peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/ds_to_universal.py
| #!/usr/bin/env python | |
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| from functools import partial | |
| from itertools import chain | |
| import argparse | |
| import glob | |
| import itertools | |
| from concurrent.futures import ProcessPoolExecutor | |
| import os | |
| import re | |
| import shutil | |
| import torch | |
| import tqdm | |
| #from pprint import pprint | |
| from deepspeed.checkpoint import DeepSpeedCheckpoint | |
| from deepspeed.checkpoint import ( | |
| OPTIMIZER_STATE_DICT, | |
| BASE_OPTIMIZER_STATE, | |
| SINGLE_PARTITION_OF_FP32_GROUPS, | |
| PARAM_GROUPS, | |
| PARAM_SLICE_MAPPINGS, | |
| PARAM_SHAPES, | |
| PARAM, | |
| CAT_DIM, | |
| PARAM_N_SUB_PARAMS, | |
| SUB_PARAM_SHAPE, | |
| VOCAB_TENSOR, | |
| UNIVERSAL_CHECKPOINT_INFO, | |
| VOCABULARY_PARAMETER_PATTERNS, | |
| PIPELINE_REPLICATED_PARAMETER_PATTERNS, | |
| TP_REPLICATED_PARAMETER_PATTERNS, | |
| PARAMETER_TO_AVERAGE_PATTERNS, | |
| PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, | |
| PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0, | |
| PARAMETER_WITH_SUB_PARAMS, | |
| SubparamShape, | |
| ) | |
| def parse_arguments(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--input_folder', type=str, required=True, help='Input DeepSpeed Checkpoint folder') | |
| parser.add_argument('--output_folder', type=str, required=True, help='Output DeepSpeed checkpoint folder') | |
| parser.add_argument('--num_extract_workers', | |
| default=4, | |
| type=int, | |
| help='How many parallel processes to extract zero shards') | |
| parser.add_argument( | |
| '--num_merge_workers', | |
| default=2, | |
| type=int, | |
| help= | |
| 'How many parallel processes to merge tp slices (more memory intensive, use much fewer than --num_extract_workers))' | |
| ) | |
| parser.add_argument('--keep_temp_folder', | |
| action='store_true', | |
| help='Preserve temporary folder of intermediate checkpoint slice files. Useful for debugging.') | |
| parser.add_argument('--no_strict', | |
| dest='strict', | |
| action='store_false', | |
| help='Do not perform validity checks on converted checkpoint.') | |
| args = parser.parse_args() | |
| print(f'args = {args}') | |
| return args | |
| def _create_checkpoint_paths(base_folder, iteration, tp_degree, pp_degree): | |
| path_list = [] | |
| iter_folder = f'iter_{iteration:07d}' | |
| for i in range(0, tp_degree): | |
| path_list.append([]) | |
| for j in range(0, pp_degree): | |
| rank_folder = f'mp_rank_{i:02d}' if pp_degree == 1 else f'mp_rank_{i:02d}_{j:03d}' | |
| ckpt_path = os.path.join(rank_folder, 'model_optim_rng.pt') | |
| path_list[i].append(os.path.join(base_folder, iter_folder, ckpt_path)) | |
| return path_list | |
| def _save_checkpoint(file_path, chkpt_sd): | |
| dir, _ = os.path.split(file_path) | |
| os.makedirs(dir, exist_ok=True) | |
| torch.save(chkpt_sd, file_path) | |
| def extract_zero_shards(dir, ds_checkpoint, indices_3D): | |
| pp_index, tp_index, dp_index = indices_3D | |
| sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index) | |
| # pprint(f"Processing {dp_index=} {pp_index=}, {tp_index=}") | |
| optim_sd = sd[OPTIMIZER_STATE_DICT] | |
| param_slice_mappings = optim_sd[PARAM_SLICE_MAPPINGS] | |
| universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | |
| pipeline_replicated_params = universal_checkpoint_info.get(PIPELINE_REPLICATED_PARAMETER_PATTERNS, []) | |
| # print(f'{pipeline_replicated_params=}') | |
| # dict | |
| state_groups = optim_sd[BASE_OPTIMIZER_STATE]["state"] | |
| # list | |
| fp32_groups = optim_sd[SINGLE_PARTITION_OF_FP32_GROUPS] | |
| param_groups_cnt = len(state_groups) | |
| for param_group_id in range(param_groups_cnt): | |
| flat_state = dict( | |
| exp_avg=state_groups[param_group_id]["exp_avg"], | |
| exp_avg_sq=state_groups[param_group_id]["exp_avg_sq"], | |
| fp32=fp32_groups[param_group_id], | |
| ) | |
| if "step" in state_groups[param_group_id]: | |
| flat_state["step"] = state_groups[param_group_id]["step"] | |
| for name, fragment_mapping in param_slice_mappings[param_group_id].items(): | |
| if pp_index > 0 and any(re.match(pattern, name) for pattern in pipeline_replicated_params): | |
| # Skip tied weights that are replicated in first and last pp stages | |
| continue | |
| # pprint(f"dpt{dp_index}{pp_index}{tp_index} {param_group_id} {name} => {fragment_mapping.start}:{fragment_mapping.numel}") | |
| for state_key in flat_state.keys(): | |
| dump_param_fragment(dir, tp_index, dp_index, state_key, flat_state[state_key], name, | |
| fragment_mapping.start, fragment_mapping.numel) | |
| cnt = 0 | |
| def dp_index_to_str(dp_index): | |
| return f"{dp_index:0>2d}" | |
| def dump_param_fragment(dir, tp_index, dp_index, state_name, state_flat_tensor, param_name, offset, numel): | |
| global cnt # temp hack | |
| param_base_path = os.path.join(dir, param_name, str(tp_index)) | |
| os.makedirs(param_base_path, exist_ok=True) | |
| cnt += 1 | |
| path = os.path.join(param_base_path, f"{state_name}.{dp_index_to_str(dp_index)}") | |
| #print(f"{param_name}: {offset}: {numel} => {path}") | |
| # State might be a python int or a tensor | |
| if state_name != "step" and torch.is_tensor(state_flat_tensor): | |
| state_flat_tensor = state_flat_tensor.narrow(0, offset, numel).clone() | |
| _save_checkpoint(path, state_flat_tensor) | |
| def _merge_zero_shards(param_base_path, state, tp_degree, slice_shape): | |
| slices = [] | |
| for tp_index in range(tp_degree): | |
| prefix_path = os.path.join(param_base_path, str(tp_index), f"{state}") | |
| paths = glob.glob(f"{prefix_path}.*") | |
| if len(paths) == 0: | |
| continue | |
| pattern = re.compile(f"{prefix_path}\\.([0-9]+)") | |
| dp_indices = set() | |
| for p in paths: | |
| m = pattern.match(p) | |
| if m: | |
| dp_indices.add(int(m.group(1))) | |
| else: | |
| raise ValueError(f"Cannot parse dp_rank from {p}") | |
| paths = [f"{prefix_path}.{dp_index_to_str(dp_index)}" for dp_index in sorted(list(dp_indices))] | |
| shards = [torch.load(p) for p in paths] | |
| if state == "step": | |
| assert all(v == shards[0] for v in shards), "All shards must have the same step value" | |
| slice = shards[0] | |
| else: | |
| slice = torch.cat(shards, dim=0).reshape(slice_shape) | |
| slices.append(slice) | |
| return slices | |
| def merge_tp_slices(ds_checkpoint, dir, slice_dir, tp_degree, name_and_shape): | |
| name, shape = name_and_shape | |
| slice_base_path = os.path.join(slice_dir, name) | |
| param_base_path = os.path.join(dir, name) | |
| universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | |
| replicated_parameters = universal_checkpoint_info.get(TP_REPLICATED_PARAMETER_PATTERNS, []) | |
| parameters_to_average = universal_checkpoint_info.get(PARAMETER_TO_AVERAGE_PATTERNS, []) | |
| parameters_with_row_parallelism = universal_checkpoint_info.get(PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, []) | |
| vocabulary_parameters = universal_checkpoint_info.get(VOCABULARY_PARAMETER_PATTERNS, []) | |
| parameters_with_2_sub_params_cat_dim_0 = universal_checkpoint_info.get(PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0, []) | |
| parameter_with_sub_params = universal_checkpoint_info.get(PARAMETER_WITH_SUB_PARAMS, []) | |
| unmatched_patterns = set(replicated_parameters + parameters_to_average + parameters_with_row_parallelism + | |
| vocabulary_parameters + parameters_with_2_sub_params_cat_dim_0) | |
| unmatched_patterns.update(chain.from_iterable(SubparamShape(**s).patterns for s in parameter_with_sub_params)) | |
| def get_matched_pattern(patterns_, name_): | |
| matched_ = [pattern_ for pattern_ in patterns_ if re.match(pattern_, name_)] | |
| assert len(matched_) <= 1, f'Got more than one matching patterns={matched_} for {name_}' | |
| if matched_: | |
| pattern_ = matched_[0] | |
| unmatched_patterns.discard(pattern_) | |
| return pattern_ | |
| return None | |
| def get_matched_sub_params_pattern(name_): | |
| for subparam_shape_dict in parameter_with_sub_params: | |
| subparam_shape = SubparamShape(**subparam_shape_dict) | |
| for pattern_ in subparam_shape.patterns: | |
| if re.match(pattern_, name_): | |
| unmatched_patterns.discard(pattern_) | |
| return subparam_shape | |
| return None | |
| matched_sub_params_shape = get_matched_sub_params_pattern(name) | |
| step_merged = _merge_zero_shards(slice_base_path, "step", tp_degree, shape) | |
| if step_merged: | |
| _save_checkpoint(os.path.join(param_base_path, f"step.pt"), step_merged[0]) | |
| for state in ("fp32", "exp_avg", "exp_avg_sq"): | |
| slices = _merge_zero_shards(slice_base_path, state, tp_degree, shape) | |
| final_path = os.path.join(param_base_path, f"{state}.pt") | |
| #print(f"Expected shape: {shape}") | |
| #print(f"Fragment sizes:", list(frag.shape for frag in slices)) | |
| ckpt_dict = {} | |
| if get_matched_pattern(replicated_parameters, name): | |
| if len(slices) > 1: | |
| assert all([slices[0].equal(other_slice) for other_slice in slices[1:]]) | |
| param = slices[0] | |
| # print(f'replicate {name} using first slice') | |
| elif get_matched_pattern(parameters_to_average, name): | |
| param = sum(slices) / len(slices) | |
| # print(f'merge {name} using average') | |
| elif get_matched_pattern(parameters_with_2_sub_params_cat_dim_0, name): | |
| cat_dim = 0 | |
| chunked_slices = [torch.chunk(s, 2, dim=cat_dim) for s in slices] | |
| merged_chunks_0 = torch.cat([s[0] for s in chunked_slices], dim=cat_dim) | |
| merged_chunks_1 = torch.cat([s[1] for s in chunked_slices], dim=cat_dim) | |
| param = torch.cat([merged_chunks_0, merged_chunks_1], dim=cat_dim) | |
| ckpt_dict[CAT_DIM] = cat_dim | |
| ckpt_dict[PARAM_N_SUB_PARAMS] = 2 | |
| elif matched_sub_params_shape: | |
| merged_chunks = [] | |
| partition_dim = matched_sub_params_shape.partition_dim | |
| sub_dim_sizes = matched_sub_params_shape.shape[partition_dim] | |
| if not isinstance(sub_dim_sizes, tuple): | |
| sub_dim_sizes = (sub_dim_sizes, ) | |
| partition_shape = [sum(d) if isinstance(d, tuple) else d for d in matched_sub_params_shape.shape] | |
| partition_shape = [d // tp_degree if i == partition_dim else d for i, d in enumerate(partition_shape)] | |
| slices = [s.view(partition_shape) for s in slices] | |
| offset = 0 | |
| for sub_dim_size in sub_dim_sizes: | |
| part_sub_dim_size = sub_dim_size // tp_degree | |
| merged_chunks.append( | |
| torch.cat([s.narrow(partition_dim, offset, part_sub_dim_size) for s in slices], dim=partition_dim)) | |
| offset += part_sub_dim_size | |
| param = torch.cat(merged_chunks, dim=partition_dim) | |
| ckpt_dict[SUB_PARAM_SHAPE] = matched_sub_params_shape | |
| else: | |
| cat_dim = 1 if get_matched_pattern(parameters_with_row_parallelism, name) else 0 | |
| # print(f"merge {name} with CAT DIM: {cat_dim}") | |
| param = torch.cat(slices, dim=cat_dim) | |
| ckpt_dict[CAT_DIM] = cat_dim | |
| if get_matched_pattern(vocabulary_parameters, name): | |
| #print(f"Before {param.shape=}") | |
| # strip padding | |
| original_vocab_size = universal_checkpoint_info['original_vocab_size'] | |
| param = param[:original_vocab_size, :] | |
| ckpt_dict[VOCAB_TENSOR] = True | |
| #print(f"After {param.shape=}") | |
| #print(f"Final shape: {param.shape}") | |
| ckpt_dict[PARAM] = param | |
| _save_checkpoint(final_path, ckpt_dict) | |
| return unmatched_patterns | |
| def _do_parallel_work(do_work, work_chunks, num_workers): | |
| results = [] | |
| if num_workers > 1: | |
| with ProcessPoolExecutor(max_workers=num_workers) as executor: | |
| future_list = [executor.submit(do_work, work) for work in work_chunks] | |
| for f in tqdm.tqdm(future_list): | |
| results.append(f.result()) | |
| else: | |
| # No parallel pass for unit testing | |
| # We can't create child processes in tests | |
| for work in tqdm.tqdm(work_chunks): | |
| results.append(do_work(work)) | |
| return results | |
| def _extract_zero_shard_files(args, ds_checkpoint, temp_dir): | |
| _3d_range_list = list( | |
| itertools.product(range(ds_checkpoint.pp_degree), range(ds_checkpoint.tp_degree), | |
| range(ds_checkpoint.dp_degree))) | |
| #pprint(f'{_3d_range_list=}') | |
| do_work = partial(extract_zero_shards, temp_dir, ds_checkpoint) | |
| _do_parallel_work(do_work, _3d_range_list, args.num_extract_workers) | |
| def _merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir): | |
| zero_output_folder = os.path.join(args.output_folder, "zero") | |
| do_work = partial(merge_tp_slices, ds_checkpoint, zero_output_folder, temp_dir, ds_checkpoint.tp_degree) | |
| unmatched_patterns_lists = _do_parallel_work(do_work, list(slice_shapes.items()), args.num_merge_workers) | |
| # verify that all patterns were used | |
| # if a pattern was not used by any of the workers, then it was not used at all -> assert/alert | |
| sets = [set(lst) for lst in unmatched_patterns_lists] | |
| unmatched_patterns = list(set.intersection(*sets)) | |
| if args.strict: | |
| assert not unmatched_patterns, f'Unused patterns={unmatched_patterns} while merging tp slices' | |
| elif unmatched_patterns: | |
| print(f'Warning: Unused patterns={unmatched_patterns} while merging tp slices') | |
| def _save_optimizer_state(args, ds_checkpoint): | |
| sharded_states = [BASE_OPTIMIZER_STATE, PARAM_SLICE_MAPPINGS, SINGLE_PARTITION_OF_FP32_GROUPS] | |
| sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=0, tp_index=0, dp_index=0) | |
| optim_sd = sd[OPTIMIZER_STATE_DICT] | |
| output_sd = {k: v for k, v in optim_sd.items() if k not in sharded_states} | |
| output_sd[PARAM_GROUPS] = optim_sd[BASE_OPTIMIZER_STATE][PARAM_GROUPS] | |
| zero_output_folder = os.path.join(args.output_folder, "zero") | |
| output_file_path = os.path.join(zero_output_folder, f"optimizer_state.pt") | |
| _save_checkpoint(output_file_path, output_sd) | |
| def _check_for_required_state(ds_checkpoint): | |
| universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | |
| assert universal_checkpoint_info is not None, f'Required {UNIVERSAL_CHECKPOINT_INFO} state is missing in checkpoint. Verify that client creates this state.' | |
| def main(args): | |
| print(f'Convert DeepSpeed Checkpoint to Universal Checkpoint') | |
| print(f'Converting DeepSpeed checkpoint in {args.input_folder} to Universal checkpoint in {args.output_folder}') | |
| ds_checkpoint = DeepSpeedCheckpoint(args.input_folder) | |
| _check_for_required_state(ds_checkpoint) | |
| iteration = ds_checkpoint.get_iteration() | |
| #_create_latest_file(args.output_folder, iteration) | |
| checkpoint_paths = _create_checkpoint_paths(args.output_folder, iteration, ds_checkpoint.tp_degree, | |
| ds_checkpoint.pp_degree) | |
| slice_shapes = [] | |
| for mp_rank_file in ds_checkpoint.mp_rank_files: | |
| mp_sd = torch.load(mp_rank_file, map_location=torch.device('cpu')) | |
| slice_shapes += mp_sd[PARAM_SHAPES] | |
| # fix back to normal flat dict, merge duplicates for tp>1 | |
| slice_shapes = dict((k, v) for d in slice_shapes for k, v in d.items()) | |
| temp_dir = os.path.join(args.output_folder, 'tmp') | |
| print('*** 1. Extracting ZeRO fragments') | |
| _extract_zero_shard_files(args, ds_checkpoint, temp_dir) | |
| print('*** 2. Merging slices .....') | |
| _merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir) | |
| print('*** 3. Saving common optimizer states') | |
| _save_optimizer_state(args, ds_checkpoint) | |
| if not args.keep_temp_folder: | |
| shutil.rmtree(temp_dir, ignore_errors=True) | |
| # Copy mp* files into output folder | |
| for f in glob.glob(os.path.join(args.input_folder, 'mp*')): | |
| shutil.copy2(f, args.output_folder) | |
| # Update latest to output folder | |
| checkpoint_root_folder, step_folder = os.path.split(args.output_folder) | |
| latest_file = os.path.join(checkpoint_root_folder, 'latest_universal') | |
| with open(latest_file, "w") as f: | |
| f.write(step_folder) | |
| print('*** Done!') | |
| if __name__ == "__main__": | |
| args = parse_arguments() | |
| main(args) | |