. | |
error = mean_absolute_error(y_true, y_pred) | |
assert_almost_equal(error, (1.0 + 2.0 / 3) / 4.0) | |
error = mean_pinball_loss(y_true, y_pred) | |
assert_almost_equal(error, (1.0 + 2.0 / 3) / 8.0) | |
error = np.around(mean_absolute_percentage_error(y_true, y_pred), decimals=2) | |
assert np.isfinite(error) | |
assert error > 1e6 | |
error = median_absolute_error(y_true, y_pred) | |
assert_almost_equal(error, (1.0 + 1.0) / 4.0) | |
error = r2_score(y_true, y_pred, multioutput="variance_weighted") | |
assert_almost_equal(error, 1.0 - 5.0 / 2) | |
error = r2_score(y_true, y_pred, multioutput="uniform_average") | |
assert_almost_equal(error, -0.875) | |
score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values") | |
raw_expected_score = [ | |
1 | |
- np.abs(y_true[:, i] - y_pred[:, i]).sum() | |
/ np.abs(y_true[:, i] - np.median(y_true[:, i])).sum() | |
for i in range(y_true.shape[1]) | |
] | |
# in the last case, the denominator vanishes and hence we get nan, | |
# but since the numerator vanishes as well the expected score is 1.0 | |
raw_expected_score = np.where(np.isnan(raw_expected_score), 1, raw_expected_score) | |
assert_array_almost_equal(score, raw_expected_score) | |
score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="uniform_average") | |
assert_almost_equal(score, raw_expected_score.mean()) | |
# constant `y_true` with force_finite=True leads to 1. or 0. | |
yc = [5.0, 5.0] | |
error = r2_score(yc, [5.0, 5.0], multioutput="variance_weighted") | |
assert_almost_equal(error, 1.0) | |
error = r2_score(yc, [5.0, 5.1], multioutput="variance_weighted") | |
assert_almost_equal(error, 0.0) | |
# Setting force_finite=False results in the nan for 4th output propagating | |
error = r2_score( | |
y_true, y_pred, multioutput="variance_weighted", force_finite=False | |
) | |
assert_almost_equal(error, np.nan) | |
error = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False) | |
assert_almost_equal(error, np.nan) | |
# Dropping the 4th output to check `force_finite=False` for nominal | |
y_true = y_true[:, :-1] | |
y_pred = y_pred[:, :-1] | |
error = r2_score(y_true, y_pred, multioutput="variance_weighted") | |
error2 = r2_score( | |
y_true, y_pred, multioutput="variance_weighted", force_finite=False | |
) | |
assert_almost_equal(error, error2) | |
error = r2_score(y_true, y_pred, multioutput="uniform_average") | |
error2 = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False) | |
assert_almost_equal(error, error2) | |
# constant `y_true` with force_finite=False leads to NaN or -Inf. | |
error = r2_score( | |
yc, [5.0, 5.0], multioutput="variance_weighted", force_finite=False | |
) | |
assert_almost_equal(error, np.nan) | |
error = r2_score( | |
yc, [5.0, 6.0], multioutput="variance_weighted", force_finite=False | |
) | |
assert_almost_equal(error, -np.inf) | |
def test_regression_metrics_at_limits(): | |
# Single-sample case | |
# Note: for r2 and d2_tweedie see also test_regression_single_sample | |
assert_almost_equal(mean_squared_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(root_mean_squared_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(mean_squared_log_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(mean_absolute_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(mean_pinball_loss([0.0], [0.0]), 0.0) | |
assert_almost_equal(mean_absolute_percentage_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(median_absolute_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(max_error([0.0], [0.0]), 0.0) | |
assert_almost_equal(explained_variance_score([0.0], [0.0]), 1.0) | |
# Perfect cases | |
assert_almost_equal(r2_score([0.0, 1], [0.0, 1]), 1.0) | |
assert_almost_equal(d2_pinball_score([0.0, 1], [0.0, 1]), 1.0) | |
# Non-finite cases | |
# R² and explained variance have a fix by default for non-finite cases | |
for s in (r2_score, explained_variance_score): | |
assert_almost_equal(s([0, 0], [1, -1]), 0.0) | |
assert_almost_equal(s([0, 0], [1, -1], force_finite=False), -np.inf) | |
assert_almost_equal(s([1, 1], [1, 1]), 1.0) | |
assert_almost_equal(s([1, 1], [1, 1], force_finite=False), np.nan) | |
msg = ( | |
"Mean Squared Logarithmic Error cannot be used when targets " | |
"contain negative values." | |
) | |
with pytest.raises(ValueError, match=msg): | |
mean_squared_log_error([-1.0], [-1.0]) | |
msg = ( | |
"Mean Squared Logarithmic Error cannot be used when targets " | |
"contain negative values." | |
) | |
with pytest.raises(ValueError, match=msg): | |
mean_squared_log_error([1.0, 2.0, 3.0], [1.0, -2.0, 3.0]) | |
msg = ( | |
"Mean Squared Logarithmic Error cannot be used when targets " | |
"contain negative values." | |
) | |
with pytest.raises(ValueError, match=msg): | |
mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0]) | |
msg = ( | |
"Root Mean Squared Logarithmic Error cannot be used when targets " | |
"contain negative values." | |
) | |
with pytest.raises(ValueError, match=msg): | |
root_mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0]) | |
# Tweedie deviance error | |
power = -1.2 | |
assert_allclose( | |
mean_tweedie_deviance([0], [1.0], power=power), 2 / (2 - power), rtol=1e-3 | |
) | |
msg = "can only be used on strictly positive y_pred." | |
with pytest.raises(ValueError, match=msg): | |
mean_tweedie_deviance([0.0], [0.0], power=power) | |
with pytest.raises(ValueError, match=msg): | |
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) | |
assert_almost_equal(mean_tweedie_deviance([0.0], [0.0], power=0), 0.0, 2) | |
power = 1.0 | |
msg = "only be used on non-negative y and strictly positive y_pred." | |
with pytest.raises(ValueError, match=msg): | |
mean_tweedie_deviance([0.0], [0.0], power=power) | |
with pytest.raises(ValueError, match=msg): | |
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) | |
power = 1.5 | |
assert_allclose(mean_tweedie_deviance([0.0], [1.0], power=power), 2 / (2 - power)) | |
msg = "only be used on non-negative y and strictly positive y_pred." | |
with pytest.raises(ValueError, match=msg): | |
mean_tweedie_deviance([0.0], [0.0], power=power) | |
with pytest.raises(ValueError, match=msg): | |
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) | |
power = 2.0 | |
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8) | |
msg = "can only be used on strictly positive y and y_pred." | |
with pytest.raises(ValueError, match=msg): | |
mean_tweedie_deviance([0.0], [0.0], power=power) | |
with pytest.raises(ValueError, match=msg): | |
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) | |
power = 3.0 | |
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8) | |
msg = "can only be used on strictly positive y and y_pred." | |
with pytest.raises(ValueError, match=msg): | |
mean_tweedie_deviance([0.0], [0.0], power=power) | |
with pytest.raises(ValueError, match=msg): | |
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) | |
def test__check_reg_targets(): | |
# All of length 3 | |
EXAMPLES = [ | |
("continuous", [1, 2, 3], 1), | |
("continuous", [[1], [2], [3]], 1), | |
("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), | |
("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), | |
("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), | |
] | |
for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): | |
if type1 == type2 and n_out1 == n_out2: | |
y_type, y_check1, y_check2, multioutput = _check_reg_targets(y1, y2, None) | |
assert type1 == y_type | |
if type1 == "continuous": | |
assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) | |
assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) | |
else: | |
assert_array_equal(y_check1, y1) | |
assert_array_equal(y_check2, y2) | |
else: | |
with pytest.raises(ValueError): | |
_check_reg_targets(y1, y2, None) | |
def test__check_reg_targets_exception(): | |
invalid_multioutput = "this_value_is_not_valid" | |
expected_message = ( | |
"Allowed 'multioutput' string values are.+You provided multioutput={!r}".format( | |
invalid_multioutput | |
) | |
) | |
with pytest.raises(ValueError, match=expected_message): | |
_check_reg_targets([1, 2, 3], [[1], [2], [3]], invalid_multioutput) | |
def test_regression_multioutput_array(): | |
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] | |
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] | |
mse = mean_squared_error(y_true, y_pred, multioutput="raw_values") | |
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values") | |
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values") | |
mape = mean_absolute_percentage_error(y_true, y_pred, multioutput="raw_values") | |
r = r2_score(y_true, y_pred, multioutput="raw_values") | |
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values") | |
d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values") | |
evs2 = explained_variance_score( | |
y_true, y_pred, multioutput="raw_values", force_finite=False | |
) | |
assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) | |
assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) | |
assert_array_almost_equal(pbl, [0.25 / 2, 0.625 / 2], decimal=2) | |
assert_array_almost_equal(mape, [0.0778, 0.2262], decimal=2) | |
assert_array_almost_equal(r, [0.95, 0.93], decimal=2) | |
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) | |
assert_array_almost_equal(d2ps, [0.833, 0.722], decimal=2) | |
assert_array_almost_equal(evs2, [0.95, 0.93], decimal=2) | |
# mean_absolute_error and mean_squared_error are equal because | |
# it is a binary problem. | |
y_true = [[0, 0]] * 4 | |
y_pred = [[1, 1]] * 4 | |
mse = mean_squared_error(y_true, y_pred, multioutput="raw_values") | |
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values") | |
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values") | |
r = r2_score(y_true, y_pred, multioutput="raw_values") | |
d2ps = d2_pinball_score(y_true, y_pred, multioutput="raw_values") | |
assert_array_almost_equal(mse, [1.0, 1.0], decimal=2) | |
assert_array_almost_equal(mae, [1.0, 1.0], decimal=2) | |
assert_array_almost_equal(pbl, [0.5, 0.5], decimal=2) | |
assert_array_almost_equal(r, [0.0, 0.0], decimal=2) | |
assert_array_almost_equal(d2ps, [0.0, 0.0], decimal=2) | |
r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values") | |
assert_array_almost_equal(r, [0, -3.5], decimal=2) | |
assert np.mean(r) == r2_score( | |
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="uniform_average" | |
) | |
evs = explained_variance_score( | |
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values" | |
) | |
assert_array_almost_equal(evs, [0, -1.25], decimal=2) | |
evs2 = explained_variance_score( | |
[[0, -1], [0, 1]], | |
[[2, 2], [1, 1]], | |
multioutput="raw_values", | |
force_finite=False, | |
) | |
assert_array_almost_equal(evs2, [-np.inf, -1.25], decimal=2) | |
# Checking for the condition in which both numerator and denominator is | |
# zero. | |
y_true = [[1, 3], [1, 2]] | |
y_pred = [[1, 4], [1, 1]] | |
r2 = r2_score(y_true, y_pred, multioutput="raw_values") | |
assert_array_almost_equal(r2, [1.0, -3.0], decimal=2) | |
assert np.mean(r2) == r2_score(y_true, y_pred, multioutput="uniform_average") | |
r22 = r2_score(y_true, y_pred, multioutput="raw_values", force_finite=False) | |
assert_array_almost_equal(r22, [np.nan, -3.0], decimal=2) | |
assert_almost_equal( | |
np.mean(r22), | |
r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False), | |
) | |
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values") | |
assert_array_almost_equal(evs, [1.0, -3.0], decimal=2) | |
assert np.mean(evs) == explained_variance_score(y_true, y_pred) | |
d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values") | |
assert_array_almost_equal(d2ps, [1.0, -1.0], decimal=2) | |
evs2 = explained_variance_score( | |
y_true, y_pred, multioutput="raw_values", force_finite=False | |
) | |
assert_array_almost_equal(evs2, [np.nan, -3.0], decimal=2) | |
assert_almost_equal( | |
np.mean(evs2), explained_variance_score(y_true, y_pred, force_finite=False) | |
) | |
# Handling msle separately as it does not accept negative inputs. | |
y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) | |
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) | |
msle = mean_squared_log_error(y_true, y_pred, multioutput="raw_values") | |
msle2 = mean_squared_error( | |
np.log(1 + y_true), np.log(1 + y_pred), multioutput="raw_values" | |
) | |
assert_array_almost_equal(msle, msle2, decimal=2) | |
def test_regression_custom_weights(): | |
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] | |
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] | |
msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) | |
rmsew = root_mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) | |
maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) | |
mapew = mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.4, 0.6]) | |
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) | |
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) | |
d2psw = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput=[0.4, 0.6]) | |
evsw2 = explained_variance_score( | |
y_true, y_pred, multioutput=[0.4, 0.6], force_finite=False | |
) | |
assert_almost_equal(msew, 0.39, decimal=2) | |
assert_almost_equal(rmsew, 0.59, decimal=2) | |
assert_almost_equal(maew, 0.475, decimal=3) | |
assert_almost_equal(mapew, 0.1668, decimal=2) | |
assert_almost_equal(rw, 0.94, decimal=2) | |
assert_almost_equal(evsw, 0.94, decimal=2) | |
assert_almost_equal(d2psw, 0.766, decimal=2) | |
assert_almost_equal(evsw2, 0.94, decimal=2) | |
# Handling msle separately as it does not accept negative inputs. | |
y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) | |
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) | |
msle = mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) | |
msle2 = mean_squared_error( | |
np.log(1 + y_true), np.log(1 + y_pred), multioutput=[0.3, 0.7] | |
) | |
assert_almost_equal(msle, msle2, decimal=2) | |
def test_regression_single_sample(metric): | |
y_true = [0] | |
y_pred = [1] | |
warning_msg = "not well-defined with less than two samples." | |
# Trigger the warning | |
with pytest.warns(UndefinedMetricWarning, match=warning_msg): | |
score = metric(y_true, y_pred) | |
assert np.isnan(score) | |
def test_tweedie_deviance_continuity(): | |
n_samples = 100 | |
y_true = np.random.RandomState(0).rand(n_samples) + 0.1 | |
y_pred = np.random.RandomState(1).rand(n_samples) + 0.1 | |
assert_allclose( | |
mean_tweedie_deviance(y_true, y_pred, power=0 - 1e-10), | |
mean_tweedie_deviance(y_true, y_pred, power=0), | |
) | |
# Ws we get closer to the limit, with 1e-12 difference the absolute | |
# tolerance to pass the below check increases. There are likely | |
# numerical precision issues on the edges of different definition | |
# regions. | |
assert_allclose( | |
mean_tweedie_deviance(y_true, y_pred, power=1 + 1e-10), | |
mean_tweedie_deviance(y_true, y_pred, power=1), | |
atol=1e-6, | |
) | |
assert_allclose( | |
mean_tweedie_deviance(y_true, y_pred, power=2 - 1e-10), | |
mean_tweedie_deviance(y_true, y_pred, power=2), | |
atol=1e-6, | |
) | |
assert_allclose( | |
mean_tweedie_deviance(y_true, y_pred, power=2 + 1e-10), | |
mean_tweedie_deviance(y_true, y_pred, power=2), | |
atol=1e-6, | |
) | |
def test_mean_absolute_percentage_error(): | |
random_number_generator = np.random.RandomState(42) | |
y_true = random_number_generator.exponential(size=100) | |
y_pred = 1.2 * y_true | |
assert mean_absolute_percentage_error(y_true, y_pred) == pytest.approx(0.2) | |
def test_mean_pinball_loss_on_constant_predictions(distribution, target_quantile): | |
if not hasattr(np, "quantile"): | |
pytest.skip( | |
"This test requires a more recent version of numpy " | |
"with support for np.quantile." | |
) | |
# Check that the pinball loss is minimized by the empirical quantile. | |
n_samples = 3000 | |
rng = np.random.RandomState(42) | |
data = getattr(rng, distribution)(size=n_samples) | |
# Compute the best possible pinball loss for any constant predictor: | |
best_pred = np.quantile(data, target_quantile) | |
best_constant_pred = np.full(n_samples, fill_value=best_pred) | |
best_pbl = mean_pinball_loss(data, best_constant_pred, alpha=target_quantile) | |
# Evaluate the loss on a grid of quantiles | |
candidate_predictions = np.quantile(data, np.linspace(0, 1, 100)) | |
for pred in candidate_predictions: | |
# Compute the pinball loss of a constant predictor: | |
constant_pred = np.full(n_samples, fill_value=pred) | |
pbl = mean_pinball_loss(data, constant_pred, alpha=target_quantile) | |
# Check that the loss of this constant predictor is greater or equal | |
# than the loss of using the optimal quantile (up to machine | |
# precision): | |
assert pbl >= best_pbl - np.finfo(best_pbl.dtype).eps | |
# Check that the value of the pinball loss matches the analytical | |
# formula. | |
expected_pbl = (pred - data[data < pred]).sum() * (1 - target_quantile) + ( | |
data[data >= pred] - pred | |
).sum() * target_quantile | |
expected_pbl /= n_samples | |
assert_almost_equal(expected_pbl, pbl) | |
# Check that we can actually recover the target_quantile by minimizing the | |
# pinball loss w.r.t. the constant prediction quantile. | |
def objective_func(x): | |
constant_pred = np.full(n_samples, fill_value=x) | |
return mean_pinball_loss(data, constant_pred, alpha=target_quantile) | |
result = optimize.minimize(objective_func, data.mean(), method="Nelder-Mead") | |
assert result.success | |
# The minimum is not unique with limited data, hence the large tolerance. | |
assert result.x == pytest.approx(best_pred, rel=1e-2) | |
assert result.fun == pytest.approx(best_pbl) | |
def test_dummy_quantile_parameter_tuning(): | |
# Integration test to check that it is possible to use the pinball loss to | |
# tune the hyperparameter of a quantile regressor. This is conceptually | |
# similar to the previous test but using the scikit-learn estimator and | |
# scoring API instead. | |
n_samples = 1000 | |
rng = np.random.RandomState(0) | |
X = rng.normal(size=(n_samples, 5)) # Ignored | |
y = rng.exponential(size=n_samples) | |
all_quantiles = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95] | |
for alpha in all_quantiles: | |
neg_mean_pinball_loss = make_scorer( | |
mean_pinball_loss, | |
alpha=alpha, | |
greater_is_better=False, | |
) | |
regressor = DummyRegressor(strategy="quantile", quantile=0.25) | |
grid_search = GridSearchCV( | |
regressor, | |
param_grid=dict(quantile=all_quantiles), | |
scoring=neg_mean_pinball_loss, | |
).fit(X, y) | |
assert grid_search.best_params_["quantile"] == pytest.approx(alpha) | |
def test_pinball_loss_relation_with_mae(): | |
# Test that mean_pinball loss with alpha=0.5 if half of mean absolute error | |
rng = np.random.RandomState(714) | |
n = 100 | |
y_true = rng.normal(size=n) | |
y_pred = y_true.copy() + rng.uniform(n) | |
assert ( | |
mean_absolute_error(y_true, y_pred) | |
== mean_pinball_loss(y_true, y_pred, alpha=0.5) * 2 | |
) | |
# TODO(1.6): remove this test | |
def test_mean_squared_deprecation_squared(metric): | |
"""Check the deprecation warning of the squared parameter""" | |
depr_msg = "'squared' is deprecated in version 1.4 and will be removed in 1.6." | |
y_true, y_pred = np.arange(10), np.arange(1, 11) | |
with pytest.warns(FutureWarning, match=depr_msg): | |
metric(y_true, y_pred, squared=False) | |
# TODO(1.6): remove this test | |
def test_rmse_rmsle_parameter(old_func, new_func): | |
# Check that the new rmse/rmsle function is equivalent to | |
# the old mse/msle + squared=False function. | |
y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) | |
y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) | |
y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) | |
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) | |
sw = np.arange(len(y_true)) | |
expected = old_func(y_true, y_pred, squared=False) | |
actual = new_func(y_true, y_pred) | |
assert_allclose(expected, actual) | |
expected = old_func(y_true, y_pred, sample_weight=sw, squared=False) | |
actual = new_func(y_true, y_pred, sample_weight=sw) | |
assert_allclose(expected, actual) | |
expected = old_func(y_true, y_pred, multioutput="raw_values", squared=False) | |
actual = new_func(y_true, y_pred, multioutput="raw_values") | |
assert_allclose(expected, actual) | |
expected = old_func( | |
y_true, y_pred, sample_weight=sw, multioutput="raw_values", squared=False | |
) | |
actual = new_func(y_true, y_pred, sample_weight=sw, multioutput="raw_values") | |
assert_allclose(expected, actual) | |