peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/preprocessing
/tests
/test_data.py
# Authors: | |
# | |
# Giorgio Patrini | |
# | |
# License: BSD 3 clause | |
import re | |
import warnings | |
import numpy as np | |
import numpy.linalg as la | |
import pytest | |
from scipy import sparse, stats | |
from sklearn import datasets | |
from sklearn.base import clone | |
from sklearn.exceptions import NotFittedError | |
from sklearn.metrics.pairwise import linear_kernel | |
from sklearn.model_selection import cross_val_predict | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import ( | |
Binarizer, | |
KernelCenterer, | |
MaxAbsScaler, | |
MinMaxScaler, | |
Normalizer, | |
PowerTransformer, | |
QuantileTransformer, | |
RobustScaler, | |
StandardScaler, | |
add_dummy_feature, | |
maxabs_scale, | |
minmax_scale, | |
normalize, | |
power_transform, | |
quantile_transform, | |
robust_scale, | |
scale, | |
) | |
from sklearn.preprocessing._data import BOUNDS_THRESHOLD, _handle_zeros_in_scale | |
from sklearn.svm import SVR | |
from sklearn.utils import gen_batches, shuffle | |
from sklearn.utils._array_api import ( | |
yield_namespace_device_dtype_combinations, | |
) | |
from sklearn.utils._testing import ( | |
_convert_container, | |
assert_allclose, | |
assert_allclose_dense_sparse, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
assert_array_less, | |
skip_if_32bit, | |
) | |
from sklearn.utils.estimator_checks import ( | |
_get_check_estimator_ids, | |
check_array_api_input_and_values, | |
) | |
from sklearn.utils.fixes import ( | |
COO_CONTAINERS, | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
LIL_CONTAINERS, | |
) | |
from sklearn.utils.sparsefuncs import mean_variance_axis | |
iris = datasets.load_iris() | |
# Make some data to be used many times | |
rng = np.random.RandomState(0) | |
n_features = 30 | |
n_samples = 1000 | |
offsets = rng.uniform(-1, 1, size=n_features) | |
scales = rng.uniform(1, 10, size=n_features) | |
X_2d = rng.randn(n_samples, n_features) * scales + offsets | |
X_1row = X_2d[0, :].reshape(1, n_features) | |
X_1col = X_2d[:, 0].reshape(n_samples, 1) | |
X_list_1row = X_1row.tolist() | |
X_list_1col = X_1col.tolist() | |
def toarray(a): | |
if hasattr(a, "toarray"): | |
a = a.toarray() | |
return a | |
def _check_dim_1axis(a): | |
return np.asarray(a).shape[0] | |
def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size, n_samples_seen): | |
if batch_stop != n: | |
assert (i + 1) * chunk_size == n_samples_seen | |
else: | |
assert i * chunk_size + (batch_stop - batch_start) == n_samples_seen | |
def test_raises_value_error_if_sample_weights_greater_than_1d(): | |
# Sample weights must be either scalar or 1D | |
n_sampless = [2, 3] | |
n_featuress = [3, 2] | |
for n_samples, n_features in zip(n_sampless, n_featuress): | |
X = rng.randn(n_samples, n_features) | |
y = rng.randn(n_samples) | |
scaler = StandardScaler() | |
# make sure Error is raised the sample weights greater than 1d | |
sample_weight_notOK = rng.randn(n_samples, 1) ** 2 | |
with pytest.raises(ValueError): | |
scaler.fit(X, y, sample_weight=sample_weight_notOK) | |
def test_standard_scaler_sample_weight(Xw, X, sample_weight, array_constructor): | |
with_mean = not array_constructor.startswith("sparse") | |
X = _convert_container(X, array_constructor) | |
Xw = _convert_container(Xw, array_constructor) | |
# weighted StandardScaler | |
yw = np.ones(Xw.shape[0]) | |
scaler_w = StandardScaler(with_mean=with_mean) | |
scaler_w.fit(Xw, yw, sample_weight=sample_weight) | |
# unweighted, but with repeated samples | |
y = np.ones(X.shape[0]) | |
scaler = StandardScaler(with_mean=with_mean) | |
scaler.fit(X, y) | |
X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]] | |
assert_almost_equal(scaler.mean_, scaler_w.mean_) | |
assert_almost_equal(scaler.var_, scaler_w.var_) | |
assert_almost_equal(scaler.transform(X_test), scaler_w.transform(X_test)) | |
def test_standard_scaler_1d(): | |
# Test scaling of dataset along single axis | |
for X in [X_1row, X_1col, X_list_1row, X_list_1row]: | |
scaler = StandardScaler() | |
X_scaled = scaler.fit(X).transform(X, copy=True) | |
if isinstance(X, list): | |
X = np.array(X) # cast only after scaling done | |
if _check_dim_1axis(X) == 1: | |
assert_almost_equal(scaler.mean_, X.ravel()) | |
assert_almost_equal(scaler.scale_, np.ones(n_features)) | |
assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) | |
assert_array_almost_equal(X_scaled.std(axis=0), np.zeros_like(n_features)) | |
else: | |
assert_almost_equal(scaler.mean_, X.mean()) | |
assert_almost_equal(scaler.scale_, X.std()) | |
assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) | |
assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) | |
assert_array_almost_equal(X_scaled.std(axis=0), 1.0) | |
assert scaler.n_samples_seen_ == X.shape[0] | |
# check inverse transform | |
X_scaled_back = scaler.inverse_transform(X_scaled) | |
assert_array_almost_equal(X_scaled_back, X) | |
# Constant feature | |
X = np.ones((5, 1)) | |
scaler = StandardScaler() | |
X_scaled = scaler.fit(X).transform(X, copy=True) | |
assert_almost_equal(scaler.mean_, 1.0) | |
assert_almost_equal(scaler.scale_, 1.0) | |
assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) | |
assert_array_almost_equal(X_scaled.std(axis=0), 0.0) | |
assert scaler.n_samples_seen_ == X.shape[0] | |
def test_standard_scaler_dtype(add_sample_weight, sparse_container): | |
# Ensure scaling does not affect dtype | |
rng = np.random.RandomState(0) | |
n_samples = 10 | |
n_features = 3 | |
if add_sample_weight: | |
sample_weight = np.ones(n_samples) | |
else: | |
sample_weight = None | |
with_mean = True | |
if sparse_container is not None: | |
# scipy sparse containers do not support float16, see | |
# https://github.com/scipy/scipy/issues/7408 for more details. | |
supported_dtype = [np.float64, np.float32] | |
else: | |
supported_dtype = [np.float64, np.float32, np.float16] | |
for dtype in supported_dtype: | |
X = rng.randn(n_samples, n_features).astype(dtype) | |
if sparse_container is not None: | |
X = sparse_container(X) | |
with_mean = False | |
scaler = StandardScaler(with_mean=with_mean) | |
X_scaled = scaler.fit(X, sample_weight=sample_weight).transform(X) | |
assert X.dtype == X_scaled.dtype | |
assert scaler.mean_.dtype == np.float64 | |
assert scaler.scale_.dtype == np.float64 | |
def test_standard_scaler_constant_features( | |
scaler, add_sample_weight, sparse_container, dtype, constant | |
): | |
if isinstance(scaler, RobustScaler) and add_sample_weight: | |
pytest.skip(f"{scaler.__class__.__name__} does not yet support sample_weight") | |
rng = np.random.RandomState(0) | |
n_samples = 100 | |
n_features = 1 | |
if add_sample_weight: | |
fit_params = dict(sample_weight=rng.uniform(size=n_samples) * 2) | |
else: | |
fit_params = {} | |
X_array = np.full(shape=(n_samples, n_features), fill_value=constant, dtype=dtype) | |
X = X_array if sparse_container is None else sparse_container(X_array) | |
X_scaled = scaler.fit(X, **fit_params).transform(X) | |
if isinstance(scaler, StandardScaler): | |
# The variance info should be close to zero for constant features. | |
assert_allclose(scaler.var_, np.zeros(X.shape[1]), atol=1e-7) | |
# Constant features should not be scaled (scale of 1.): | |
assert_allclose(scaler.scale_, np.ones(X.shape[1])) | |
assert X_scaled is not X # make sure we make a copy | |
assert_allclose_dense_sparse(X_scaled, X) | |
if isinstance(scaler, StandardScaler) and not add_sample_weight: | |
# Also check consistency with the standard scale function. | |
X_scaled_2 = scale(X, with_mean=scaler.with_mean) | |
assert X_scaled_2 is not X # make sure we did a copy | |
assert_allclose_dense_sparse(X_scaled_2, X) | |
def test_standard_scaler_near_constant_features( | |
n_samples, sparse_container, average, dtype | |
): | |
# Check that when the variance is too small (var << mean**2) the feature | |
# is considered constant and not scaled. | |
scale_min, scale_max = -30, 19 | |
scales = np.array([10**i for i in range(scale_min, scale_max + 1)], dtype=dtype) | |
n_features = scales.shape[0] | |
X = np.empty((n_samples, n_features), dtype=dtype) | |
# Make a dataset of known var = scales**2 and mean = average | |
X[: n_samples // 2, :] = average + scales | |
X[n_samples // 2 :, :] = average - scales | |
X_array = X if sparse_container is None else sparse_container(X) | |
scaler = StandardScaler(with_mean=False).fit(X_array) | |
# StandardScaler uses float64 accumulators even if the data has a float32 | |
# dtype. | |
eps = np.finfo(np.float64).eps | |
# if var < bound = N.eps.var + N².eps².mean², the feature is considered | |
# constant and the scale_ attribute is set to 1. | |
bounds = n_samples * eps * scales**2 + n_samples**2 * eps**2 * average**2 | |
within_bounds = scales**2 <= bounds | |
# Check that scale_min is small enough to have some scales below the | |
# bound and therefore detected as constant: | |
assert np.any(within_bounds) | |
# Check that such features are actually treated as constant by the scaler: | |
assert all(scaler.var_[within_bounds] <= bounds[within_bounds]) | |
assert_allclose(scaler.scale_[within_bounds], 1.0) | |
# Depending the on the dtype of X, some features might not actually be | |
# representable as non constant for small scales (even if above the | |
# precision bound of the float64 variance estimate). Such feature should | |
# be correctly detected as constants with 0 variance by StandardScaler. | |
representable_diff = X[0, :] - X[-1, :] != 0 | |
assert_allclose(scaler.var_[np.logical_not(representable_diff)], 0) | |
assert_allclose(scaler.scale_[np.logical_not(representable_diff)], 1) | |
# The other features are scaled and scale_ is equal to sqrt(var_) assuming | |
# that scales are large enough for average + scale and average - scale to | |
# be distinct in X (depending on X's dtype). | |
common_mask = np.logical_and(scales**2 > bounds, representable_diff) | |
assert_allclose(scaler.scale_[common_mask], np.sqrt(scaler.var_)[common_mask]) | |
def test_scale_1d(): | |
# 1-d inputs | |
X_list = [1.0, 3.0, 5.0, 0.0] | |
X_arr = np.array(X_list) | |
for X in [X_list, X_arr]: | |
X_scaled = scale(X) | |
assert_array_almost_equal(X_scaled.mean(), 0.0) | |
assert_array_almost_equal(X_scaled.std(), 1.0) | |
assert_array_equal(scale(X, with_mean=False, with_std=False), X) | |
def test_standard_scaler_numerical_stability(): | |
# Test numerical stability of scaling | |
# np.log(1e-5) is taken because of its floating point representation | |
# was empirically found to cause numerical problems with np.mean & np.std. | |
x = np.full(8, np.log(1e-5), dtype=np.float64) | |
# This does not raise a warning as the number of samples is too low | |
# to trigger the problem in recent numpy | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
scale(x) | |
assert_array_almost_equal(scale(x), np.zeros(8)) | |
# with 2 more samples, the std computation run into numerical issues: | |
x = np.full(10, np.log(1e-5), dtype=np.float64) | |
warning_message = "standard deviation of the data is probably very close to 0" | |
with pytest.warns(UserWarning, match=warning_message): | |
x_scaled = scale(x) | |
assert_array_almost_equal(x_scaled, np.zeros(10)) | |
x = np.full(10, 1e-100, dtype=np.float64) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
x_small_scaled = scale(x) | |
assert_array_almost_equal(x_small_scaled, np.zeros(10)) | |
# Large values can cause (often recoverable) numerical stability issues: | |
x_big = np.full(10, 1e100, dtype=np.float64) | |
warning_message = "Dataset may contain too large values" | |
with pytest.warns(UserWarning, match=warning_message): | |
x_big_scaled = scale(x_big) | |
assert_array_almost_equal(x_big_scaled, np.zeros(10)) | |
assert_array_almost_equal(x_big_scaled, x_small_scaled) | |
with pytest.warns(UserWarning, match=warning_message): | |
x_big_centered = scale(x_big, with_std=False) | |
assert_array_almost_equal(x_big_centered, np.zeros(10)) | |
assert_array_almost_equal(x_big_centered, x_small_scaled) | |
def test_scaler_2d_arrays(): | |
# Test scaling of 2d array along first axis | |
rng = np.random.RandomState(0) | |
n_features = 5 | |
n_samples = 4 | |
X = rng.randn(n_samples, n_features) | |
X[:, 0] = 0.0 # first feature is always of zero | |
scaler = StandardScaler() | |
X_scaled = scaler.fit(X).transform(X, copy=True) | |
assert not np.any(np.isnan(X_scaled)) | |
assert scaler.n_samples_seen_ == n_samples | |
assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) | |
assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0]) | |
# Check that X has been copied | |
assert X_scaled is not X | |
# check inverse transform | |
X_scaled_back = scaler.inverse_transform(X_scaled) | |
assert X_scaled_back is not X | |
assert X_scaled_back is not X_scaled | |
assert_array_almost_equal(X_scaled_back, X) | |
X_scaled = scale(X, axis=1, with_std=False) | |
assert not np.any(np.isnan(X_scaled)) | |
assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) | |
X_scaled = scale(X, axis=1, with_std=True) | |
assert not np.any(np.isnan(X_scaled)) | |
assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) | |
assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0]) | |
# Check that the data hasn't been modified | |
assert X_scaled is not X | |
X_scaled = scaler.fit(X).transform(X, copy=False) | |
assert not np.any(np.isnan(X_scaled)) | |
assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) | |
assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0]) | |
# Check that X has not been copied | |
assert X_scaled is X | |
X = rng.randn(4, 5) | |
X[:, 0] = 1.0 # first feature is a constant, non zero feature | |
scaler = StandardScaler() | |
X_scaled = scaler.fit(X).transform(X, copy=True) | |
assert not np.any(np.isnan(X_scaled)) | |
assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) | |
assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0]) | |
# Check that X has not been copied | |
assert X_scaled is not X | |
def test_scaler_float16_overflow(): | |
# Test if the scaler will not overflow on float16 numpy arrays | |
rng = np.random.RandomState(0) | |
# float16 has a maximum of 65500.0. On the worst case 5 * 200000 is 100000 | |
# which is enough to overflow the data type | |
X = rng.uniform(5, 10, [200000, 1]).astype(np.float16) | |
with np.errstate(over="raise"): | |
scaler = StandardScaler().fit(X) | |
X_scaled = scaler.transform(X) | |
# Calculate the float64 equivalent to verify result | |
X_scaled_f64 = StandardScaler().fit_transform(X.astype(np.float64)) | |
# Overflow calculations may cause -inf, inf, or nan. Since there is no nan | |
# input, all of the outputs should be finite. This may be redundant since a | |
# FloatingPointError exception will be thrown on overflow above. | |
assert np.all(np.isfinite(X_scaled)) | |
# The normal distribution is very unlikely to go above 4. At 4.0-8.0 the | |
# float16 precision is 2^-8 which is around 0.004. Thus only 2 decimals are | |
# checked to account for precision differences. | |
assert_array_almost_equal(X_scaled, X_scaled_f64, decimal=2) | |
def test_handle_zeros_in_scale(): | |
s1 = np.array([0, 1e-16, 1, 2, 3]) | |
s2 = _handle_zeros_in_scale(s1, copy=True) | |
assert_allclose(s1, np.array([0, 1e-16, 1, 2, 3])) | |
assert_allclose(s2, np.array([1, 1, 1, 2, 3])) | |
def test_minmax_scaler_partial_fit(): | |
# Test if partial_fit run over many batches of size 1 and 50 | |
# gives the same results as fit | |
X = X_2d | |
n = X.shape[0] | |
for chunk_size in [1, 2, 50, n, n + 42]: | |
# Test mean at the end of the process | |
scaler_batch = MinMaxScaler().fit(X) | |
scaler_incr = MinMaxScaler() | |
for batch in gen_batches(n_samples, chunk_size): | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) | |
assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) | |
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ | |
assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) | |
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) | |
assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) | |
# Test std after 1 step | |
batch0 = slice(0, chunk_size) | |
scaler_batch = MinMaxScaler().fit(X[batch0]) | |
scaler_incr = MinMaxScaler().partial_fit(X[batch0]) | |
assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) | |
assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) | |
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ | |
assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) | |
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) | |
assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) | |
# Test std until the end of partial fits, and | |
scaler_batch = MinMaxScaler().fit(X) | |
scaler_incr = MinMaxScaler() # Clean estimator | |
for i, batch in enumerate(gen_batches(n_samples, chunk_size)): | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
assert_correct_incr( | |
i, | |
batch_start=batch.start, | |
batch_stop=batch.stop, | |
n=n, | |
chunk_size=chunk_size, | |
n_samples_seen=scaler_incr.n_samples_seen_, | |
) | |
def test_standard_scaler_partial_fit(): | |
# Test if partial_fit run over many batches of size 1 and 50 | |
# gives the same results as fit | |
X = X_2d | |
n = X.shape[0] | |
for chunk_size in [1, 2, 50, n, n + 42]: | |
# Test mean at the end of the process | |
scaler_batch = StandardScaler(with_std=False).fit(X) | |
scaler_incr = StandardScaler(with_std=False) | |
for batch in gen_batches(n_samples, chunk_size): | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_) | |
assert scaler_batch.var_ == scaler_incr.var_ # Nones | |
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ | |
# Test std after 1 step | |
batch0 = slice(0, chunk_size) | |
scaler_incr = StandardScaler().partial_fit(X[batch0]) | |
if chunk_size == 1: | |
assert_array_almost_equal( | |
np.zeros(n_features, dtype=np.float64), scaler_incr.var_ | |
) | |
assert_array_almost_equal( | |
np.ones(n_features, dtype=np.float64), scaler_incr.scale_ | |
) | |
else: | |
assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_) | |
assert_array_almost_equal( | |
np.std(X[batch0], axis=0), scaler_incr.scale_ | |
) # no constants | |
# Test std until the end of partial fits, and | |
scaler_batch = StandardScaler().fit(X) | |
scaler_incr = StandardScaler() # Clean estimator | |
for i, batch in enumerate(gen_batches(n_samples, chunk_size)): | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
assert_correct_incr( | |
i, | |
batch_start=batch.start, | |
batch_stop=batch.stop, | |
n=n, | |
chunk_size=chunk_size, | |
n_samples_seen=scaler_incr.n_samples_seen_, | |
) | |
assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_) | |
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ | |
def test_standard_scaler_partial_fit_numerical_stability(sparse_container): | |
# Test if the incremental computation introduces significative errors | |
# for large datasets with values of large magniture | |
rng = np.random.RandomState(0) | |
n_features = 2 | |
n_samples = 100 | |
offsets = rng.uniform(-1e15, 1e15, size=n_features) | |
scales = rng.uniform(1e3, 1e6, size=n_features) | |
X = rng.randn(n_samples, n_features) * scales + offsets | |
scaler_batch = StandardScaler().fit(X) | |
scaler_incr = StandardScaler() | |
for chunk in X: | |
scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features)) | |
# Regardless of abs values, they must not be more diff 6 significant digits | |
tol = 10 ** (-6) | |
assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol) | |
assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol) | |
assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol) | |
# NOTE Be aware that for much larger offsets std is very unstable (last | |
# assert) while mean is OK. | |
# Sparse input | |
size = (100, 3) | |
scale = 1e20 | |
X = sparse_container(rng.randint(0, 2, size).astype(np.float64) * scale) | |
# with_mean=False is required with sparse input | |
scaler = StandardScaler(with_mean=False).fit(X) | |
scaler_incr = StandardScaler(with_mean=False) | |
for chunk in X: | |
scaler_incr = scaler_incr.partial_fit(chunk) | |
# Regardless of magnitude, they must not differ more than of 6 digits | |
tol = 10 ** (-6) | |
assert scaler.mean_ is not None | |
assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol) | |
assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol) | |
def test_partial_fit_sparse_input(sample_weight, sparse_container): | |
# Check that sparsity is not destroyed | |
X = sparse_container(np.array([[1.0], [0.0], [0.0], [5.0]])) | |
if sample_weight: | |
sample_weight = rng.rand(X.shape[0]) | |
null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) | |
X_null = null_transform.partial_fit(X, sample_weight=sample_weight).transform(X) | |
assert_array_equal(X_null.toarray(), X.toarray()) | |
X_orig = null_transform.inverse_transform(X_null) | |
assert_array_equal(X_orig.toarray(), X_null.toarray()) | |
assert_array_equal(X_orig.toarray(), X.toarray()) | |
def test_standard_scaler_trasform_with_partial_fit(sample_weight): | |
# Check some postconditions after applying partial_fit and transform | |
X = X_2d[:100, :] | |
if sample_weight: | |
sample_weight = rng.rand(X.shape[0]) | |
scaler_incr = StandardScaler() | |
for i, batch in enumerate(gen_batches(X.shape[0], 1)): | |
X_sofar = X[: (i + 1), :] | |
chunks_copy = X_sofar.copy() | |
if sample_weight is None: | |
scaled_batch = StandardScaler().fit_transform(X_sofar) | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
else: | |
scaled_batch = StandardScaler().fit_transform( | |
X_sofar, sample_weight=sample_weight[: i + 1] | |
) | |
scaler_incr = scaler_incr.partial_fit( | |
X[batch], sample_weight=sample_weight[batch] | |
) | |
scaled_incr = scaler_incr.transform(X_sofar) | |
assert_array_almost_equal(scaled_batch, scaled_incr) | |
assert_array_almost_equal(X_sofar, chunks_copy) # No change | |
right_input = scaler_incr.inverse_transform(scaled_incr) | |
assert_array_almost_equal(X_sofar, right_input) | |
zero = np.zeros(X.shape[1]) | |
epsilon = np.finfo(float).eps | |
assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal | |
assert_array_less(zero, scaler_incr.scale_ + epsilon) | |
if sample_weight is None: | |
# (i+1) because the Scaler has been already fitted | |
assert (i + 1) == scaler_incr.n_samples_seen_ | |
else: | |
assert np.sum(sample_weight[: i + 1]) == pytest.approx( | |
scaler_incr.n_samples_seen_ | |
) | |
def test_standard_check_array_of_inverse_transform(): | |
# Check if StandardScaler inverse_transform is | |
# converting the integer array to float | |
x = np.array( | |
[ | |
[1, 1, 1, 0, 1, 0], | |
[1, 1, 1, 0, 1, 0], | |
[0, 8, 0, 1, 0, 0], | |
[1, 4, 1, 1, 0, 0], | |
[0, 1, 0, 0, 1, 0], | |
[0, 4, 0, 1, 0, 1], | |
], | |
dtype=np.int32, | |
) | |
scaler = StandardScaler() | |
scaler.fit(x) | |
# The of inverse_transform should be converted | |
# to a float array. | |
# If not X *= self.scale_ will fail. | |
scaler.inverse_transform(x) | |
def test_scaler_array_api_compliance( | |
estimator, check, array_namespace, device, dtype_name | |
): | |
name = estimator.__class__.__name__ | |
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name) | |
def test_min_max_scaler_iris(): | |
X = iris.data | |
scaler = MinMaxScaler() | |
# default params | |
X_trans = scaler.fit_transform(X) | |
assert_array_almost_equal(X_trans.min(axis=0), 0) | |
assert_array_almost_equal(X_trans.max(axis=0), 1) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# not default params: min=1, max=2 | |
scaler = MinMaxScaler(feature_range=(1, 2)) | |
X_trans = scaler.fit_transform(X) | |
assert_array_almost_equal(X_trans.min(axis=0), 1) | |
assert_array_almost_equal(X_trans.max(axis=0), 2) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# min=-.5, max=.6 | |
scaler = MinMaxScaler(feature_range=(-0.5, 0.6)) | |
X_trans = scaler.fit_transform(X) | |
assert_array_almost_equal(X_trans.min(axis=0), -0.5) | |
assert_array_almost_equal(X_trans.max(axis=0), 0.6) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# raises on invalid range | |
scaler = MinMaxScaler(feature_range=(2, 1)) | |
with pytest.raises(ValueError): | |
scaler.fit(X) | |
def test_min_max_scaler_zero_variance_features(): | |
# Check min max scaler on toy data with zero variance features | |
X = [[0.0, 1.0, +0.5], [0.0, 1.0, -0.1], [0.0, 1.0, +1.1]] | |
X_new = [[+0.0, 2.0, 0.5], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.5]] | |
# default params | |
scaler = MinMaxScaler() | |
X_trans = scaler.fit_transform(X) | |
X_expected_0_1 = [[0.0, 0.0, 0.5], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]] | |
assert_array_almost_equal(X_trans, X_expected_0_1) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
X_trans_new = scaler.transform(X_new) | |
X_expected_0_1_new = [[+0.0, 1.0, 0.500], [-1.0, 0.0, 0.083], [+0.0, 0.0, 1.333]] | |
assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) | |
# not default params | |
scaler = MinMaxScaler(feature_range=(1, 2)) | |
X_trans = scaler.fit_transform(X) | |
X_expected_1_2 = [[1.0, 1.0, 1.5], [1.0, 1.0, 1.0], [1.0, 1.0, 2.0]] | |
assert_array_almost_equal(X_trans, X_expected_1_2) | |
# function interface | |
X_trans = minmax_scale(X) | |
assert_array_almost_equal(X_trans, X_expected_0_1) | |
X_trans = minmax_scale(X, feature_range=(1, 2)) | |
assert_array_almost_equal(X_trans, X_expected_1_2) | |
def test_minmax_scale_axis1(): | |
X = iris.data | |
X_trans = minmax_scale(X, axis=1) | |
assert_array_almost_equal(np.min(X_trans, axis=1), 0) | |
assert_array_almost_equal(np.max(X_trans, axis=1), 1) | |
def test_min_max_scaler_1d(): | |
# Test scaling of dataset along single axis | |
for X in [X_1row, X_1col, X_list_1row, X_list_1row]: | |
scaler = MinMaxScaler(copy=True) | |
X_scaled = scaler.fit(X).transform(X) | |
if isinstance(X, list): | |
X = np.array(X) # cast only after scaling done | |
if _check_dim_1axis(X) == 1: | |
assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features)) | |
assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features)) | |
else: | |
assert_array_almost_equal(X_scaled.min(axis=0), 0.0) | |
assert_array_almost_equal(X_scaled.max(axis=0), 1.0) | |
assert scaler.n_samples_seen_ == X.shape[0] | |
# check inverse transform | |
X_scaled_back = scaler.inverse_transform(X_scaled) | |
assert_array_almost_equal(X_scaled_back, X) | |
# Constant feature | |
X = np.ones((5, 1)) | |
scaler = MinMaxScaler() | |
X_scaled = scaler.fit(X).transform(X) | |
assert X_scaled.min() >= 0.0 | |
assert X_scaled.max() <= 1.0 | |
assert scaler.n_samples_seen_ == X.shape[0] | |
# Function interface | |
X_1d = X_1row.ravel() | |
min_ = X_1d.min() | |
max_ = X_1d.max() | |
assert_array_almost_equal( | |
(X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True) | |
) | |
def test_scaler_without_centering(sample_weight, sparse_container): | |
rng = np.random.RandomState(42) | |
X = rng.randn(4, 5) | |
X[:, 0] = 0.0 # first feature is always of zero | |
X_sparse = sparse_container(X) | |
if sample_weight: | |
sample_weight = rng.rand(X.shape[0]) | |
with pytest.raises(ValueError): | |
StandardScaler().fit(X_sparse) | |
scaler = StandardScaler(with_mean=False).fit(X, sample_weight=sample_weight) | |
X_scaled = scaler.transform(X, copy=True) | |
assert not np.any(np.isnan(X_scaled)) | |
scaler_sparse = StandardScaler(with_mean=False).fit( | |
X_sparse, sample_weight=sample_weight | |
) | |
X_sparse_scaled = scaler_sparse.transform(X_sparse, copy=True) | |
assert not np.any(np.isnan(X_sparse_scaled.data)) | |
assert_array_almost_equal(scaler.mean_, scaler_sparse.mean_) | |
assert_array_almost_equal(scaler.var_, scaler_sparse.var_) | |
assert_array_almost_equal(scaler.scale_, scaler_sparse.scale_) | |
assert_array_almost_equal(scaler.n_samples_seen_, scaler_sparse.n_samples_seen_) | |
if sample_weight is None: | |
assert_array_almost_equal( | |
X_scaled.mean(axis=0), [0.0, -0.01, 2.24, -0.35, -0.78], 2 | |
) | |
assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0]) | |
X_sparse_scaled_mean, X_sparse_scaled_var = mean_variance_axis(X_sparse_scaled, 0) | |
assert_array_almost_equal(X_sparse_scaled_mean, X_scaled.mean(axis=0)) | |
assert_array_almost_equal(X_sparse_scaled_var, X_scaled.var(axis=0)) | |
# Check that X has not been modified (copy) | |
assert X_scaled is not X | |
assert X_sparse_scaled is not X_sparse | |
X_scaled_back = scaler.inverse_transform(X_scaled) | |
assert X_scaled_back is not X | |
assert X_scaled_back is not X_scaled | |
assert_array_almost_equal(X_scaled_back, X) | |
X_sparse_scaled_back = scaler_sparse.inverse_transform(X_sparse_scaled) | |
assert X_sparse_scaled_back is not X_sparse | |
assert X_sparse_scaled_back is not X_sparse_scaled | |
assert_array_almost_equal(X_sparse_scaled_back.toarray(), X) | |
if sparse_container in CSR_CONTAINERS: | |
null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) | |
X_null = null_transform.fit_transform(X_sparse) | |
assert_array_equal(X_null.data, X_sparse.data) | |
X_orig = null_transform.inverse_transform(X_null) | |
assert_array_equal(X_orig.data, X_sparse.data) | |
def test_scaler_n_samples_seen_with_nan(with_mean, with_std, sparse_container): | |
X = np.array( | |
[[0, 1, 3], [np.nan, 6, 10], [5, 4, np.nan], [8, 0, np.nan]], dtype=np.float64 | |
) | |
if sparse_container is not None: | |
X = sparse_container(X) | |
if sparse.issparse(X) and with_mean: | |
pytest.skip("'with_mean=True' cannot be used with sparse matrix.") | |
transformer = StandardScaler(with_mean=with_mean, with_std=with_std) | |
transformer.fit(X) | |
assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2])) | |
def _check_identity_scalers_attributes(scaler_1, scaler_2): | |
assert scaler_1.mean_ is scaler_2.mean_ is None | |
assert scaler_1.var_ is scaler_2.var_ is None | |
assert scaler_1.scale_ is scaler_2.scale_ is None | |
assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_ | |
def test_scaler_return_identity(sparse_container): | |
# test that the scaler return identity when with_mean and with_std are | |
# False | |
X_dense = np.array([[0, 1, 3], [5, 6, 0], [8, 0, 10]], dtype=np.float64) | |
X_sparse = sparse_container(X_dense) | |
transformer_dense = StandardScaler(with_mean=False, with_std=False) | |
X_trans_dense = transformer_dense.fit_transform(X_dense) | |
assert_allclose(X_trans_dense, X_dense) | |
transformer_sparse = clone(transformer_dense) | |
X_trans_sparse = transformer_sparse.fit_transform(X_sparse) | |
assert_allclose_dense_sparse(X_trans_sparse, X_sparse) | |
_check_identity_scalers_attributes(transformer_dense, transformer_sparse) | |
transformer_dense.partial_fit(X_dense) | |
transformer_sparse.partial_fit(X_sparse) | |
_check_identity_scalers_attributes(transformer_dense, transformer_sparse) | |
transformer_dense.fit(X_dense) | |
transformer_sparse.fit(X_sparse) | |
_check_identity_scalers_attributes(transformer_dense, transformer_sparse) | |
def test_scaler_int(sparse_container): | |
# test that scaler converts integer input to floating | |
# for both sparse and dense matrices | |
rng = np.random.RandomState(42) | |
X = rng.randint(20, size=(4, 5)) | |
X[:, 0] = 0 # first feature is always of zero | |
X_sparse = sparse_container(X) | |
with warnings.catch_warnings(record=True): | |
scaler = StandardScaler(with_mean=False).fit(X) | |
X_scaled = scaler.transform(X, copy=True) | |
assert not np.any(np.isnan(X_scaled)) | |
with warnings.catch_warnings(record=True): | |
scaler_sparse = StandardScaler(with_mean=False).fit(X_sparse) | |
X_sparse_scaled = scaler_sparse.transform(X_sparse, copy=True) | |
assert not np.any(np.isnan(X_sparse_scaled.data)) | |
assert_array_almost_equal(scaler.mean_, scaler_sparse.mean_) | |
assert_array_almost_equal(scaler.var_, scaler_sparse.var_) | |
assert_array_almost_equal(scaler.scale_, scaler_sparse.scale_) | |
assert_array_almost_equal( | |
X_scaled.mean(axis=0), [0.0, 1.109, 1.856, 21.0, 1.559], 2 | |
) | |
assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0]) | |
X_sparse_scaled_mean, X_sparse_scaled_std = mean_variance_axis( | |
X_sparse_scaled.astype(float), 0 | |
) | |
assert_array_almost_equal(X_sparse_scaled_mean, X_scaled.mean(axis=0)) | |
assert_array_almost_equal(X_sparse_scaled_std, X_scaled.std(axis=0)) | |
# Check that X has not been modified (copy) | |
assert X_scaled is not X | |
assert X_sparse_scaled is not X_sparse | |
X_scaled_back = scaler.inverse_transform(X_scaled) | |
assert X_scaled_back is not X | |
assert X_scaled_back is not X_scaled | |
assert_array_almost_equal(X_scaled_back, X) | |
X_sparse_scaled_back = scaler_sparse.inverse_transform(X_sparse_scaled) | |
assert X_sparse_scaled_back is not X_sparse | |
assert X_sparse_scaled_back is not X_sparse_scaled | |
assert_array_almost_equal(X_sparse_scaled_back.toarray(), X) | |
if sparse_container in CSR_CONTAINERS: | |
null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) | |
with warnings.catch_warnings(record=True): | |
X_null = null_transform.fit_transform(X_sparse) | |
assert_array_equal(X_null.data, X_sparse.data) | |
X_orig = null_transform.inverse_transform(X_null) | |
assert_array_equal(X_orig.data, X_sparse.data) | |
def test_scaler_without_copy(sparse_container): | |
# Check that StandardScaler.fit does not change input | |
rng = np.random.RandomState(42) | |
X = rng.randn(4, 5) | |
X[:, 0] = 0.0 # first feature is always of zero | |
X_sparse = sparse_container(X) | |
X_copy = X.copy() | |
StandardScaler(copy=False).fit(X) | |
assert_array_equal(X, X_copy) | |
X_sparse_copy = X_sparse.copy() | |
StandardScaler(with_mean=False, copy=False).fit(X_sparse) | |
assert_array_equal(X_sparse.toarray(), X_sparse_copy.toarray()) | |
def test_scale_sparse_with_mean_raise_exception(sparse_container): | |
rng = np.random.RandomState(42) | |
X = rng.randn(4, 5) | |
X_sparse = sparse_container(X) | |
# check scaling and fit with direct calls on sparse data | |
with pytest.raises(ValueError): | |
scale(X_sparse, with_mean=True) | |
with pytest.raises(ValueError): | |
StandardScaler(with_mean=True).fit(X_sparse) | |
# check transform and inverse_transform after a fit on a dense array | |
scaler = StandardScaler(with_mean=True).fit(X) | |
with pytest.raises(ValueError): | |
scaler.transform(X_sparse) | |
X_transformed_sparse = sparse_container(scaler.transform(X)) | |
with pytest.raises(ValueError): | |
scaler.inverse_transform(X_transformed_sparse) | |
def test_scale_input_finiteness_validation(): | |
# Check if non finite inputs raise ValueError | |
X = [[np.inf, 5, 6, 7, 8]] | |
with pytest.raises( | |
ValueError, match="Input contains infinity or a value too large" | |
): | |
scale(X) | |
def test_robust_scaler_error_sparse(): | |
X_sparse = sparse.rand(1000, 10) | |
scaler = RobustScaler(with_centering=True) | |
err_msg = "Cannot center sparse matrices" | |
with pytest.raises(ValueError, match=err_msg): | |
scaler.fit(X_sparse) | |
def test_robust_scaler_attributes(X, with_centering, with_scaling): | |
# check consistent type of attributes | |
if with_centering and sparse.issparse(X): | |
pytest.skip("RobustScaler cannot center sparse matrix") | |
scaler = RobustScaler(with_centering=with_centering, with_scaling=with_scaling) | |
scaler.fit(X) | |
if with_centering: | |
assert isinstance(scaler.center_, np.ndarray) | |
else: | |
assert scaler.center_ is None | |
if with_scaling: | |
assert isinstance(scaler.scale_, np.ndarray) | |
else: | |
assert scaler.scale_ is None | |
def test_robust_scaler_col_zero_sparse(csr_container): | |
# check that the scaler is working when there is not data materialized in a | |
# column of a sparse matrix | |
X = np.random.randn(10, 5) | |
X[:, 0] = 0 | |
X = csr_container(X) | |
scaler = RobustScaler(with_centering=False) | |
scaler.fit(X) | |
assert scaler.scale_[0] == pytest.approx(1) | |
X_trans = scaler.transform(X) | |
assert_allclose(X[:, [0]].toarray(), X_trans[:, [0]].toarray()) | |
def test_robust_scaler_2d_arrays(): | |
# Test robust scaling of 2d array along first axis | |
rng = np.random.RandomState(0) | |
X = rng.randn(4, 5) | |
X[:, 0] = 0.0 # first feature is always of zero | |
scaler = RobustScaler() | |
X_scaled = scaler.fit(X).transform(X) | |
assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) | |
assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) | |
def test_robust_scaler_equivalence_dense_sparse(density, strictly_signed): | |
# Check the equivalence of the fitting with dense and sparse matrices | |
X_sparse = sparse.rand(1000, 5, density=density).tocsc() | |
if strictly_signed == "positive": | |
X_sparse.data = np.abs(X_sparse.data) | |
elif strictly_signed == "negative": | |
X_sparse.data = -np.abs(X_sparse.data) | |
elif strictly_signed == "zeros": | |
X_sparse.data = np.zeros(X_sparse.data.shape, dtype=np.float64) | |
X_dense = X_sparse.toarray() | |
scaler_sparse = RobustScaler(with_centering=False) | |
scaler_dense = RobustScaler(with_centering=False) | |
scaler_sparse.fit(X_sparse) | |
scaler_dense.fit(X_dense) | |
assert_allclose(scaler_sparse.scale_, scaler_dense.scale_) | |
def test_robust_scaler_transform_one_row_csr(csr_container): | |
# Check RobustScaler on transforming csr matrix with one row | |
rng = np.random.RandomState(0) | |
X = rng.randn(4, 5) | |
single_row = np.array([[0.1, 1.0, 2.0, 0.0, -1.0]]) | |
scaler = RobustScaler(with_centering=False) | |
scaler = scaler.fit(X) | |
row_trans = scaler.transform(csr_container(single_row)) | |
row_expected = single_row / scaler.scale_ | |
assert_array_almost_equal(row_trans.toarray(), row_expected) | |
row_scaled_back = scaler.inverse_transform(row_trans) | |
assert_array_almost_equal(single_row, row_scaled_back.toarray()) | |
def test_robust_scaler_iris(): | |
X = iris.data | |
scaler = RobustScaler() | |
X_trans = scaler.fit_transform(X) | |
assert_array_almost_equal(np.median(X_trans, axis=0), 0) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
q = np.percentile(X_trans, q=(25, 75), axis=0) | |
iqr = q[1] - q[0] | |
assert_array_almost_equal(iqr, 1) | |
def test_robust_scaler_iris_quantiles(): | |
X = iris.data | |
scaler = RobustScaler(quantile_range=(10, 90)) | |
X_trans = scaler.fit_transform(X) | |
assert_array_almost_equal(np.median(X_trans, axis=0), 0) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
q = np.percentile(X_trans, q=(10, 90), axis=0) | |
q_range = q[1] - q[0] | |
assert_array_almost_equal(q_range, 1) | |
def test_quantile_transform_iris(csc_container): | |
X = iris.data | |
# uniform output distribution | |
transformer = QuantileTransformer(n_quantiles=30) | |
X_trans = transformer.fit_transform(X) | |
X_trans_inv = transformer.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# normal output distribution | |
transformer = QuantileTransformer(n_quantiles=30, output_distribution="normal") | |
X_trans = transformer.fit_transform(X) | |
X_trans_inv = transformer.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# make sure it is possible to take the inverse of a sparse matrix | |
# which contain negative value; this is the case in the iris dataset | |
X_sparse = csc_container(X) | |
X_sparse_tran = transformer.fit_transform(X_sparse) | |
X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran) | |
assert_array_almost_equal(X_sparse.toarray(), X_sparse_tran_inv.toarray()) | |
def test_quantile_transform_check_error(csc_container): | |
X = np.transpose( | |
[ | |
[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], | |
[2, 4, 0, 0, 6, 8, 0, 10, 0, 0], | |
[0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1], | |
] | |
) | |
X = csc_container(X) | |
X_neg = np.transpose( | |
[ | |
[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], | |
[-2, 4, 0, 0, 6, 8, 0, 10, 0, 0], | |
[0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1], | |
] | |
) | |
X_neg = csc_container(X_neg) | |
err_msg = ( | |
"The number of quantiles cannot be greater than " | |
"the number of samples used. Got 1000 quantiles " | |
"and 10 samples." | |
) | |
with pytest.raises(ValueError, match=err_msg): | |
QuantileTransformer(subsample=10).fit(X) | |
transformer = QuantileTransformer(n_quantiles=10) | |
err_msg = "QuantileTransformer only accepts non-negative sparse matrices." | |
with pytest.raises(ValueError, match=err_msg): | |
transformer.fit(X_neg) | |
transformer.fit(X) | |
err_msg = "QuantileTransformer only accepts non-negative sparse matrices." | |
with pytest.raises(ValueError, match=err_msg): | |
transformer.transform(X_neg) | |
X_bad_feat = np.transpose( | |
[[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]] | |
) | |
err_msg = ( | |
"X has 2 features, but QuantileTransformer is expecting 3 features as input." | |
) | |
with pytest.raises(ValueError, match=err_msg): | |
transformer.inverse_transform(X_bad_feat) | |
transformer = QuantileTransformer(n_quantiles=10).fit(X) | |
# check that an error is raised if input is scalar | |
with pytest.raises(ValueError, match="Expected 2D array, got scalar array instead"): | |
transformer.transform(10) | |
# check that a warning is raised is n_quantiles > n_samples | |
transformer = QuantileTransformer(n_quantiles=100) | |
warn_msg = "n_quantiles is set to n_samples" | |
with pytest.warns(UserWarning, match=warn_msg) as record: | |
transformer.fit(X) | |
assert len(record) == 1 | |
assert transformer.n_quantiles_ == X.shape[0] | |
def test_quantile_transform_sparse_ignore_zeros(csc_container): | |
X = np.array([[0, 1], [0, 0], [0, 2], [0, 2], [0, 1]]) | |
X_sparse = csc_container(X) | |
transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) | |
# dense case -> warning raise | |
warning_message = ( | |
"'ignore_implicit_zeros' takes effect" | |
" only with sparse matrix. This parameter has no" | |
" effect." | |
) | |
with pytest.warns(UserWarning, match=warning_message): | |
transformer.fit(X) | |
X_expected = np.array([[0, 0], [0, 0], [0, 1], [0, 1], [0, 0]]) | |
X_trans = transformer.fit_transform(X_sparse) | |
assert_almost_equal(X_expected, X_trans.toarray()) | |
# consider the case where sparse entries are missing values and user-given | |
# zeros are to be considered | |
X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0]) | |
X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]) | |
X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8]) | |
X_sparse = csc_container((X_data, (X_row, X_col))) | |
X_trans = transformer.fit_transform(X_sparse) | |
X_expected = np.array( | |
[ | |
[0.0, 0.5], | |
[0.0, 0.0], | |
[0.0, 1.0], | |
[0.0, 1.0], | |
[0.0, 0.5], | |
[0.0, 0.0], | |
[0.0, 0.5], | |
[0.0, 1.0], | |
[0.0, 0.0], | |
] | |
) | |
assert_almost_equal(X_expected, X_trans.toarray()) | |
transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) | |
X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1]) | |
X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1]) | |
X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6]) | |
X_sparse = csc_container((X_data, (X_row, X_col))) | |
X_trans = transformer.fit_transform(X_sparse) | |
X_expected = np.array( | |
[[0, 1], [0, 0.375], [0, 0.375], [0, 0.375], [0, 1], [0, 0], [0, 1]] | |
) | |
assert_almost_equal(X_expected, X_trans.toarray()) | |
assert_almost_equal( | |
X_sparse.toarray(), transformer.inverse_transform(X_trans).toarray() | |
) | |
# check in conjunction with subsampling | |
transformer = QuantileTransformer( | |
ignore_implicit_zeros=True, n_quantiles=5, subsample=8, random_state=0 | |
) | |
X_trans = transformer.fit_transform(X_sparse) | |
assert_almost_equal(X_expected, X_trans.toarray()) | |
assert_almost_equal( | |
X_sparse.toarray(), transformer.inverse_transform(X_trans).toarray() | |
) | |
def test_quantile_transform_dense_toy(): | |
X = np.array( | |
[[0, 2, 2.6], [25, 4, 4.1], [50, 6, 2.3], [75, 8, 9.5], [100, 10, 0.1]] | |
) | |
transformer = QuantileTransformer(n_quantiles=5) | |
transformer.fit(X) | |
# using a uniform output, each entry of X should be map between 0 and 1 | |
# and equally spaced | |
X_trans = transformer.fit_transform(X) | |
X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T | |
assert_almost_equal(np.sort(X_trans, axis=0), X_expected) | |
X_test = np.array( | |
[ | |
[-1, 1, 0], | |
[101, 11, 10], | |
] | |
) | |
X_expected = np.array( | |
[ | |
[0, 0, 0], | |
[1, 1, 1], | |
] | |
) | |
assert_array_almost_equal(transformer.transform(X_test), X_expected) | |
X_trans_inv = transformer.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
def test_quantile_transform_subsampling(): | |
# Test that subsampling the input yield to a consistent results We check | |
# that the computed quantiles are almost mapped to a [0, 1] vector where | |
# values are equally spaced. The infinite norm is checked to be smaller | |
# than a given threshold. This is repeated 5 times. | |
# dense support | |
n_samples = 1000000 | |
n_quantiles = 1000 | |
X = np.sort(np.random.sample((n_samples, 1)), axis=0) | |
ROUND = 5 | |
inf_norm_arr = [] | |
for random_state in range(ROUND): | |
transformer = QuantileTransformer( | |
random_state=random_state, | |
n_quantiles=n_quantiles, | |
subsample=n_samples // 10, | |
) | |
transformer.fit(X) | |
diff = np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_) | |
inf_norm = np.max(np.abs(diff)) | |
assert inf_norm < 1e-2 | |
inf_norm_arr.append(inf_norm) | |
# each random subsampling yield a unique approximation to the expected | |
# linspace CDF | |
assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr) | |
# sparse support | |
X = sparse.rand(n_samples, 1, density=0.99, format="csc", random_state=0) | |
inf_norm_arr = [] | |
for random_state in range(ROUND): | |
transformer = QuantileTransformer( | |
random_state=random_state, | |
n_quantiles=n_quantiles, | |
subsample=n_samples // 10, | |
) | |
transformer.fit(X) | |
diff = np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_) | |
inf_norm = np.max(np.abs(diff)) | |
assert inf_norm < 1e-1 | |
inf_norm_arr.append(inf_norm) | |
# each random subsampling yield a unique approximation to the expected | |
# linspace CDF | |
assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr) | |
def test_quantile_transform_sparse_toy(csc_container): | |
X = np.array( | |
[ | |
[0.0, 2.0, 0.0], | |
[25.0, 4.0, 0.0], | |
[50.0, 0.0, 2.6], | |
[0.0, 0.0, 4.1], | |
[0.0, 6.0, 0.0], | |
[0.0, 8.0, 0.0], | |
[75.0, 0.0, 2.3], | |
[0.0, 10.0, 0.0], | |
[0.0, 0.0, 9.5], | |
[100.0, 0.0, 0.1], | |
] | |
) | |
X = csc_container(X) | |
transformer = QuantileTransformer(n_quantiles=10) | |
transformer.fit(X) | |
X_trans = transformer.fit_transform(X) | |
assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.0) | |
assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.0) | |
X_trans_inv = transformer.inverse_transform(X_trans) | |
assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) | |
transformer_dense = QuantileTransformer(n_quantiles=10).fit(X.toarray()) | |
X_trans = transformer_dense.transform(X) | |
assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.0) | |
assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.0) | |
X_trans_inv = transformer_dense.inverse_transform(X_trans) | |
assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) | |
def test_quantile_transform_axis1(): | |
X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]]) | |
X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5) | |
X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5) | |
assert_array_almost_equal(X_trans_a0, X_trans_a1.T) | |
def test_quantile_transform_bounds(csc_container): | |
# Lower and upper bounds are manually mapped. We checked that in the case | |
# of a constant feature and binary feature, the bounds are properly mapped. | |
X_dense = np.array([[0, 0], [0, 0], [1, 0]]) | |
X_sparse = csc_container(X_dense) | |
# check sparse and dense are consistent | |
X_trans = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_dense) | |
assert_array_almost_equal(X_trans, X_dense) | |
X_trans_sp = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform( | |
X_sparse | |
) | |
assert_array_almost_equal(X_trans_sp.toarray(), X_dense) | |
assert_array_almost_equal(X_trans, X_trans_sp.toarray()) | |
# check the consistency of the bounds by learning on 1 matrix | |
# and transforming another | |
X = np.array([[0, 1], [0, 0.5], [1, 0]]) | |
X1 = np.array([[0, 0.1], [0, 0.5], [1, 0.1]]) | |
transformer = QuantileTransformer(n_quantiles=3).fit(X) | |
X_trans = transformer.transform(X1) | |
assert_array_almost_equal(X_trans, X1) | |
# check that values outside of the range learned will be mapped properly. | |
X = np.random.random((1000, 1)) | |
transformer = QuantileTransformer() | |
transformer.fit(X) | |
assert transformer.transform([[-10]]) == transformer.transform([[np.min(X)]]) | |
assert transformer.transform([[10]]) == transformer.transform([[np.max(X)]]) | |
assert transformer.inverse_transform([[-10]]) == transformer.inverse_transform( | |
[[np.min(transformer.references_)]] | |
) | |
assert transformer.inverse_transform([[10]]) == transformer.inverse_transform( | |
[[np.max(transformer.references_)]] | |
) | |
def test_quantile_transform_and_inverse(): | |
X_1 = iris.data | |
X_2 = np.array([[0.0], [BOUNDS_THRESHOLD / 10], [1.5], [2], [3], [3], [4]]) | |
for X in [X_1, X_2]: | |
transformer = QuantileTransformer(n_quantiles=1000, random_state=0) | |
X_trans = transformer.fit_transform(X) | |
X_trans_inv = transformer.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv, decimal=9) | |
def test_quantile_transform_nan(): | |
X = np.array([[np.nan, 0, 0, 1], [np.nan, np.nan, 0, 0.5], [np.nan, 1, 1, 0]]) | |
transformer = QuantileTransformer(n_quantiles=10, random_state=42) | |
transformer.fit_transform(X) | |
# check that the quantile of the first column is all NaN | |
assert np.isnan(transformer.quantiles_[:, 0]).all() | |
# all other column should not contain NaN | |
assert not np.isnan(transformer.quantiles_[:, 1:]).any() | |
def test_quantile_transformer_sorted_quantiles(array_type): | |
# Non-regression test for: | |
# https://github.com/scikit-learn/scikit-learn/issues/15733 | |
# Taken from upstream bug report: | |
# https://github.com/numpy/numpy/issues/14685 | |
X = np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, 8, 8, 7] * 10) | |
X = 0.1 * X.reshape(-1, 1) | |
X = _convert_container(X, array_type) | |
n_quantiles = 100 | |
qt = QuantileTransformer(n_quantiles=n_quantiles).fit(X) | |
# Check that the estimated quantile thresholds are monotically | |
# increasing: | |
quantiles = qt.quantiles_[:, 0] | |
assert len(quantiles) == 100 | |
assert all(np.diff(quantiles) >= 0) | |
def test_robust_scaler_invalid_range(): | |
for range_ in [ | |
(-1, 90), | |
(-2, -3), | |
(10, 101), | |
(100.5, 101), | |
(90, 50), | |
]: | |
scaler = RobustScaler(quantile_range=range_) | |
with pytest.raises(ValueError, match=r"Invalid quantile range: \("): | |
scaler.fit(iris.data) | |
def test_scale_function_without_centering(csr_container): | |
rng = np.random.RandomState(42) | |
X = rng.randn(4, 5) | |
X[:, 0] = 0.0 # first feature is always of zero | |
X_csr = csr_container(X) | |
X_scaled = scale(X, with_mean=False) | |
assert not np.any(np.isnan(X_scaled)) | |
X_csr_scaled = scale(X_csr, with_mean=False) | |
assert not np.any(np.isnan(X_csr_scaled.data)) | |
# test csc has same outcome | |
X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) | |
assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) | |
# raises value error on axis != 0 | |
with pytest.raises(ValueError): | |
scale(X_csr, with_mean=False, axis=1) | |
assert_array_almost_equal( | |
X_scaled.mean(axis=0), [0.0, -0.01, 2.24, -0.35, -0.78], 2 | |
) | |
assert_array_almost_equal(X_scaled.std(axis=0), [0.0, 1.0, 1.0, 1.0, 1.0]) | |
# Check that X has not been copied | |
assert X_scaled is not X | |
X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) | |
assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) | |
assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) | |
# null scale | |
X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True) | |
assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray()) | |
def test_robust_scale_axis1(): | |
X = iris.data | |
X_trans = robust_scale(X, axis=1) | |
assert_array_almost_equal(np.median(X_trans, axis=1), 0) | |
q = np.percentile(X_trans, q=(25, 75), axis=1) | |
iqr = q[1] - q[0] | |
assert_array_almost_equal(iqr, 1) | |
def test_robust_scale_1d_array(): | |
X = iris.data[:, 1] | |
X_trans = robust_scale(X) | |
assert_array_almost_equal(np.median(X_trans), 0) | |
q = np.percentile(X_trans, q=(25, 75)) | |
iqr = q[1] - q[0] | |
assert_array_almost_equal(iqr, 1) | |
def test_robust_scaler_zero_variance_features(): | |
# Check RobustScaler on toy data with zero variance features | |
X = [[0.0, 1.0, +0.5], [0.0, 1.0, -0.1], [0.0, 1.0, +1.1]] | |
scaler = RobustScaler() | |
X_trans = scaler.fit_transform(X) | |
# NOTE: for such a small sample size, what we expect in the third column | |
# depends HEAVILY on the method used to calculate quantiles. The values | |
# here were calculated to fit the quantiles produces by np.percentile | |
# using numpy 1.9 Calculating quantiles with | |
# scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles | |
# would yield very different results! | |
X_expected = [[0.0, 0.0, +0.0], [0.0, 0.0, -1.0], [0.0, 0.0, +1.0]] | |
assert_array_almost_equal(X_trans, X_expected) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# make sure new data gets transformed correctly | |
X_new = [[+0.0, 2.0, 0.5], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.5]] | |
X_trans_new = scaler.transform(X_new) | |
X_expected_new = [[+0.0, 1.0, +0.0], [-1.0, 0.0, -0.83333], [+0.0, 0.0, +1.66667]] | |
assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) | |
def test_robust_scaler_unit_variance(): | |
# Check RobustScaler with unit_variance=True on standard normal data with | |
# outliers | |
rng = np.random.RandomState(42) | |
X = rng.randn(1000000, 1) | |
X_with_outliers = np.vstack([X, np.ones((100, 1)) * 100, np.ones((100, 1)) * -100]) | |
quantile_range = (1, 99) | |
robust_scaler = RobustScaler(quantile_range=quantile_range, unit_variance=True).fit( | |
X_with_outliers | |
) | |
X_trans = robust_scaler.transform(X) | |
assert robust_scaler.center_ == pytest.approx(0, abs=1e-3) | |
assert robust_scaler.scale_ == pytest.approx(1, abs=1e-2) | |
assert X_trans.std() == pytest.approx(1, abs=1e-2) | |
def test_maxabs_scaler_zero_variance_features(sparse_container): | |
# Check MaxAbsScaler on toy data with zero variance features | |
X = [[0.0, 1.0, +0.5], [0.0, 1.0, -0.3], [0.0, 1.0, +1.5], [0.0, 0.0, +0.0]] | |
scaler = MaxAbsScaler() | |
X_trans = scaler.fit_transform(X) | |
X_expected = [ | |
[0.0, 1.0, 1.0 / 3.0], | |
[0.0, 1.0, -0.2], | |
[0.0, 1.0, 1.0], | |
[0.0, 0.0, 0.0], | |
] | |
assert_array_almost_equal(X_trans, X_expected) | |
X_trans_inv = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X, X_trans_inv) | |
# make sure new data gets transformed correctly | |
X_new = [[+0.0, 2.0, 0.5], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.5]] | |
X_trans_new = scaler.transform(X_new) | |
X_expected_new = [[+0.0, 2.0, 1.0 / 3.0], [-1.0, 1.0, 0.0], [+0.0, 1.0, 1.0]] | |
assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) | |
# function interface | |
X_trans = maxabs_scale(X) | |
assert_array_almost_equal(X_trans, X_expected) | |
# sparse data | |
X_sparse = sparse_container(X) | |
X_trans_sparse = scaler.fit_transform(X_sparse) | |
X_expected = [ | |
[0.0, 1.0, 1.0 / 3.0], | |
[0.0, 1.0, -0.2], | |
[0.0, 1.0, 1.0], | |
[0.0, 0.0, 0.0], | |
] | |
assert_array_almost_equal(X_trans_sparse.toarray(), X_expected) | |
X_trans_sparse_inv = scaler.inverse_transform(X_trans_sparse) | |
assert_array_almost_equal(X, X_trans_sparse_inv.toarray()) | |
def test_maxabs_scaler_large_negative_value(): | |
# Check MaxAbsScaler on toy data with a large negative value | |
X = [ | |
[0.0, 1.0, +0.5, -1.0], | |
[0.0, 1.0, -0.3, -0.5], | |
[0.0, 1.0, -100.0, 0.0], | |
[0.0, 0.0, +0.0, -2.0], | |
] | |
scaler = MaxAbsScaler() | |
X_trans = scaler.fit_transform(X) | |
X_expected = [ | |
[0.0, 1.0, 0.005, -0.5], | |
[0.0, 1.0, -0.003, -0.25], | |
[0.0, 1.0, -1.0, 0.0], | |
[0.0, 0.0, 0.0, -1.0], | |
] | |
assert_array_almost_equal(X_trans, X_expected) | |
def test_maxabs_scaler_transform_one_row_csr(csr_container): | |
# Check MaxAbsScaler on transforming csr matrix with one row | |
X = csr_container([[0.5, 1.0, 1.0]]) | |
scaler = MaxAbsScaler() | |
scaler = scaler.fit(X) | |
X_trans = scaler.transform(X) | |
X_expected = csr_container([[1.0, 1.0, 1.0]]) | |
assert_array_almost_equal(X_trans.toarray(), X_expected.toarray()) | |
X_scaled_back = scaler.inverse_transform(X_trans) | |
assert_array_almost_equal(X.toarray(), X_scaled_back.toarray()) | |
def test_maxabs_scaler_1d(): | |
# Test scaling of dataset along single axis | |
for X in [X_1row, X_1col, X_list_1row, X_list_1row]: | |
scaler = MaxAbsScaler(copy=True) | |
X_scaled = scaler.fit(X).transform(X) | |
if isinstance(X, list): | |
X = np.array(X) # cast only after scaling done | |
if _check_dim_1axis(X) == 1: | |
assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), np.ones(n_features)) | |
else: | |
assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.0) | |
assert scaler.n_samples_seen_ == X.shape[0] | |
# check inverse transform | |
X_scaled_back = scaler.inverse_transform(X_scaled) | |
assert_array_almost_equal(X_scaled_back, X) | |
# Constant feature | |
X = np.ones((5, 1)) | |
scaler = MaxAbsScaler() | |
X_scaled = scaler.fit(X).transform(X) | |
assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.0) | |
assert scaler.n_samples_seen_ == X.shape[0] | |
# function interface | |
X_1d = X_1row.ravel() | |
max_abs = np.abs(X_1d).max() | |
assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True)) | |
def test_maxabs_scaler_partial_fit(csr_container): | |
# Test if partial_fit run over many batches of size 1 and 50 | |
# gives the same results as fit | |
X = X_2d[:100, :] | |
n = X.shape[0] | |
for chunk_size in [1, 2, 50, n, n + 42]: | |
# Test mean at the end of the process | |
scaler_batch = MaxAbsScaler().fit(X) | |
scaler_incr = MaxAbsScaler() | |
scaler_incr_csr = MaxAbsScaler() | |
scaler_incr_csc = MaxAbsScaler() | |
for batch in gen_batches(n, chunk_size): | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
X_csr = csr_container(X[batch]) | |
scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr) | |
X_csc = csr_container(X[batch]) | |
scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc) | |
assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) | |
assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csr.max_abs_) | |
assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csc.max_abs_) | |
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ | |
assert scaler_batch.n_samples_seen_ == scaler_incr_csr.n_samples_seen_ | |
assert scaler_batch.n_samples_seen_ == scaler_incr_csc.n_samples_seen_ | |
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) | |
assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_) | |
assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_) | |
assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) | |
# Test std after 1 step | |
batch0 = slice(0, chunk_size) | |
scaler_batch = MaxAbsScaler().fit(X[batch0]) | |
scaler_incr = MaxAbsScaler().partial_fit(X[batch0]) | |
assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) | |
assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ | |
assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) | |
assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) | |
# Test std until the end of partial fits, and | |
scaler_batch = MaxAbsScaler().fit(X) | |
scaler_incr = MaxAbsScaler() # Clean estimator | |
for i, batch in enumerate(gen_batches(n, chunk_size)): | |
scaler_incr = scaler_incr.partial_fit(X[batch]) | |
assert_correct_incr( | |
i, | |
batch_start=batch.start, | |
batch_stop=batch.stop, | |
n=n, | |
chunk_size=chunk_size, | |
n_samples_seen=scaler_incr.n_samples_seen_, | |
) | |
def check_normalizer(norm, X_norm): | |
""" | |
Convenient checking function for `test_normalizer_l1_l2_max` and | |
`test_normalizer_l1_l2_max_non_csr` | |
""" | |
if norm == "l1": | |
row_sums = np.abs(X_norm).sum(axis=1) | |
for i in range(3): | |
assert_almost_equal(row_sums[i], 1.0) | |
assert_almost_equal(row_sums[3], 0.0) | |
elif norm == "l2": | |
for i in range(3): | |
assert_almost_equal(la.norm(X_norm[i]), 1.0) | |
assert_almost_equal(la.norm(X_norm[3]), 0.0) | |
elif norm == "max": | |
row_maxs = abs(X_norm).max(axis=1) | |
for i in range(3): | |
assert_almost_equal(row_maxs[i], 1.0) | |
assert_almost_equal(row_maxs[3], 0.0) | |
def test_normalizer_l1_l2_max(norm, csr_container): | |
rng = np.random.RandomState(0) | |
X_dense = rng.randn(4, 5) | |
X_sparse_unpruned = csr_container(X_dense) | |
# set the row number 3 to zero | |
X_dense[3, :] = 0.0 | |
# set the row number 3 to zero without pruning (can happen in real life) | |
indptr_3 = X_sparse_unpruned.indptr[3] | |
indptr_4 = X_sparse_unpruned.indptr[4] | |
X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 | |
# build the pruned variant using the regular constructor | |
X_sparse_pruned = csr_container(X_dense) | |
# check inputs that support the no-copy optim | |
for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): | |
normalizer = Normalizer(norm=norm, copy=True) | |
X_norm1 = normalizer.transform(X) | |
assert X_norm1 is not X | |
X_norm1 = toarray(X_norm1) | |
normalizer = Normalizer(norm=norm, copy=False) | |
X_norm2 = normalizer.transform(X) | |
assert X_norm2 is X | |
X_norm2 = toarray(X_norm2) | |
for X_norm in (X_norm1, X_norm2): | |
check_normalizer(norm, X_norm) | |
def test_normalizer_l1_l2_max_non_csr(norm, sparse_container): | |
rng = np.random.RandomState(0) | |
X_dense = rng.randn(4, 5) | |
# set the row number 3 to zero | |
X_dense[3, :] = 0.0 | |
X = sparse_container(X_dense) | |
X_norm = Normalizer(norm=norm, copy=False).transform(X) | |
assert X_norm is not X | |
assert sparse.issparse(X_norm) and X_norm.format == "csr" | |
X_norm = toarray(X_norm) | |
check_normalizer(norm, X_norm) | |
def test_normalizer_max_sign(csr_container): | |
# check that we normalize by a positive number even for negative data | |
rng = np.random.RandomState(0) | |
X_dense = rng.randn(4, 5) | |
# set the row number 3 to zero | |
X_dense[3, :] = 0.0 | |
# check for mixed data where the value with | |
# largest magnitude is negative | |
X_dense[2, abs(X_dense[2, :]).argmax()] *= -1 | |
X_all_neg = -np.abs(X_dense) | |
X_all_neg_sparse = csr_container(X_all_neg) | |
for X in (X_dense, X_all_neg, X_all_neg_sparse): | |
normalizer = Normalizer(norm="max") | |
X_norm = normalizer.transform(X) | |
assert X_norm is not X | |
X_norm = toarray(X_norm) | |
assert_array_equal(np.sign(X_norm), np.sign(toarray(X))) | |
def test_normalize(csr_container): | |
# Test normalize function | |
# Only tests functionality not used by the tests for Normalizer. | |
X = np.random.RandomState(37).randn(3, 2) | |
assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) | |
rs = np.random.RandomState(0) | |
X_dense = rs.randn(10, 5) | |
X_sparse = csr_container(X_dense) | |
ones = np.ones((10)) | |
for X in (X_dense, X_sparse): | |
for dtype in (np.float32, np.float64): | |
for norm in ("l1", "l2"): | |
X = X.astype(dtype) | |
X_norm = normalize(X, norm=norm) | |
assert X_norm.dtype == dtype | |
X_norm = toarray(X_norm) | |
if norm == "l1": | |
row_sums = np.abs(X_norm).sum(axis=1) | |
else: | |
X_norm_squared = X_norm**2 | |
row_sums = X_norm_squared.sum(axis=1) | |
assert_array_almost_equal(row_sums, ones) | |
# Test return_norm | |
X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]]) | |
for norm in ("l1", "l2", "max"): | |
_, norms = normalize(X_dense, norm=norm, return_norm=True) | |
if norm == "l1": | |
assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0])) | |
elif norm == "l2": | |
assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127])) | |
else: | |
assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) | |
X_sparse = csr_container(X_dense) | |
for norm in ("l1", "l2"): | |
with pytest.raises(NotImplementedError): | |
normalize(X_sparse, norm=norm, return_norm=True) | |
_, norms = normalize(X_sparse, norm="max", return_norm=True) | |
assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) | |
def test_binarizer(constructor): | |
X_ = np.array([[1, 0, 5], [2, 3, -1]]) | |
X = constructor(X_.copy()) | |
binarizer = Binarizer(threshold=2.0, copy=True) | |
X_bin = toarray(binarizer.transform(X)) | |
assert np.sum(X_bin == 0) == 4 | |
assert np.sum(X_bin == 1) == 2 | |
X_bin = binarizer.transform(X) | |
assert sparse.issparse(X) == sparse.issparse(X_bin) | |
binarizer = Binarizer(copy=True).fit(X) | |
X_bin = toarray(binarizer.transform(X)) | |
assert X_bin is not X | |
assert np.sum(X_bin == 0) == 2 | |
assert np.sum(X_bin == 1) == 4 | |
binarizer = Binarizer(copy=True) | |
X_bin = binarizer.transform(X) | |
assert X_bin is not X | |
X_bin = toarray(X_bin) | |
assert np.sum(X_bin == 0) == 2 | |
assert np.sum(X_bin == 1) == 4 | |
binarizer = Binarizer(copy=False) | |
X_bin = binarizer.transform(X) | |
if constructor is not list: | |
assert X_bin is X | |
binarizer = Binarizer(copy=False) | |
X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64) | |
X_bin = binarizer.transform(X_float) | |
if constructor is not list: | |
assert X_bin is X_float | |
X_bin = toarray(X_bin) | |
assert np.sum(X_bin == 0) == 2 | |
assert np.sum(X_bin == 1) == 4 | |
binarizer = Binarizer(threshold=-0.5, copy=True) | |
if constructor in (np.array, list): | |
X = constructor(X_.copy()) | |
X_bin = toarray(binarizer.transform(X)) | |
assert np.sum(X_bin == 0) == 1 | |
assert np.sum(X_bin == 1) == 5 | |
X_bin = binarizer.transform(X) | |
# Cannot use threshold < 0 for sparse | |
if constructor in CSC_CONTAINERS: | |
with pytest.raises(ValueError): | |
binarizer.transform(constructor(X)) | |
def test_center_kernel(): | |
# Test that KernelCenterer is equivalent to StandardScaler | |
# in feature space | |
rng = np.random.RandomState(0) | |
X_fit = rng.random_sample((5, 4)) | |
scaler = StandardScaler(with_std=False) | |
scaler.fit(X_fit) | |
X_fit_centered = scaler.transform(X_fit) | |
K_fit = np.dot(X_fit, X_fit.T) | |
# center fit time matrix | |
centerer = KernelCenterer() | |
K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) | |
K_fit_centered2 = centerer.fit_transform(K_fit) | |
assert_array_almost_equal(K_fit_centered, K_fit_centered2) | |
# center predict time matrix | |
X_pred = rng.random_sample((2, 4)) | |
K_pred = np.dot(X_pred, X_fit.T) | |
X_pred_centered = scaler.transform(X_pred) | |
K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) | |
K_pred_centered2 = centerer.transform(K_pred) | |
assert_array_almost_equal(K_pred_centered, K_pred_centered2) | |
# check the results coherence with the method proposed in: | |
# B. Schölkopf, A. Smola, and K.R. Müller, | |
# "Nonlinear component analysis as a kernel eigenvalue problem" | |
# equation (B.3) | |
# K_centered3 = (I - 1_M) K (I - 1_M) | |
# = K - 1_M K - K 1_M + 1_M K 1_M | |
ones_M = np.ones_like(K_fit) / K_fit.shape[0] | |
K_fit_centered3 = K_fit - ones_M @ K_fit - K_fit @ ones_M + ones_M @ K_fit @ ones_M | |
assert_allclose(K_fit_centered, K_fit_centered3) | |
# K_test_centered3 = (K_test - 1'_M K)(I - 1_M) | |
# = K_test - 1'_M K - K_test 1_M + 1'_M K 1_M | |
ones_prime_M = np.ones_like(K_pred) / K_fit.shape[0] | |
K_pred_centered3 = ( | |
K_pred - ones_prime_M @ K_fit - K_pred @ ones_M + ones_prime_M @ K_fit @ ones_M | |
) | |
assert_allclose(K_pred_centered, K_pred_centered3) | |
def test_kernelcenterer_non_linear_kernel(): | |
"""Check kernel centering for non-linear kernel.""" | |
rng = np.random.RandomState(0) | |
X, X_test = rng.randn(100, 50), rng.randn(20, 50) | |
def phi(X): | |
"""Our mapping function phi.""" | |
return np.vstack( | |
[ | |
np.clip(X, a_min=0, a_max=None), | |
-np.clip(X, a_min=None, a_max=0), | |
] | |
) | |
phi_X = phi(X) | |
phi_X_test = phi(X_test) | |
# centered the projection | |
scaler = StandardScaler(with_std=False) | |
phi_X_center = scaler.fit_transform(phi_X) | |
phi_X_test_center = scaler.transform(phi_X_test) | |
# create the different kernel | |
K = phi_X @ phi_X.T | |
K_test = phi_X_test @ phi_X.T | |
K_center = phi_X_center @ phi_X_center.T | |
K_test_center = phi_X_test_center @ phi_X_center.T | |
kernel_centerer = KernelCenterer() | |
kernel_centerer.fit(K) | |
assert_allclose(kernel_centerer.transform(K), K_center) | |
assert_allclose(kernel_centerer.transform(K_test), K_test_center) | |
# check the results coherence with the method proposed in: | |
# B. Schölkopf, A. Smola, and K.R. Müller, | |
# "Nonlinear component analysis as a kernel eigenvalue problem" | |
# equation (B.3) | |
# K_centered = (I - 1_M) K (I - 1_M) | |
# = K - 1_M K - K 1_M + 1_M K 1_M | |
ones_M = np.ones_like(K) / K.shape[0] | |
K_centered = K - ones_M @ K - K @ ones_M + ones_M @ K @ ones_M | |
assert_allclose(kernel_centerer.transform(K), K_centered) | |
# K_test_centered = (K_test - 1'_M K)(I - 1_M) | |
# = K_test - 1'_M K - K_test 1_M + 1'_M K 1_M | |
ones_prime_M = np.ones_like(K_test) / K.shape[0] | |
K_test_centered = ( | |
K_test - ones_prime_M @ K - K_test @ ones_M + ones_prime_M @ K @ ones_M | |
) | |
assert_allclose(kernel_centerer.transform(K_test), K_test_centered) | |
def test_cv_pipeline_precomputed(): | |
# Cross-validate a regression on four coplanar points with the same | |
# value. Use precomputed kernel to ensure Pipeline with KernelCenterer | |
# is treated as a pairwise operation. | |
X = np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1]]) | |
y_true = np.ones((4,)) | |
K = X.dot(X.T) | |
kcent = KernelCenterer() | |
pipeline = Pipeline([("kernel_centerer", kcent), ("svr", SVR())]) | |
# did the pipeline set the pairwise attribute? | |
assert pipeline._get_tags()["pairwise"] | |
# test cross-validation, score should be almost perfect | |
# NB: this test is pretty vacuous -- it's mainly to test integration | |
# of Pipeline and KernelCenterer | |
y_pred = cross_val_predict(pipeline, K, y_true, cv=2) | |
assert_array_almost_equal(y_true, y_pred) | |
def test_fit_transform(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((5, 4)) | |
for obj in (StandardScaler(), Normalizer(), Binarizer()): | |
X_transformed = obj.fit(X).transform(X) | |
X_transformed2 = obj.fit_transform(X) | |
assert_array_equal(X_transformed, X_transformed2) | |
def test_add_dummy_feature(): | |
X = [[1, 0], [0, 1], [0, 1]] | |
X = add_dummy_feature(X) | |
assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) | |
def test_add_dummy_feature_sparse(sparse_container): | |
X = sparse_container([[1, 0], [0, 1], [0, 1]]) | |
desired_format = X.format | |
X = add_dummy_feature(X) | |
assert sparse.issparse(X) and X.format == desired_format, X | |
assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) | |
def test_fit_cold_start(): | |
X = iris.data | |
X_2d = X[:, :2] | |
# Scalers that have a partial_fit method | |
scalers = [ | |
StandardScaler(with_mean=False, with_std=False), | |
MinMaxScaler(), | |
MaxAbsScaler(), | |
] | |
for scaler in scalers: | |
scaler.fit_transform(X) | |
# with a different shape, this may break the scaler unless the internal | |
# state is reset | |
scaler.fit_transform(X_2d) | |
def test_power_transformer_notfitted(method): | |
pt = PowerTransformer(method=method) | |
X = np.abs(X_1col) | |
with pytest.raises(NotFittedError): | |
pt.transform(X) | |
with pytest.raises(NotFittedError): | |
pt.inverse_transform(X) | |
def test_power_transformer_inverse(method, standardize, X): | |
# Make sure we get the original input when applying transform and then | |
# inverse transform | |
X = np.abs(X) if method == "box-cox" else X | |
pt = PowerTransformer(method=method, standardize=standardize) | |
X_trans = pt.fit_transform(X) | |
assert_almost_equal(X, pt.inverse_transform(X_trans)) | |
def test_power_transformer_1d(): | |
X = np.abs(X_1col) | |
for standardize in [True, False]: | |
pt = PowerTransformer(method="box-cox", standardize=standardize) | |
X_trans = pt.fit_transform(X) | |
X_trans_func = power_transform(X, method="box-cox", standardize=standardize) | |
X_expected, lambda_expected = stats.boxcox(X.flatten()) | |
if standardize: | |
X_expected = scale(X_expected) | |
assert_almost_equal(X_expected.reshape(-1, 1), X_trans) | |
assert_almost_equal(X_expected.reshape(-1, 1), X_trans_func) | |
assert_almost_equal(X, pt.inverse_transform(X_trans)) | |
assert_almost_equal(lambda_expected, pt.lambdas_[0]) | |
assert len(pt.lambdas_) == X.shape[1] | |
assert isinstance(pt.lambdas_, np.ndarray) | |
def test_power_transformer_2d(): | |
X = np.abs(X_2d) | |
for standardize in [True, False]: | |
pt = PowerTransformer(method="box-cox", standardize=standardize) | |
X_trans_class = pt.fit_transform(X) | |
X_trans_func = power_transform(X, method="box-cox", standardize=standardize) | |
for X_trans in [X_trans_class, X_trans_func]: | |
for j in range(X_trans.shape[1]): | |
X_expected, lmbda = stats.boxcox(X[:, j].flatten()) | |
if standardize: | |
X_expected = scale(X_expected) | |
assert_almost_equal(X_trans[:, j], X_expected) | |
assert_almost_equal(lmbda, pt.lambdas_[j]) | |
# Test inverse transformation | |
X_inv = pt.inverse_transform(X_trans) | |
assert_array_almost_equal(X_inv, X) | |
assert len(pt.lambdas_) == X.shape[1] | |
assert isinstance(pt.lambdas_, np.ndarray) | |
def test_power_transformer_boxcox_strictly_positive_exception(): | |
# Exceptions should be raised for negative arrays and zero arrays when | |
# method is boxcox | |
pt = PowerTransformer(method="box-cox") | |
pt.fit(np.abs(X_2d)) | |
X_with_negatives = X_2d | |
not_positive_message = "strictly positive" | |
with pytest.raises(ValueError, match=not_positive_message): | |
pt.transform(X_with_negatives) | |
with pytest.raises(ValueError, match=not_positive_message): | |
pt.fit(X_with_negatives) | |
with pytest.raises(ValueError, match=not_positive_message): | |
power_transform(X_with_negatives, method="box-cox") | |
with pytest.raises(ValueError, match=not_positive_message): | |
pt.transform(np.zeros(X_2d.shape)) | |
with pytest.raises(ValueError, match=not_positive_message): | |
pt.fit(np.zeros(X_2d.shape)) | |
with pytest.raises(ValueError, match=not_positive_message): | |
power_transform(np.zeros(X_2d.shape), method="box-cox") | |
def test_power_transformer_yeojohnson_any_input(X): | |
# Yeo-Johnson method should support any kind of input | |
power_transform(X, method="yeo-johnson") | |
def test_power_transformer_shape_exception(method): | |
pt = PowerTransformer(method=method) | |
X = np.abs(X_2d) | |
pt.fit(X) | |
# Exceptions should be raised for arrays with different num_columns | |
# than during fitting | |
wrong_shape_message = ( | |
r"X has \d+ features, but PowerTransformer is " r"expecting \d+ features" | |
) | |
with pytest.raises(ValueError, match=wrong_shape_message): | |
pt.transform(X[:, 0:1]) | |
with pytest.raises(ValueError, match=wrong_shape_message): | |
pt.inverse_transform(X[:, 0:1]) | |
def test_power_transformer_lambda_zero(): | |
pt = PowerTransformer(method="box-cox", standardize=False) | |
X = np.abs(X_2d)[:, 0:1] | |
# Test the lambda = 0 case | |
pt.lambdas_ = np.array([0]) | |
X_trans = pt.transform(X) | |
assert_array_almost_equal(pt.inverse_transform(X_trans), X) | |
def test_power_transformer_lambda_one(): | |
# Make sure lambda = 1 corresponds to the identity for yeo-johnson | |
pt = PowerTransformer(method="yeo-johnson", standardize=False) | |
X = np.abs(X_2d)[:, 0:1] | |
pt.lambdas_ = np.array([1]) | |
X_trans = pt.transform(X) | |
assert_array_almost_equal(X_trans, X) | |
def test_optimization_power_transformer(method, lmbda): | |
# Test the optimization procedure: | |
# - set a predefined value for lambda | |
# - apply inverse_transform to a normal dist (we get X_inv) | |
# - apply fit_transform to X_inv (we get X_inv_trans) | |
# - check that X_inv_trans is roughly equal to X | |
rng = np.random.RandomState(0) | |
n_samples = 20000 | |
X = rng.normal(loc=0, scale=1, size=(n_samples, 1)) | |
pt = PowerTransformer(method=method, standardize=False) | |
pt.lambdas_ = [lmbda] | |
X_inv = pt.inverse_transform(X) | |
pt = PowerTransformer(method=method, standardize=False) | |
X_inv_trans = pt.fit_transform(X_inv) | |
assert_almost_equal(0, np.linalg.norm(X - X_inv_trans) / n_samples, decimal=2) | |
assert_almost_equal(0, X_inv_trans.mean(), decimal=1) | |
assert_almost_equal(1, X_inv_trans.std(), decimal=1) | |
def test_yeo_johnson_darwin_example(): | |
# test from original paper "A new family of power transformations to | |
# improve normality or symmetry" by Yeo and Johnson. | |
X = [6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3, 7.5, -6.0] | |
X = np.array(X).reshape(-1, 1) | |
lmbda = PowerTransformer(method="yeo-johnson").fit(X).lambdas_ | |
assert np.allclose(lmbda, 1.305, atol=1e-3) | |
def test_power_transformer_nans(method): | |
# Make sure lambda estimation is not influenced by NaN values | |
# and that transform() supports NaN silently | |
X = np.abs(X_1col) | |
pt = PowerTransformer(method=method) | |
pt.fit(X) | |
lmbda_no_nans = pt.lambdas_[0] | |
# concat nans at the end and check lambda stays the same | |
X = np.concatenate([X, np.full_like(X, np.nan)]) | |
X = shuffle(X, random_state=0) | |
pt.fit(X) | |
lmbda_nans = pt.lambdas_[0] | |
assert_almost_equal(lmbda_no_nans, lmbda_nans, decimal=5) | |
X_trans = pt.transform(X) | |
assert_array_equal(np.isnan(X_trans), np.isnan(X)) | |
def test_power_transformer_fit_transform(method, standardize): | |
# check that fit_transform() and fit().transform() return the same values | |
X = X_1col | |
if method == "box-cox": | |
X = np.abs(X) | |
pt = PowerTransformer(method, standardize=standardize) | |
assert_array_almost_equal(pt.fit(X).transform(X), pt.fit_transform(X)) | |
def test_power_transformer_copy_True(method, standardize): | |
# Check that neither fit, transform, fit_transform nor inverse_transform | |
# modify X inplace when copy=True | |
X = X_1col | |
if method == "box-cox": | |
X = np.abs(X) | |
X_original = X.copy() | |
assert X is not X_original # sanity checks | |
assert_array_almost_equal(X, X_original) | |
pt = PowerTransformer(method, standardize=standardize, copy=True) | |
pt.fit(X) | |
assert_array_almost_equal(X, X_original) | |
X_trans = pt.transform(X) | |
assert X_trans is not X | |
X_trans = pt.fit_transform(X) | |
assert_array_almost_equal(X, X_original) | |
assert X_trans is not X | |
X_inv_trans = pt.inverse_transform(X_trans) | |
assert X_trans is not X_inv_trans | |
def test_power_transformer_copy_False(method, standardize): | |
# check that when copy=False fit doesn't change X inplace but transform, | |
# fit_transform and inverse_transform do. | |
X = X_1col | |
if method == "box-cox": | |
X = np.abs(X) | |
X_original = X.copy() | |
assert X is not X_original # sanity checks | |
assert_array_almost_equal(X, X_original) | |
pt = PowerTransformer(method, standardize=standardize, copy=False) | |
pt.fit(X) | |
assert_array_almost_equal(X, X_original) # fit didn't change X | |
X_trans = pt.transform(X) | |
assert X_trans is X | |
if method == "box-cox": | |
X = np.abs(X) | |
X_trans = pt.fit_transform(X) | |
assert X_trans is X | |
X_inv_trans = pt.inverse_transform(X_trans) | |
assert X_trans is X_inv_trans | |
def test_power_transformer_box_cox_raise_all_nans_col(): | |
"""Check that box-cox raises informative when a column contains all nans. | |
Non-regression test for gh-26303 | |
""" | |
X = rng.random_sample((4, 5)) | |
X[:, 0] = np.nan | |
err_msg = "Column must not be all nan." | |
pt = PowerTransformer(method="box-cox") | |
with pytest.raises(ValueError, match=err_msg): | |
pt.fit_transform(X) | |
def test_standard_scaler_sparse_partial_fit_finite_variance(X_2): | |
# non-regression test for: | |
# https://github.com/scikit-learn/scikit-learn/issues/16448 | |
X_1 = sparse.random(5, 1, density=0.8) | |
scaler = StandardScaler(with_mean=False) | |
scaler.fit(X_1).partial_fit(X_2) | |
assert np.isfinite(scaler.var_[0]) | |
def test_minmax_scaler_clip(feature_range): | |
# test behaviour of the parameter 'clip' in MinMaxScaler | |
X = iris.data | |
scaler = MinMaxScaler(feature_range=feature_range, clip=True).fit(X) | |
X_min, X_max = np.min(X, axis=0), np.max(X, axis=0) | |
X_test = [np.r_[X_min[:2] - 10, X_max[2:] + 10]] | |
X_transformed = scaler.transform(X_test) | |
assert_allclose( | |
X_transformed, | |
[[feature_range[0], feature_range[0], feature_range[1], feature_range[1]]], | |
) | |
def test_standard_scaler_raise_error_for_1d_input(): | |
"""Check that `inverse_transform` from `StandardScaler` raises an error | |
with 1D array. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/19518 | |
""" | |
scaler = StandardScaler().fit(X_2d) | |
err_msg = "Expected 2D array, got 1D array instead" | |
with pytest.raises(ValueError, match=err_msg): | |
scaler.inverse_transform(X_2d[:, 0]) | |
def test_power_transformer_significantly_non_gaussian(): | |
"""Check that significantly non-Gaussian data before transforms correctly. | |
For some explored lambdas, the transformed data may be constant and will | |
be rejected. Non-regression test for | |
https://github.com/scikit-learn/scikit-learn/issues/14959 | |
""" | |
X_non_gaussian = 1e6 * np.array( | |
[0.6, 2.0, 3.0, 4.0] * 4 + [11, 12, 12, 16, 17, 20, 85, 90], dtype=np.float64 | |
).reshape(-1, 1) | |
pt = PowerTransformer() | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", RuntimeWarning) | |
X_trans = pt.fit_transform(X_non_gaussian) | |
assert not np.any(np.isnan(X_trans)) | |
assert X_trans.mean() == pytest.approx(0.0) | |
assert X_trans.std() == pytest.approx(1.0) | |
assert X_trans.min() > -2 | |
assert X_trans.max() < 2 | |
def test_one_to_one_features(Transformer): | |
"""Check one-to-one transformers give correct feature names.""" | |
tr = Transformer().fit(iris.data) | |
names_out = tr.get_feature_names_out(iris.feature_names) | |
assert_array_equal(names_out, iris.feature_names) | |
def test_one_to_one_features_pandas(Transformer): | |
"""Check one-to-one transformers give correct feature names.""" | |
pd = pytest.importorskip("pandas") | |
df = pd.DataFrame(iris.data, columns=iris.feature_names) | |
tr = Transformer().fit(df) | |
names_out_df_default = tr.get_feature_names_out() | |
assert_array_equal(names_out_df_default, iris.feature_names) | |
names_out_df_valid_in = tr.get_feature_names_out(iris.feature_names) | |
assert_array_equal(names_out_df_valid_in, iris.feature_names) | |
msg = re.escape("input_features is not equal to feature_names_in_") | |
with pytest.raises(ValueError, match=msg): | |
invalid_names = list("abcd") | |
tr.get_feature_names_out(invalid_names) | |
def test_kernel_centerer_feature_names_out(): | |
"""Test that kernel centerer `feature_names_out`.""" | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 4)) | |
X_pairwise = linear_kernel(X) | |
centerer = KernelCenterer().fit(X_pairwise) | |
names_out = centerer.get_feature_names_out() | |
samples_out2 = X_pairwise.shape[1] | |
assert_array_equal(names_out, [f"kernelcenterer{i}" for i in range(samples_out2)]) | |
def test_power_transformer_constant_feature(standardize): | |
"""Check that PowerTransfomer leaves constant features unchanged.""" | |
X = [[-2, 0, 2], [-2, 0, 2], [-2, 0, 2]] | |
pt = PowerTransformer(method="yeo-johnson", standardize=standardize).fit(X) | |
assert_allclose(pt.lambdas_, [1, 1, 1]) | |
Xft = pt.fit_transform(X) | |
Xt = pt.transform(X) | |
for Xt_ in [Xft, Xt]: | |
if standardize: | |
assert_allclose(Xt_, np.zeros_like(X)) | |
else: | |
assert_allclose(Xt_, X) | |