peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/utils.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| import os | |
| import torch | |
| from .constants import (MODEL_FILE_PREFIX, MODEL_FILE_SUFFIX, OPTIM_FILE_SUFFIX, ZERO_FILE_PREFIX) | |
| def get_model_ckpt_name_for_rank(base_folder, mp_rank_str): | |
| ckpt_name = os.path.join( | |
| base_folder, | |
| MODEL_FILE_PREFIX + mp_rank_str + MODEL_FILE_SUFFIX, | |
| ) | |
| return ckpt_name | |
| def get_zero_ckpt_name_for_rank(base_folder, dp_rank, mp_rank): | |
| zero_prefix = f'{ZERO_FILE_PREFIX}{dp_rank}' | |
| mp_rank_string = f'_{MODEL_FILE_PREFIX}{mp_rank:02d}' | |
| zero_ckpt_name = os.path.join( | |
| base_folder, | |
| zero_prefix + mp_rank_string + OPTIM_FILE_SUFFIX, | |
| ) | |
| return zero_ckpt_name | |
| def get_layer_ckpt_name_for_rank(base_folder, layer_id, tp_rank): | |
| ckpt_file = f'{layer_id}-model_{tp_rank:02d}{MODEL_FILE_SUFFIX}' | |
| ckpt_path = os.path.join(base_folder, ckpt_file) | |
| return ckpt_path | |
| # We pass cloned tensors to torch.save() to avoid checkpoint bloat that occurs when torch.save() | |
| # saves the underlying storage rather than the slice of the storage corresponding to individual tensors. | |
| # This is a problem in DeepSpeed because we often allocate tensors using slices of large flattened buffers. | |
| # Tensor cloning helps to avoid this problem because the storage of cloned tensors are closer to the true size. | |
| # It is expected that the garbage collector will reclaim the cloned tensor storage to avoid memory bloat. | |
| # See https://pytorch.org/docs/stable/notes/serialization.html#preserve-storage-sharing | |
| def clone_tensors_for_torch_save(item, device=torch.device('cpu')): | |
| """ | |
| Returns a copy of ``item`` with all enclosed tensors replaced by clones on a specified device. | |
| Works on individual tensors, and tensors contained/nested in lists, tuples, and dicts. | |
| Parameters: | |
| - ``item``: tensor to clone or (possibly nested) container of tensors to clone. | |
| - ``device``: target device (defaults to 'cpu') | |
| Returns: | |
| - copy of ``item`` with cloned tensors on target device | |
| """ | |
| if torch.is_tensor(item): | |
| return item.detach().clone().to(device) | |
| elif isinstance(item, list): | |
| return [clone_tensors_for_torch_save(v, device) for v in item] | |
| elif isinstance(item, tuple): | |
| return tuple([clone_tensors_for_torch_save(v, device) for v in item]) | |
| elif isinstance(item, dict): | |
| return type(item)({k: clone_tensors_for_torch_save(v, device) for k, v in item.items()}) | |
| else: | |
| return item | |