peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_public_functions.py
from importlib import import_module | |
from inspect import signature | |
from numbers import Integral, Real | |
import pytest | |
from sklearn.utils._param_validation import ( | |
Interval, | |
InvalidParameterError, | |
generate_invalid_param_val, | |
generate_valid_param, | |
make_constraint, | |
) | |
def _get_func_info(func_module): | |
module_name, func_name = func_module.rsplit(".", 1) | |
module = import_module(module_name) | |
func = getattr(module, func_name) | |
func_sig = signature(func) | |
func_params = [ | |
p.name | |
for p in func_sig.parameters.values() | |
if p.kind not in (p.VAR_POSITIONAL, p.VAR_KEYWORD) | |
] | |
# The parameters `*args` and `**kwargs` are ignored since we cannot generate | |
# constraints. | |
required_params = [ | |
p.name | |
for p in func_sig.parameters.values() | |
if p.default is p.empty and p.kind not in (p.VAR_POSITIONAL, p.VAR_KEYWORD) | |
] | |
return func, func_name, func_params, required_params | |
def _check_function_param_validation( | |
func, func_name, func_params, required_params, parameter_constraints | |
): | |
"""Check that an informative error is raised when the value of a parameter does not | |
have an appropriate type or value. | |
""" | |
# generate valid values for the required parameters | |
valid_required_params = {} | |
for param_name in required_params: | |
if parameter_constraints[param_name] == "no_validation": | |
valid_required_params[param_name] = 1 | |
else: | |
valid_required_params[param_name] = generate_valid_param( | |
make_constraint(parameter_constraints[param_name][0]) | |
) | |
# check that there is a constraint for each parameter | |
if func_params: | |
validation_params = parameter_constraints.keys() | |
unexpected_params = set(validation_params) - set(func_params) | |
missing_params = set(func_params) - set(validation_params) | |
err_msg = ( | |
"Mismatch between _parameter_constraints and the parameters of" | |
f" {func_name}.\nConsider the unexpected parameters {unexpected_params} and" | |
f" expected but missing parameters {missing_params}\n" | |
) | |
assert set(validation_params) == set(func_params), err_msg | |
# this object does not have a valid type for sure for all params | |
param_with_bad_type = type("BadType", (), {})() | |
for param_name in func_params: | |
constraints = parameter_constraints[param_name] | |
if constraints == "no_validation": | |
# This parameter is not validated | |
continue | |
# Mixing an interval of reals and an interval of integers must be avoided. | |
if any( | |
isinstance(constraint, Interval) and constraint.type == Integral | |
for constraint in constraints | |
) and any( | |
isinstance(constraint, Interval) and constraint.type == Real | |
for constraint in constraints | |
): | |
raise ValueError( | |
f"The constraint for parameter {param_name} of {func_name} can't have a" | |
" mix of intervals of Integral and Real types. Use the type" | |
" RealNotInt instead of Real." | |
) | |
match = ( | |
rf"The '{param_name}' parameter of {func_name} must be .* Got .* instead." | |
) | |
err_msg = ( | |
f"{func_name} does not raise an informative error message when the " | |
f"parameter {param_name} does not have a valid type. If any Python type " | |
"is valid, the constraint should be 'no_validation'." | |
) | |
# First, check that the error is raised if param doesn't match any valid type. | |
with pytest.raises(InvalidParameterError, match=match): | |
func(**{**valid_required_params, param_name: param_with_bad_type}) | |
pytest.fail(err_msg) | |
# Then, for constraints that are more than a type constraint, check that the | |
# error is raised if param does match a valid type but does not match any valid | |
# value for this type. | |
constraints = [make_constraint(constraint) for constraint in constraints] | |
for constraint in constraints: | |
try: | |
bad_value = generate_invalid_param_val(constraint) | |
except NotImplementedError: | |
continue | |
err_msg = ( | |
f"{func_name} does not raise an informative error message when the " | |
f"parameter {param_name} does not have a valid value.\n" | |
"Constraints should be disjoint. For instance " | |
"[StrOptions({'a_string'}), str] is not a acceptable set of " | |
"constraint because generating an invalid string for the first " | |
"constraint will always produce a valid string for the second " | |
"constraint." | |
) | |
with pytest.raises(InvalidParameterError, match=match): | |
func(**{**valid_required_params, param_name: bad_value}) | |
pytest.fail(err_msg) | |
PARAM_VALIDATION_FUNCTION_LIST = [ | |
"sklearn.calibration.calibration_curve", | |
"sklearn.cluster.cluster_optics_dbscan", | |
"sklearn.cluster.compute_optics_graph", | |
"sklearn.cluster.estimate_bandwidth", | |
"sklearn.cluster.kmeans_plusplus", | |
"sklearn.cluster.cluster_optics_xi", | |
"sklearn.cluster.ward_tree", | |
"sklearn.covariance.empirical_covariance", | |
"sklearn.covariance.ledoit_wolf_shrinkage", | |
"sklearn.covariance.log_likelihood", | |
"sklearn.covariance.shrunk_covariance", | |
"sklearn.datasets.clear_data_home", | |
"sklearn.datasets.dump_svmlight_file", | |
"sklearn.datasets.fetch_20newsgroups", | |
"sklearn.datasets.fetch_20newsgroups_vectorized", | |
"sklearn.datasets.fetch_california_housing", | |
"sklearn.datasets.fetch_covtype", | |
"sklearn.datasets.fetch_kddcup99", | |
"sklearn.datasets.fetch_lfw_pairs", | |
"sklearn.datasets.fetch_lfw_people", | |
"sklearn.datasets.fetch_olivetti_faces", | |
"sklearn.datasets.fetch_rcv1", | |
"sklearn.datasets.fetch_openml", | |
"sklearn.datasets.fetch_species_distributions", | |
"sklearn.datasets.get_data_home", | |
"sklearn.datasets.load_breast_cancer", | |
"sklearn.datasets.load_diabetes", | |
"sklearn.datasets.load_digits", | |
"sklearn.datasets.load_files", | |
"sklearn.datasets.load_iris", | |
"sklearn.datasets.load_linnerud", | |
"sklearn.datasets.load_sample_image", | |
"sklearn.datasets.load_svmlight_file", | |
"sklearn.datasets.load_svmlight_files", | |
"sklearn.datasets.load_wine", | |
"sklearn.datasets.make_biclusters", | |
"sklearn.datasets.make_blobs", | |
"sklearn.datasets.make_checkerboard", | |
"sklearn.datasets.make_circles", | |
"sklearn.datasets.make_classification", | |
"sklearn.datasets.make_friedman1", | |
"sklearn.datasets.make_friedman2", | |
"sklearn.datasets.make_friedman3", | |
"sklearn.datasets.make_gaussian_quantiles", | |
"sklearn.datasets.make_hastie_10_2", | |
"sklearn.datasets.make_low_rank_matrix", | |
"sklearn.datasets.make_moons", | |
"sklearn.datasets.make_multilabel_classification", | |
"sklearn.datasets.make_regression", | |
"sklearn.datasets.make_s_curve", | |
"sklearn.datasets.make_sparse_coded_signal", | |
"sklearn.datasets.make_sparse_spd_matrix", | |
"sklearn.datasets.make_sparse_uncorrelated", | |
"sklearn.datasets.make_spd_matrix", | |
"sklearn.datasets.make_swiss_roll", | |
"sklearn.decomposition.sparse_encode", | |
"sklearn.feature_extraction.grid_to_graph", | |
"sklearn.feature_extraction.img_to_graph", | |
"sklearn.feature_extraction.image.extract_patches_2d", | |
"sklearn.feature_extraction.image.reconstruct_from_patches_2d", | |
"sklearn.feature_selection.chi2", | |
"sklearn.feature_selection.f_classif", | |
"sklearn.feature_selection.f_regression", | |
"sklearn.feature_selection.mutual_info_classif", | |
"sklearn.feature_selection.mutual_info_regression", | |
"sklearn.feature_selection.r_regression", | |
"sklearn.inspection.partial_dependence", | |
"sklearn.inspection.permutation_importance", | |
"sklearn.isotonic.check_increasing", | |
"sklearn.isotonic.isotonic_regression", | |
"sklearn.linear_model.enet_path", | |
"sklearn.linear_model.lars_path", | |
"sklearn.linear_model.lars_path_gram", | |
"sklearn.linear_model.lasso_path", | |
"sklearn.linear_model.orthogonal_mp", | |
"sklearn.linear_model.orthogonal_mp_gram", | |
"sklearn.linear_model.ridge_regression", | |
"sklearn.manifold.trustworthiness", | |
"sklearn.metrics.accuracy_score", | |
"sklearn.manifold.smacof", | |
"sklearn.metrics.auc", | |
"sklearn.metrics.average_precision_score", | |
"sklearn.metrics.balanced_accuracy_score", | |
"sklearn.metrics.brier_score_loss", | |
"sklearn.metrics.calinski_harabasz_score", | |
"sklearn.metrics.check_scoring", | |
"sklearn.metrics.completeness_score", | |
"sklearn.metrics.class_likelihood_ratios", | |
"sklearn.metrics.classification_report", | |
"sklearn.metrics.cluster.adjusted_mutual_info_score", | |
"sklearn.metrics.cluster.contingency_matrix", | |
"sklearn.metrics.cluster.entropy", | |
"sklearn.metrics.cluster.fowlkes_mallows_score", | |
"sklearn.metrics.cluster.homogeneity_completeness_v_measure", | |
"sklearn.metrics.cluster.normalized_mutual_info_score", | |
"sklearn.metrics.cluster.silhouette_samples", | |
"sklearn.metrics.cluster.silhouette_score", | |
"sklearn.metrics.cohen_kappa_score", | |
"sklearn.metrics.confusion_matrix", | |
"sklearn.metrics.consensus_score", | |
"sklearn.metrics.coverage_error", | |
"sklearn.metrics.d2_absolute_error_score", | |
"sklearn.metrics.d2_pinball_score", | |
"sklearn.metrics.d2_tweedie_score", | |
"sklearn.metrics.davies_bouldin_score", | |
"sklearn.metrics.dcg_score", | |
"sklearn.metrics.det_curve", | |
"sklearn.metrics.explained_variance_score", | |
"sklearn.metrics.f1_score", | |
"sklearn.metrics.fbeta_score", | |
"sklearn.metrics.get_scorer", | |
"sklearn.metrics.hamming_loss", | |
"sklearn.metrics.hinge_loss", | |
"sklearn.metrics.homogeneity_score", | |
"sklearn.metrics.jaccard_score", | |
"sklearn.metrics.label_ranking_average_precision_score", | |
"sklearn.metrics.label_ranking_loss", | |
"sklearn.metrics.log_loss", | |
"sklearn.metrics.make_scorer", | |
"sklearn.metrics.matthews_corrcoef", | |
"sklearn.metrics.max_error", | |
"sklearn.metrics.mean_absolute_error", | |
"sklearn.metrics.mean_absolute_percentage_error", | |
"sklearn.metrics.mean_gamma_deviance", | |
"sklearn.metrics.mean_pinball_loss", | |
"sklearn.metrics.mean_poisson_deviance", | |
"sklearn.metrics.mean_squared_error", | |
"sklearn.metrics.mean_squared_log_error", | |
"sklearn.metrics.mean_tweedie_deviance", | |
"sklearn.metrics.median_absolute_error", | |
"sklearn.metrics.multilabel_confusion_matrix", | |
"sklearn.metrics.mutual_info_score", | |
"sklearn.metrics.ndcg_score", | |
"sklearn.metrics.pair_confusion_matrix", | |
"sklearn.metrics.adjusted_rand_score", | |
"sklearn.metrics.pairwise.additive_chi2_kernel", | |
"sklearn.metrics.pairwise.chi2_kernel", | |
"sklearn.metrics.pairwise.cosine_distances", | |
"sklearn.metrics.pairwise.cosine_similarity", | |
"sklearn.metrics.pairwise.euclidean_distances", | |
"sklearn.metrics.pairwise.haversine_distances", | |
"sklearn.metrics.pairwise.laplacian_kernel", | |
"sklearn.metrics.pairwise.linear_kernel", | |
"sklearn.metrics.pairwise.manhattan_distances", | |
"sklearn.metrics.pairwise.nan_euclidean_distances", | |
"sklearn.metrics.pairwise.paired_cosine_distances", | |
"sklearn.metrics.pairwise.paired_distances", | |
"sklearn.metrics.pairwise.paired_euclidean_distances", | |
"sklearn.metrics.pairwise.paired_manhattan_distances", | |
"sklearn.metrics.pairwise.pairwise_distances_argmin_min", | |
"sklearn.metrics.pairwise.pairwise_kernels", | |
"sklearn.metrics.pairwise.polynomial_kernel", | |
"sklearn.metrics.pairwise.rbf_kernel", | |
"sklearn.metrics.pairwise.sigmoid_kernel", | |
"sklearn.metrics.pairwise_distances", | |
"sklearn.metrics.pairwise_distances_argmin", | |
"sklearn.metrics.pairwise_distances_chunked", | |
"sklearn.metrics.precision_recall_curve", | |
"sklearn.metrics.precision_recall_fscore_support", | |
"sklearn.metrics.precision_score", | |
"sklearn.metrics.r2_score", | |
"sklearn.metrics.rand_score", | |
"sklearn.metrics.recall_score", | |
"sklearn.metrics.roc_auc_score", | |
"sklearn.metrics.roc_curve", | |
"sklearn.metrics.root_mean_squared_error", | |
"sklearn.metrics.root_mean_squared_log_error", | |
"sklearn.metrics.top_k_accuracy_score", | |
"sklearn.metrics.v_measure_score", | |
"sklearn.metrics.zero_one_loss", | |
"sklearn.model_selection.cross_val_predict", | |
"sklearn.model_selection.cross_val_score", | |
"sklearn.model_selection.cross_validate", | |
"sklearn.model_selection.learning_curve", | |
"sklearn.model_selection.permutation_test_score", | |
"sklearn.model_selection.train_test_split", | |
"sklearn.model_selection.validation_curve", | |
"sklearn.neighbors.kneighbors_graph", | |
"sklearn.neighbors.radius_neighbors_graph", | |
"sklearn.neighbors.sort_graph_by_row_values", | |
"sklearn.preprocessing.add_dummy_feature", | |
"sklearn.preprocessing.binarize", | |
"sklearn.preprocessing.label_binarize", | |
"sklearn.preprocessing.normalize", | |
"sklearn.preprocessing.scale", | |
"sklearn.random_projection.johnson_lindenstrauss_min_dim", | |
"sklearn.svm.l1_min_c", | |
"sklearn.tree.export_graphviz", | |
"sklearn.tree.export_text", | |
"sklearn.tree.plot_tree", | |
"sklearn.utils.gen_batches", | |
"sklearn.utils.gen_even_slices", | |
"sklearn.utils.resample", | |
"sklearn.utils.safe_mask", | |
"sklearn.utils.extmath.randomized_svd", | |
"sklearn.utils.class_weight.compute_class_weight", | |
"sklearn.utils.class_weight.compute_sample_weight", | |
"sklearn.utils.graph.single_source_shortest_path_length", | |
] | |
def test_function_param_validation(func_module): | |
"""Check param validation for public functions that are not wrappers around | |
estimators. | |
""" | |
func, func_name, func_params, required_params = _get_func_info(func_module) | |
parameter_constraints = getattr(func, "_skl_parameter_constraints") | |
_check_function_param_validation( | |
func, func_name, func_params, required_params, parameter_constraints | |
) | |
PARAM_VALIDATION_CLASS_WRAPPER_LIST = [ | |
("sklearn.cluster.affinity_propagation", "sklearn.cluster.AffinityPropagation"), | |
("sklearn.cluster.dbscan", "sklearn.cluster.DBSCAN"), | |
("sklearn.cluster.k_means", "sklearn.cluster.KMeans"), | |
("sklearn.cluster.mean_shift", "sklearn.cluster.MeanShift"), | |
("sklearn.cluster.spectral_clustering", "sklearn.cluster.SpectralClustering"), | |
("sklearn.covariance.graphical_lasso", "sklearn.covariance.GraphicalLasso"), | |
("sklearn.covariance.ledoit_wolf", "sklearn.covariance.LedoitWolf"), | |
("sklearn.covariance.oas", "sklearn.covariance.OAS"), | |
("sklearn.decomposition.dict_learning", "sklearn.decomposition.DictionaryLearning"), | |
("sklearn.decomposition.fastica", "sklearn.decomposition.FastICA"), | |
("sklearn.decomposition.non_negative_factorization", "sklearn.decomposition.NMF"), | |
("sklearn.preprocessing.maxabs_scale", "sklearn.preprocessing.MaxAbsScaler"), | |
("sklearn.preprocessing.minmax_scale", "sklearn.preprocessing.MinMaxScaler"), | |
("sklearn.preprocessing.power_transform", "sklearn.preprocessing.PowerTransformer"), | |
( | |
"sklearn.preprocessing.quantile_transform", | |
"sklearn.preprocessing.QuantileTransformer", | |
), | |
("sklearn.preprocessing.robust_scale", "sklearn.preprocessing.RobustScaler"), | |
] | |
def test_class_wrapper_param_validation(func_module, class_module): | |
"""Check param validation for public functions that are wrappers around | |
estimators. | |
""" | |
func, func_name, func_params, required_params = _get_func_info(func_module) | |
module_name, class_name = class_module.rsplit(".", 1) | |
module = import_module(module_name) | |
klass = getattr(module, class_name) | |
parameter_constraints_func = getattr(func, "_skl_parameter_constraints") | |
parameter_constraints_class = getattr(klass, "_parameter_constraints") | |
parameter_constraints = { | |
**parameter_constraints_class, | |
**parameter_constraints_func, | |
} | |
parameter_constraints = { | |
k: v for k, v in parameter_constraints.items() if k in func_params | |
} | |
_check_function_param_validation( | |
func, func_name, func_params, required_params, parameter_constraints | |
) | |