peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_metadata_routing.py
""" | |
Metadata Routing Utility Tests | |
""" | |
# Author: Adrin Jalali <[email protected]> | |
# License: BSD 3 clause | |
import re | |
import numpy as np | |
import pytest | |
from sklearn import config_context | |
from sklearn.base import ( | |
BaseEstimator, | |
clone, | |
) | |
from sklearn.linear_model import LinearRegression | |
from sklearn.tests.metadata_routing_common import ( | |
ConsumingClassifier, | |
ConsumingRegressor, | |
ConsumingTransformer, | |
MetaRegressor, | |
MetaTransformer, | |
NonConsumingClassifier, | |
WeightedMetaClassifier, | |
WeightedMetaRegressor, | |
_Registry, | |
assert_request_equal, | |
assert_request_is_empty, | |
check_recorded_metadata, | |
) | |
from sklearn.utils import metadata_routing | |
from sklearn.utils._metadata_requests import ( | |
COMPOSITE_METHODS, | |
METHODS, | |
SIMPLE_METHODS, | |
MethodMetadataRequest, | |
MethodPair, | |
_MetadataRequester, | |
request_is_alias, | |
request_is_valid, | |
) | |
from sklearn.utils.metadata_routing import ( | |
MetadataRequest, | |
MetadataRouter, | |
MethodMapping, | |
_RoutingNotSupportedMixin, | |
get_routing_for_object, | |
process_routing, | |
) | |
from sklearn.utils.validation import check_is_fitted | |
rng = np.random.RandomState(42) | |
N, M = 100, 4 | |
X = rng.rand(N, M) | |
y = rng.randint(0, 2, size=N) | |
my_groups = rng.randint(0, 10, size=N) | |
my_weights = rng.rand(N) | |
my_other_weights = rng.rand(N) | |
def enable_slep006(): | |
"""Enable SLEP006 for all tests.""" | |
with config_context(enable_metadata_routing=True): | |
yield | |
class SimplePipeline(BaseEstimator): | |
"""A very simple pipeline, assuming the last step is always a predictor.""" | |
def __init__(self, steps): | |
self.steps = steps | |
def fit(self, X, y, **fit_params): | |
self.steps_ = [] | |
params = process_routing(self, "fit", **fit_params) | |
X_transformed = X | |
for i, step in enumerate(self.steps[:-1]): | |
transformer = clone(step).fit( | |
X_transformed, y, **params.get(f"step_{i}").fit | |
) | |
self.steps_.append(transformer) | |
X_transformed = transformer.transform( | |
X_transformed, **params.get(f"step_{i}").transform | |
) | |
self.steps_.append( | |
clone(self.steps[-1]).fit(X_transformed, y, **params.predictor.fit) | |
) | |
return self | |
def predict(self, X, **predict_params): | |
check_is_fitted(self) | |
X_transformed = X | |
params = process_routing(self, "predict", **predict_params) | |
for i, step in enumerate(self.steps_[:-1]): | |
X_transformed = step.transform(X, **params.get(f"step_{i}").transform) | |
return self.steps_[-1].predict(X_transformed, **params.predictor.predict) | |
def get_metadata_routing(self): | |
router = MetadataRouter(owner=self.__class__.__name__) | |
for i, step in enumerate(self.steps[:-1]): | |
router.add( | |
**{f"step_{i}": step}, | |
method_mapping=MethodMapping() | |
.add(callee="fit", caller="fit") | |
.add(callee="transform", caller="fit") | |
.add(callee="transform", caller="predict"), | |
) | |
router.add(predictor=self.steps[-1], method_mapping="one-to-one") | |
return router | |
def test_assert_request_is_empty(): | |
requests = MetadataRequest(owner="test") | |
assert_request_is_empty(requests) | |
requests.fit.add_request(param="foo", alias=None) | |
# this should still work, since None is the default value | |
assert_request_is_empty(requests) | |
requests.fit.add_request(param="bar", alias="value") | |
with pytest.raises(AssertionError): | |
# now requests is no more empty | |
assert_request_is_empty(requests) | |
# but one can exclude a method | |
assert_request_is_empty(requests, exclude="fit") | |
requests.score.add_request(param="carrot", alias=True) | |
with pytest.raises(AssertionError): | |
# excluding `fit` is not enough | |
assert_request_is_empty(requests, exclude="fit") | |
# and excluding both fit and score would avoid an exception | |
assert_request_is_empty(requests, exclude=["fit", "score"]) | |
# test if a router is empty | |
assert_request_is_empty( | |
MetadataRouter(owner="test") | |
.add_self_request(WeightedMetaRegressor(estimator=None)) | |
.add(method_mapping="fit", estimator=ConsumingRegressor()) | |
) | |
def test_estimator_puts_self_in_registry(estimator): | |
"""Check that an estimator puts itself in the registry upon fit.""" | |
estimator.fit(X, y) | |
assert estimator in estimator.registry | |
def test_request_type_is_alias(val, res): | |
# Test request_is_alias | |
assert request_is_alias(val) == res | |
def test_request_type_is_valid(val, res): | |
# Test request_is_valid | |
assert request_is_valid(val) == res | |
def test_default_requests(): | |
class OddEstimator(BaseEstimator): | |
__metadata_request__fit = { | |
# set a different default request | |
"sample_weight": True | |
} # type: ignore | |
odd_request = get_routing_for_object(OddEstimator()) | |
assert odd_request.fit.requests == {"sample_weight": True} | |
# check other test estimators | |
assert not len(get_routing_for_object(NonConsumingClassifier()).fit.requests) | |
assert_request_is_empty(NonConsumingClassifier().get_metadata_routing()) | |
trs_request = get_routing_for_object(ConsumingTransformer()) | |
assert trs_request.fit.requests == { | |
"sample_weight": None, | |
"metadata": None, | |
} | |
assert trs_request.transform.requests == {"metadata": None, "sample_weight": None} | |
assert_request_is_empty(trs_request) | |
est_request = get_routing_for_object(ConsumingClassifier()) | |
assert est_request.fit.requests == { | |
"sample_weight": None, | |
"metadata": None, | |
} | |
assert_request_is_empty(est_request) | |
def test_process_routing_invalid_method(): | |
with pytest.raises(TypeError, match="Can only route and process input"): | |
process_routing(ConsumingClassifier(), "invalid_method", groups=my_groups) | |
def test_process_routing_invalid_object(): | |
class InvalidObject: | |
pass | |
with pytest.raises(AttributeError, match="either implement the routing method"): | |
process_routing(InvalidObject(), "fit", groups=my_groups) | |
def test_process_routing_empty_params_get_with_default(method, default): | |
empty_params = {} | |
routed_params = process_routing(ConsumingClassifier(), "fit", **empty_params) | |
# Behaviour should be an empty dictionary returned for each method when retrieved. | |
params_for_method = routed_params[method] | |
assert isinstance(params_for_method, dict) | |
assert set(params_for_method.keys()) == set(METHODS) | |
# No default to `get` should be equivalent to the default | |
default_params_for_method = routed_params.get(method, default=default) | |
assert default_params_for_method == params_for_method | |
def test_simple_metadata_routing(): | |
# Tests that metadata is properly routed | |
# The underlying estimator doesn't accept or request metadata | |
clf = WeightedMetaClassifier(estimator=NonConsumingClassifier()) | |
clf.fit(X, y) | |
# Meta-estimator consumes sample_weight, but doesn't forward it to the underlying | |
# estimator | |
clf = WeightedMetaClassifier(estimator=NonConsumingClassifier()) | |
clf.fit(X, y, sample_weight=my_weights) | |
# If the estimator accepts the metadata but doesn't explicitly say it doesn't | |
# need it, there's an error | |
clf = WeightedMetaClassifier(estimator=ConsumingClassifier()) | |
err_message = ( | |
"[sample_weight] are passed but are not explicitly set as requested or" | |
" not for ConsumingClassifier.fit" | |
) | |
with pytest.raises(ValueError, match=re.escape(err_message)): | |
clf.fit(X, y, sample_weight=my_weights) | |
# Explicitly saying the estimator doesn't need it, makes the error go away, | |
# because in this case `WeightedMetaClassifier` consumes `sample_weight`. If | |
# there was no consumer of sample_weight, passing it would result in an | |
# error. | |
clf = WeightedMetaClassifier( | |
estimator=ConsumingClassifier().set_fit_request(sample_weight=False) | |
) | |
# this doesn't raise since WeightedMetaClassifier itself is a consumer, | |
# and passing metadata to the consumer directly is fine regardless of its | |
# metadata_request values. | |
clf.fit(X, y, sample_weight=my_weights) | |
check_recorded_metadata(clf.estimator_, "fit") | |
# Requesting a metadata will make the meta-estimator forward it correctly | |
clf = WeightedMetaClassifier( | |
estimator=ConsumingClassifier().set_fit_request(sample_weight=True) | |
) | |
clf.fit(X, y, sample_weight=my_weights) | |
check_recorded_metadata(clf.estimator_, "fit", sample_weight=my_weights) | |
# And requesting it with an alias | |
clf = WeightedMetaClassifier( | |
estimator=ConsumingClassifier().set_fit_request( | |
sample_weight="alternative_weight" | |
) | |
) | |
clf.fit(X, y, alternative_weight=my_weights) | |
check_recorded_metadata(clf.estimator_, "fit", sample_weight=my_weights) | |
def test_nested_routing(): | |
# check if metadata is routed in a nested routing situation. | |
pipeline = SimplePipeline( | |
[ | |
MetaTransformer( | |
transformer=ConsumingTransformer() | |
.set_fit_request(metadata=True, sample_weight=False) | |
.set_transform_request(sample_weight=True, metadata=False) | |
), | |
WeightedMetaRegressor( | |
estimator=ConsumingRegressor() | |
.set_fit_request(sample_weight="inner_weights", metadata=False) | |
.set_predict_request(sample_weight=False) | |
).set_fit_request(sample_weight="outer_weights"), | |
] | |
) | |
w1, w2, w3 = [1], [2], [3] | |
pipeline.fit( | |
X, y, metadata=my_groups, sample_weight=w1, outer_weights=w2, inner_weights=w3 | |
) | |
check_recorded_metadata( | |
pipeline.steps_[0].transformer_, "fit", metadata=my_groups, sample_weight=None | |
) | |
check_recorded_metadata( | |
pipeline.steps_[0].transformer_, "transform", sample_weight=w1, metadata=None | |
) | |
check_recorded_metadata(pipeline.steps_[1], "fit", sample_weight=w2) | |
check_recorded_metadata(pipeline.steps_[1].estimator_, "fit", sample_weight=w3) | |
pipeline.predict(X, sample_weight=w3) | |
check_recorded_metadata( | |
pipeline.steps_[0].transformer_, "transform", sample_weight=w3, metadata=None | |
) | |
def test_nested_routing_conflict(): | |
# check if an error is raised if there's a conflict between keys | |
pipeline = SimplePipeline( | |
[ | |
MetaTransformer( | |
transformer=ConsumingTransformer() | |
.set_fit_request(metadata=True, sample_weight=False) | |
.set_transform_request(sample_weight=True) | |
), | |
WeightedMetaRegressor( | |
estimator=ConsumingRegressor().set_fit_request(sample_weight=True) | |
).set_fit_request(sample_weight="outer_weights"), | |
] | |
) | |
w1, w2 = [1], [2] | |
with pytest.raises( | |
ValueError, | |
match=( | |
re.escape( | |
"In WeightedMetaRegressor, there is a conflict on sample_weight between" | |
" what is requested for this estimator and what is requested by its" | |
" children. You can resolve this conflict by using an alias for the" | |
" child estimator(s) requested metadata." | |
) | |
), | |
): | |
pipeline.fit(X, y, metadata=my_groups, sample_weight=w1, outer_weights=w2) | |
def test_invalid_metadata(): | |
# check that passing wrong metadata raises an error | |
trs = MetaTransformer( | |
transformer=ConsumingTransformer().set_transform_request(sample_weight=True) | |
) | |
with pytest.raises( | |
TypeError, | |
match=(re.escape("transform got unexpected argument(s) {'other_param'}")), | |
): | |
trs.fit(X, y).transform(X, other_param=my_weights) | |
# passing a metadata which is not requested by any estimator should also raise | |
trs = MetaTransformer( | |
transformer=ConsumingTransformer().set_transform_request(sample_weight=False) | |
) | |
with pytest.raises( | |
TypeError, | |
match=(re.escape("transform got unexpected argument(s) {'sample_weight'}")), | |
): | |
trs.fit(X, y).transform(X, sample_weight=my_weights) | |
def test_get_metadata_routing(): | |
class TestDefaultsBadMethodName(_MetadataRequester): | |
__metadata_request__fit = { | |
"sample_weight": None, | |
"my_param": None, | |
} | |
__metadata_request__score = { | |
"sample_weight": None, | |
"my_param": True, | |
"my_other_param": None, | |
} | |
# this will raise an error since we don't understand "other_method" as a method | |
__metadata_request__other_method = {"my_param": True} | |
class TestDefaults(_MetadataRequester): | |
__metadata_request__fit = { | |
"sample_weight": None, | |
"my_other_param": None, | |
} | |
__metadata_request__score = { | |
"sample_weight": None, | |
"my_param": True, | |
"my_other_param": None, | |
} | |
__metadata_request__predict = {"my_param": True} | |
with pytest.raises( | |
AttributeError, match="'MetadataRequest' object has no attribute 'other_method'" | |
): | |
TestDefaultsBadMethodName().get_metadata_routing() | |
expected = { | |
"score": { | |
"my_param": True, | |
"my_other_param": None, | |
"sample_weight": None, | |
}, | |
"fit": { | |
"my_other_param": None, | |
"sample_weight": None, | |
}, | |
"predict": {"my_param": True}, | |
} | |
assert_request_equal(TestDefaults().get_metadata_routing(), expected) | |
est = TestDefaults().set_score_request(my_param="other_param") | |
expected = { | |
"score": { | |
"my_param": "other_param", | |
"my_other_param": None, | |
"sample_weight": None, | |
}, | |
"fit": { | |
"my_other_param": None, | |
"sample_weight": None, | |
}, | |
"predict": {"my_param": True}, | |
} | |
assert_request_equal(est.get_metadata_routing(), expected) | |
est = TestDefaults().set_fit_request(sample_weight=True) | |
expected = { | |
"score": { | |
"my_param": True, | |
"my_other_param": None, | |
"sample_weight": None, | |
}, | |
"fit": { | |
"my_other_param": None, | |
"sample_weight": True, | |
}, | |
"predict": {"my_param": True}, | |
} | |
assert_request_equal(est.get_metadata_routing(), expected) | |
def test_setting_default_requests(): | |
# Test _get_default_requests method | |
test_cases = dict() | |
class ExplicitRequest(BaseEstimator): | |
# `fit` doesn't accept `props` explicitly, but we want to request it | |
__metadata_request__fit = {"prop": None} | |
def fit(self, X, y, **kwargs): | |
return self | |
test_cases[ExplicitRequest] = {"prop": None} | |
class ExplicitRequestOverwrite(BaseEstimator): | |
# `fit` explicitly accepts `props`, but we want to change the default | |
# request value from None to True | |
__metadata_request__fit = {"prop": True} | |
def fit(self, X, y, prop=None, **kwargs): | |
return self | |
test_cases[ExplicitRequestOverwrite] = {"prop": True} | |
class ImplicitRequest(BaseEstimator): | |
# `fit` requests `prop` and the default None should be used | |
def fit(self, X, y, prop=None, **kwargs): | |
return self | |
test_cases[ImplicitRequest] = {"prop": None} | |
class ImplicitRequestRemoval(BaseEstimator): | |
# `fit` (in this class or a parent) requests `prop`, but we don't want | |
# it requested at all. | |
__metadata_request__fit = {"prop": metadata_routing.UNUSED} | |
def fit(self, X, y, prop=None, **kwargs): | |
return self | |
test_cases[ImplicitRequestRemoval] = {} | |
for Klass, requests in test_cases.items(): | |
assert get_routing_for_object(Klass()).fit.requests == requests | |
assert_request_is_empty(Klass().get_metadata_routing(), exclude="fit") | |
Klass().fit(None, None) # for coverage | |
def test_removing_non_existing_param_raises(): | |
"""Test that removing a metadata using UNUSED which doesn't exist raises.""" | |
class InvalidRequestRemoval(BaseEstimator): | |
# `fit` (in this class or a parent) requests `prop`, but we don't want | |
# it requested at all. | |
__metadata_request__fit = {"prop": metadata_routing.UNUSED} | |
def fit(self, X, y, **kwargs): | |
return self | |
with pytest.raises(ValueError, match="Trying to remove parameter"): | |
InvalidRequestRemoval().get_metadata_routing() | |
def test_method_metadata_request(): | |
mmr = MethodMetadataRequest(owner="test", method="fit") | |
with pytest.raises(ValueError, match="The alias you're setting for"): | |
mmr.add_request(param="foo", alias=1.4) | |
mmr.add_request(param="foo", alias=None) | |
assert mmr.requests == {"foo": None} | |
mmr.add_request(param="foo", alias=False) | |
assert mmr.requests == {"foo": False} | |
mmr.add_request(param="foo", alias=True) | |
assert mmr.requests == {"foo": True} | |
mmr.add_request(param="foo", alias="foo") | |
assert mmr.requests == {"foo": True} | |
mmr.add_request(param="foo", alias="bar") | |
assert mmr.requests == {"foo": "bar"} | |
assert mmr._get_param_names(return_alias=False) == {"foo"} | |
assert mmr._get_param_names(return_alias=True) == {"bar"} | |
def test_get_routing_for_object(): | |
class Consumer(BaseEstimator): | |
__metadata_request__fit = {"prop": None} | |
assert_request_is_empty(get_routing_for_object(None)) | |
assert_request_is_empty(get_routing_for_object(object())) | |
mr = MetadataRequest(owner="test") | |
mr.fit.add_request(param="foo", alias="bar") | |
mr_factory = get_routing_for_object(mr) | |
assert_request_is_empty(mr_factory, exclude="fit") | |
assert mr_factory.fit.requests == {"foo": "bar"} | |
mr = get_routing_for_object(Consumer()) | |
assert_request_is_empty(mr, exclude="fit") | |
assert mr.fit.requests == {"prop": None} | |
def test_metadata_request_consumes_method(): | |
"""Test that MetadataRequest().consumes() method works as expected.""" | |
request = MetadataRouter(owner="test") | |
assert request.consumes(method="fit", params={"foo"}) == set() | |
request = MetadataRequest(owner="test") | |
request.fit.add_request(param="foo", alias=True) | |
assert request.consumes(method="fit", params={"foo"}) == {"foo"} | |
request = MetadataRequest(owner="test") | |
request.fit.add_request(param="foo", alias="bar") | |
assert request.consumes(method="fit", params={"bar", "foo"}) == {"bar"} | |
def test_metadata_router_consumes_method(): | |
"""Test that MetadataRouter().consumes method works as expected.""" | |
# having it here instead of parametrizing the test since `set_fit_request` | |
# is not available while collecting the tests. | |
cases = [ | |
( | |
WeightedMetaRegressor( | |
estimator=ConsumingRegressor().set_fit_request(sample_weight=True) | |
), | |
{"sample_weight"}, | |
{"sample_weight"}, | |
), | |
( | |
WeightedMetaRegressor( | |
estimator=ConsumingRegressor().set_fit_request( | |
sample_weight="my_weights" | |
) | |
), | |
{"my_weights", "sample_weight"}, | |
{"my_weights"}, | |
), | |
] | |
for obj, input, output in cases: | |
assert obj.get_metadata_routing().consumes(method="fit", params=input) == output | |
def test_metaestimator_warnings(): | |
class WeightedMetaRegressorWarn(WeightedMetaRegressor): | |
__metadata_request__fit = {"sample_weight": metadata_routing.WARN} | |
with pytest.warns( | |
UserWarning, match="Support for .* has recently been added to this class" | |
): | |
WeightedMetaRegressorWarn( | |
estimator=LinearRegression().set_fit_request(sample_weight=False) | |
).fit(X, y, sample_weight=my_weights) | |
def test_estimator_warnings(): | |
class ConsumingRegressorWarn(ConsumingRegressor): | |
__metadata_request__fit = {"sample_weight": metadata_routing.WARN} | |
with pytest.warns( | |
UserWarning, match="Support for .* has recently been added to this class" | |
): | |
MetaRegressor(estimator=ConsumingRegressorWarn()).fit( | |
X, y, sample_weight=my_weights | |
) | |
def test_string_representations(obj, string): | |
assert str(obj) == string | |
def test_validations(obj, method, inputs, err_cls, err_msg): | |
with pytest.raises(err_cls, match=err_msg): | |
getattr(obj, method)(**inputs) | |
def test_methodmapping(): | |
mm = ( | |
MethodMapping() | |
.add(caller="fit", callee="transform") | |
.add(caller="fit", callee="fit") | |
) | |
mm_list = list(mm) | |
assert mm_list[0] == ("transform", "fit") | |
assert mm_list[1] == ("fit", "fit") | |
mm = MethodMapping.from_str("one-to-one") | |
for method in METHODS: | |
assert MethodPair(method, method) in mm._routes | |
assert len(mm._routes) == len(METHODS) | |
mm = MethodMapping.from_str("score") | |
assert repr(mm) == "[{'callee': 'score', 'caller': 'score'}]" | |
def test_metadatarouter_add_self_request(): | |
# adding a MetadataRequest as `self` adds a copy | |
request = MetadataRequest(owner="nested") | |
request.fit.add_request(param="param", alias=True) | |
router = MetadataRouter(owner="test").add_self_request(request) | |
assert str(router._self_request) == str(request) | |
# should be a copy, not the same object | |
assert router._self_request is not request | |
# one can add an estimator as self | |
est = ConsumingRegressor().set_fit_request(sample_weight="my_weights") | |
router = MetadataRouter(owner="test").add_self_request(obj=est) | |
assert str(router._self_request) == str(est.get_metadata_routing()) | |
assert router._self_request is not est.get_metadata_routing() | |
# adding a consumer+router as self should only add the consumer part | |
est = WeightedMetaRegressor( | |
estimator=ConsumingRegressor().set_fit_request(sample_weight="nested_weights") | |
) | |
router = MetadataRouter(owner="test").add_self_request(obj=est) | |
# _get_metadata_request() returns the consumer part of the requests | |
assert str(router._self_request) == str(est._get_metadata_request()) | |
# get_metadata_routing() returns the complete request set, consumer and | |
# router included. | |
assert str(router._self_request) != str(est.get_metadata_routing()) | |
# it should be a copy, not the same object | |
assert router._self_request is not est._get_metadata_request() | |
def test_metadata_routing_add(): | |
# adding one with a string `method_mapping` | |
router = MetadataRouter(owner="test").add( | |
method_mapping="fit", | |
est=ConsumingRegressor().set_fit_request(sample_weight="weights"), | |
) | |
assert ( | |
str(router) | |
== "{'est': {'mapping': [{'callee': 'fit', 'caller': 'fit'}], 'router': {'fit':" | |
" {'sample_weight': 'weights', 'metadata': None}, 'partial_fit':" | |
" {'sample_weight': None, 'metadata': None}, 'predict': {'sample_weight':" | |
" None, 'metadata': None}, 'score': {'sample_weight': None}}}}" | |
) | |
# adding one with an instance of MethodMapping | |
router = MetadataRouter(owner="test").add( | |
method_mapping=MethodMapping().add(callee="score", caller="fit"), | |
est=ConsumingRegressor().set_score_request(sample_weight=True), | |
) | |
assert ( | |
str(router) | |
== "{'est': {'mapping': [{'callee': 'score', 'caller': 'fit'}], 'router':" | |
" {'fit': {'sample_weight': None, 'metadata': None}, 'partial_fit':" | |
" {'sample_weight': None, 'metadata': None}, 'predict': {'sample_weight':" | |
" None, 'metadata': None}, 'score': {'sample_weight': True}}}}" | |
) | |
def test_metadata_routing_get_param_names(): | |
router = ( | |
MetadataRouter(owner="test") | |
.add_self_request( | |
WeightedMetaRegressor(estimator=ConsumingRegressor()).set_fit_request( | |
sample_weight="self_weights" | |
) | |
) | |
.add( | |
method_mapping="fit", | |
trs=ConsumingTransformer().set_fit_request( | |
sample_weight="transform_weights" | |
), | |
) | |
) | |
assert ( | |
str(router) | |
== "{'$self_request': {'fit': {'sample_weight': 'self_weights'}, 'score':" | |
" {'sample_weight': None}}, 'trs': {'mapping': [{'callee': 'fit', 'caller':" | |
" 'fit'}], 'router': {'fit': {'sample_weight': 'transform_weights'," | |
" 'metadata': None}, 'transform': {'sample_weight': None, 'metadata': None}," | |
" 'inverse_transform': {'sample_weight': None, 'metadata': None}}}}" | |
) | |
assert router._get_param_names( | |
method="fit", return_alias=True, ignore_self_request=False | |
) == {"transform_weights", "metadata", "self_weights"} | |
# return_alias=False will return original names for "self" | |
assert router._get_param_names( | |
method="fit", return_alias=False, ignore_self_request=False | |
) == {"sample_weight", "metadata", "transform_weights"} | |
# ignoring self would remove "sample_weight" | |
assert router._get_param_names( | |
method="fit", return_alias=False, ignore_self_request=True | |
) == {"metadata", "transform_weights"} | |
# return_alias is ignored when ignore_self_request=True | |
assert router._get_param_names( | |
method="fit", return_alias=True, ignore_self_request=True | |
) == router._get_param_names( | |
method="fit", return_alias=False, ignore_self_request=True | |
) | |
def test_method_generation(): | |
# Test if all required request methods are generated. | |
# TODO: these test classes can be moved to sklearn.utils._testing once we | |
# have a better idea of what the commonly used classes are. | |
class SimpleEstimator(BaseEstimator): | |
# This class should have no set_{method}_request | |
def fit(self, X, y): | |
pass # pragma: no cover | |
def fit_transform(self, X, y): | |
pass # pragma: no cover | |
def fit_predict(self, X, y): | |
pass # pragma: no cover | |
def partial_fit(self, X, y): | |
pass # pragma: no cover | |
def predict(self, X): | |
pass # pragma: no cover | |
def predict_proba(self, X): | |
pass # pragma: no cover | |
def predict_log_proba(self, X): | |
pass # pragma: no cover | |
def decision_function(self, X): | |
pass # pragma: no cover | |
def score(self, X, y): | |
pass # pragma: no cover | |
def split(self, X, y=None): | |
pass # pragma: no cover | |
def transform(self, X): | |
pass # pragma: no cover | |
def inverse_transform(self, X): | |
pass # pragma: no cover | |
for method in METHODS: | |
assert not hasattr(SimpleEstimator(), f"set_{method}_request") | |
class SimpleEstimator(BaseEstimator): | |
# This class should have every set_{method}_request | |
def fit(self, X, y, sample_weight=None): | |
pass # pragma: no cover | |
def fit_transform(self, X, y, sample_weight=None): | |
pass # pragma: no cover | |
def fit_predict(self, X, y, sample_weight=None): | |
pass # pragma: no cover | |
def partial_fit(self, X, y, sample_weight=None): | |
pass # pragma: no cover | |
def predict(self, X, sample_weight=None): | |
pass # pragma: no cover | |
def predict_proba(self, X, sample_weight=None): | |
pass # pragma: no cover | |
def predict_log_proba(self, X, sample_weight=None): | |
pass # pragma: no cover | |
def decision_function(self, X, sample_weight=None): | |
pass # pragma: no cover | |
def score(self, X, y, sample_weight=None): | |
pass # pragma: no cover | |
def split(self, X, y=None, sample_weight=None): | |
pass # pragma: no cover | |
def transform(self, X, sample_weight=None): | |
pass # pragma: no cover | |
def inverse_transform(self, X, sample_weight=None): | |
pass # pragma: no cover | |
# composite methods shouldn't have a corresponding set method. | |
for method in COMPOSITE_METHODS: | |
assert not hasattr(SimpleEstimator(), f"set_{method}_request") | |
# simple methods should have a corresponding set method. | |
for method in SIMPLE_METHODS: | |
assert hasattr(SimpleEstimator(), f"set_{method}_request") | |
def test_composite_methods(): | |
# Test the behavior and the values of methods (composite methods) whose | |
# request values are a union of requests by other methods (simple methods). | |
# fit_transform and fit_predict are the only composite methods we have in | |
# scikit-learn. | |
class SimpleEstimator(BaseEstimator): | |
# This class should have every set_{method}_request | |
def fit(self, X, y, foo=None, bar=None): | |
pass # pragma: no cover | |
def predict(self, X, foo=None, bar=None): | |
pass # pragma: no cover | |
def transform(self, X, other_param=None): | |
pass # pragma: no cover | |
est = SimpleEstimator() | |
# Since no request is set for fit or predict or transform, the request for | |
# fit_transform and fit_predict should also be empty. | |
assert est.get_metadata_routing().fit_transform.requests == { | |
"bar": None, | |
"foo": None, | |
"other_param": None, | |
} | |
assert est.get_metadata_routing().fit_predict.requests == {"bar": None, "foo": None} | |
# setting the request on only one of them should raise an error | |
est.set_fit_request(foo=True, bar="test") | |
with pytest.raises(ValueError, match="Conflicting metadata requests for"): | |
est.get_metadata_routing().fit_predict | |
# setting the request on the other one should fail if not the same as the | |
# first method | |
est.set_predict_request(bar=True) | |
with pytest.raises(ValueError, match="Conflicting metadata requests for"): | |
est.get_metadata_routing().fit_predict | |
# now the requests are consistent and getting the requests for fit_predict | |
# shouldn't raise. | |
est.set_predict_request(foo=True, bar="test") | |
est.get_metadata_routing().fit_predict | |
# setting the request for a none-overlapping parameter would merge them | |
# together. | |
est.set_transform_request(other_param=True) | |
assert est.get_metadata_routing().fit_transform.requests == { | |
"bar": "test", | |
"foo": True, | |
"other_param": True, | |
} | |
def test_no_feature_flag_raises_error(): | |
"""Test that when feature flag disabled, set_{method}_requests raises.""" | |
with config_context(enable_metadata_routing=False): | |
with pytest.raises(RuntimeError, match="This method is only available"): | |
ConsumingClassifier().set_fit_request(sample_weight=True) | |
def test_none_metadata_passed(): | |
"""Test that passing None as metadata when not requested doesn't raise""" | |
MetaRegressor(estimator=ConsumingRegressor()).fit(X, y, sample_weight=None) | |
def test_no_metadata_always_works(): | |
"""Test that when no metadata is passed, having a meta-estimator which does | |
not yet support metadata routing works. | |
Non-regression test for https://github.com/scikit-learn/scikit-learn/issues/28246 | |
""" | |
class Estimator(_RoutingNotSupportedMixin, BaseEstimator): | |
def fit(self, X, y, metadata=None): | |
return self | |
# This passes since no metadata is passed. | |
MetaRegressor(estimator=Estimator()).fit(X, y) | |
# This fails since metadata is passed but Estimator() does not support it. | |
with pytest.raises( | |
NotImplementedError, match="Estimator has not implemented metadata routing yet." | |
): | |
MetaRegressor(estimator=Estimator()).fit(X, y, metadata=my_groups) | |