peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/zero_checkpoint.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| import torch | |
| from .constants import (BASE_OPTIMIZER_STATE, GROUP_PADDINGS, OPTIMIZER_STATE_DICT, PARTITION_COUNT) | |
| from .reshape_utils import (basic_folder_validation, get_zero_files, merge_state) | |
| from .reshape_3d_utils import (model_3d_desc, get_model_3d_descriptor) | |
| GROUP_STATE_KEY = 'state' | |
| class ZeROCheckpoint(object): | |
| def __init__(self, dir): | |
| basic_folder_validation(dir) | |
| self.dir = dir | |
| self.file_list = get_zero_files(dir) | |
| self.num_files = len(self.file_list) | |
| assert self.num_files > 0, f'No ZeRO files found in {dir}' | |
| self.src_3d = get_model_3d_descriptor(dir) | |
| self.target_3d = model_3d_desc(pp_degree=self.src_3d.pp_degree, | |
| tp_degree=self.src_3d.tp_degree, | |
| dp_degree=self.src_3d.dp_degree) | |
| self._3d_file_map = self.src_3d.reshape(self.target_3d) | |
| def get_src_world_size(self): | |
| return self.src_3d.world_size() | |
| def get_src_tp_degree(self): | |
| return self.src_3d.tp_degree | |
| def get_src_pp_degree(self): | |
| return self.src_3d.pp_degree | |
| def get_src_dp_degree(self): | |
| return self.src_3d.dp_degree | |
| def get_file_indices_for_rank(self, pp_index, tp_index, dp_index): | |
| assert dp_index < len(self._3d_file_map), f'DP index {dp_index} >= DP degree {len(self._3d_file_map)}' | |
| dp_2d_map = self._3d_file_map[dp_index] | |
| return dp_2d_map.get_data(pp_index, tp_index) | |
| def get_files_for_rank(self, pp_index, tp_index, dp_index): | |
| file_idx_list = self.get_file_indices_for_rank(pp_index, tp_index, dp_index) | |
| return [self.file_list[idx] for idx in file_idx_list] | |
| def get_state_for_rank(self, pp_index, tp_index, dp_index, keys_to_ignore=[], strip_tensor_paddings=True): | |
| state_file_list = self.get_files_for_rank(pp_index, tp_index, dp_index) | |
| merged_sd = None | |
| for state_file in state_file_list: | |
| sd = torch.load(state_file, map_location=torch.device('cpu')) | |
| for key in keys_to_ignore: | |
| sd.pop(key, None) | |
| if strip_tensor_paddings: | |
| self._strip_tensor_paddings(sd) | |
| if merged_sd is None: | |
| merged_sd = sd | |
| else: | |
| merged_sd = merge_state(merged_sd, sd) | |
| self._update_partition_count(merged_sd) | |
| if strip_tensor_paddings: | |
| self._clear_group_paddings(merged_sd) | |
| return merged_sd | |
| def print_3d_index_map(self, tag=None): | |
| if tag: | |
| print(f'3D index map: {tag}') | |
| for dp_index, _2d_map in enumerate(self._3d_file_map): | |
| _2d_map.print_data(f'dp = {dp_index}') | |
| def print_3d_file_map(self, tag=None): | |
| if tag: | |
| print(f'3D file map: {tag}') | |
| for dp_index, _2d_map in enumerate(self._3d_file_map): | |
| for pp_index in _2d_map.pp_degree: | |
| for tp_index in _2d_map.tp_degree: | |
| file_index_list = _2d_map.get_data(pp_index, tp_index) | |
| file_list = [self.file_list[idx] for idx in file_index_list] | |
| print(f'{pp_index}, {tp_index}, {dp_index} => {file_list}') | |
| def reshape(self, target_3d_desc: model_3d_desc): | |
| self.target_3d = target_3d_desc | |
| self._3d_file_map = self.src_3d.reshape(self.target_3d) | |
| def _strip_tensor_paddings(self, sd): | |
| param_group_states = self._get_param_group_states(sd) | |
| if param_group_states is None: | |
| return | |
| group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS) | |
| if group_paddings is None: | |
| return | |
| for key, group_state in param_group_states.items(): | |
| if group_paddings[key] == 0: | |
| continue | |
| for state_name, state_value in group_state.items(): | |
| if state_name != "step" and torch.is_tensor(state_value): | |
| raw_length = state_value.numel() - group_paddings[key] | |
| group_state[state_name] = torch.narrow(state_value, 0, 0, raw_length).clone() | |
| else: | |
| group_state[state_name] = state_value | |
| def _clear_group_paddings(self, sd): | |
| group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS) | |
| if group_paddings: | |
| num_groups = len(group_paddings) | |
| sd[OPTIMIZER_STATE_DICT][GROUP_PADDINGS] = [0] * num_groups | |
| def _get_optimizer_state(self, sd, state_key): | |
| optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None) | |
| if optimizer_state is None: | |
| return None | |
| return optimizer_state.get(state_key, None) | |
| def _get_param_group_states(self, sd): | |
| optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None) | |
| if optimizer_state is None: | |
| return None | |
| base_optimizer_state = optimizer_state.get(BASE_OPTIMIZER_STATE, None) | |
| if base_optimizer_state is None: | |
| return None | |
| return base_optimizer_state.get(GROUP_STATE_KEY, None) | |
| def _update_partition_count(self, sd): | |
| partition_counts = self._get_optimizer_state(sd, PARTITION_COUNT) | |
| if partition_counts: | |
| num_groups = len(partition_counts) | |
| sd[OPTIMIZER_STATE_DICT][PARTITION_COUNT] = [self.target_3d.dp_degree] * num_groups | |