peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/compression
/compress.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| import re | |
| from .helper import compression_preparation, fix_compression, recursive_getattr, is_module_compressible | |
| from .config import get_compression_config | |
| from ..runtime.config_utils import dict_raise_error_on_duplicate_keys | |
| from .constants import * | |
| import os | |
| import json | |
| try: | |
| import neural_compressor as nc | |
| except ImportError as e: | |
| nc = None | |
| def check_deepspeed_config(config): | |
| if isinstance(config, dict): | |
| return config | |
| elif os.path.exists(config): | |
| return json.load(open(config, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys) | |
| else: | |
| raise ValueError( | |
| f"Expected a string path to an existing deepspeed config, or a dictionary. Received: {config}") | |
| def get_module_name(group_name, model, key_word, exist_module_name, mpu=None, verbose=True): | |
| ''' | |
| get the associated module name from the model based on the key_word provided by users | |
| ''' | |
| return_module_name = [] | |
| for name, module in model.named_modules(): | |
| module_check = is_module_compressible(module, mpu) | |
| if re.search(key_word, name) is not None and module_check: | |
| if name in exist_module_name and verbose: | |
| # logger.warning | |
| raise ValueError( | |
| f"{name} is already added to compression, please check your config file for {group_name}.") | |
| if name not in exist_module_name: | |
| exist_module_name.add(name) | |
| return_module_name.append(name) | |
| return return_module_name, exist_module_name | |
| def get_compress_methods(model, compress_methods, mpu=None): | |
| # extract the compression module for each method in compress_methods | |
| layer_added_compress_methods = [] | |
| for method, method_content in compress_methods.items(): | |
| if LAYER_REDUCTION in method: | |
| continue | |
| # for loop different methods, i.e., weight quantization, activation quantization etc | |
| exist_module_name = set() | |
| shared_parameters = method_content[SHARED_PARAMETERS] # get all the shared parameters | |
| for group_name, method_parameters in method_content[DIFFERENT_GROUPS].items(): | |
| # for loop different groups, i.e., weight quantization group 1, weight quantization group 2 etc | |
| module_name_list = [] | |
| related_module_name_list = [] | |
| if method_parameters[DIFFERENT_GROUPS_RELATED_MODULE_SCOPE]: | |
| # this is used for head/row/channel pruning, if users provide the related module scope, we can shrink the layer dim for them | |
| # otherwise we just mask those as zeros | |
| for key_word, related_key_words in zip(method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE], | |
| method_parameters[DIFFERENT_GROUPS_RELATED_MODULE_SCOPE]): | |
| module_name, exist_module_name = get_module_name(group_name, | |
| model, | |
| key_word, | |
| exist_module_name, | |
| mpu=mpu) | |
| module_name_list.append(module_name) | |
| tmp_related_module_name_list = [] | |
| for rkw in related_key_words: | |
| # related key word can be a list, for instance the QKV for O matrix in Attention | |
| module_name, _ = get_module_name(group_name, model, rkw, set(), mpu=mpu) | |
| tmp_related_module_name_list.append(module_name) | |
| related_module_name_list.append(tmp_related_module_name_list) | |
| else: | |
| for key_word in method_parameters[DIFFERENT_GROUPS_MODULE_SCOPE]: | |
| module_name, exist_module_name = get_module_name(group_name, | |
| model, | |
| key_word, | |
| exist_module_name, | |
| mpu=mpu) | |
| module_name_list.append(module_name) | |
| if module_name_list: | |
| # combine shared parameters with each group | |
| combined_method_parameters = { | |
| **(method_parameters.copy().pop(DIFFERENT_GROUPS_PARAMETERS)), | |
| **shared_parameters | |
| } | |
| compression_item = [module_name_list, related_module_name_list, {method: combined_method_parameters}] | |
| layer_added_compress_methods.append(compression_item) | |
| return layer_added_compress_methods | |
| def init_compression(model, deepspeed_config, teacher_model=None, mpu=None): | |
| """ | |
| Compress a model: replace linear/conv2d layer with deepspeed compression-aware modules | |
| Args: | |
| model (`torch.nn.Module`) | |
| The model to compress. | |
| deepspeed_config (`DeepSpeedConfig`) | |
| The path of ds_config | |
| mpu | |
| The mpu module for Row/Column parallelism | |
| """ | |
| compress_methods = get_compression_config(check_deepspeed_config(deepspeed_config)) | |
| if hasattr(model, 'module'): | |
| c_model = model.module | |
| else: | |
| c_model = model | |
| # For layer reduction | |
| if compress_methods[LAYER_REDUCTION][LAYER_REDUCTION_ENABLED]: | |
| assert teacher_model is not None, "Teacher model is required for layer reduction" | |
| student_initialization(c_model, teacher_model, deepspeed_config) | |
| layer_added_compress_methods = get_compress_methods(c_model, compress_methods, mpu=mpu) | |
| compression_preparation(c_model, layer_added_compress_methods, mpu) | |
| # For sparse pruning snip_momentum method | |
| shared_parameters = compress_methods[SPARSE_PRUNING][SHARED_PARAMETERS] | |
| if shared_parameters[SPARSE_PRUNING_ENABLED] and \ | |
| shared_parameters[SPARSE_PRUNING_METHOD] == SPARSE_PRUNING_METHOD_SNIP_MOMENTUM: | |
| assert nc is not None, "please ensure the neural_compressor python package is installed by pip or conda if user wants to use snip_momentum sparse pruning" | |
| from .helper import generate_pruners, register_on_step_begin | |
| from nc import WeightPruningConfig | |
| config = WeightPruningConfig(target_sparsity=1 - shared_parameters[SPARSE_PRUNING_DENSE_RATIO], | |
| pattern=shared_parameters[SPARSE_PRUNING_BLOCK_PATTERN], | |
| pruning_frequency=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET_STRIDE], | |
| start_step=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET], | |
| end_step=shared_parameters[SPARSE_PRUNING_SCHEDULE_OFFSET_END], | |
| excluded_op_names=shared_parameters[SPARSE_PRUNING_EXCLUDED_MODULES]) | |
| pruners = generate_pruners(config, c_model) | |
| c_model.pruners = pruners | |
| register_on_step_begin(c_model) | |
| return model | |
| def redundancy_clean(model, deepspeed_config, mpu=None): | |
| """ | |
| Remove the redundancy of a model | |
| Args: | |
| model (`torch.nn.Module`) | |
| The model to compress. | |
| deepspeed_config (`DeepSpeedConfig`) | |
| The path of ds_config | |
| mpu | |
| The mpu module for Row/Column parallelism | |
| """ | |
| compress_methods = get_compression_config(check_deepspeed_config(deepspeed_config)) | |
| if hasattr(model, 'module'): | |
| c_model = model.module | |
| else: | |
| c_model = model | |
| layer_added_compress_methods_tmp = get_compress_methods(c_model, compress_methods, mpu=mpu) | |
| # sort methods | |
| order_list = [ | |
| WEIGHT_QUANTIZATION, SPARSE_PRUNING, ROW_PRUNING, HEAD_PRUNING, CHANNEL_PRUNING, ACTIVATION_QUANTIZATION | |
| ] | |
| layer_added_compress_methods = sorted(layer_added_compress_methods_tmp, | |
| key=lambda x: order_list.index(list(x[2].keys())[0])) | |
| for module_name_lists, related_module_name_lists, compression_technique in layer_added_compress_methods: | |
| stored_mask = [] | |
| need_mask = True if related_module_name_lists else False | |
| for i, mnl in enumerate(module_name_lists): | |
| for module_name in mnl: | |
| mask = fix_compression(c_model, module_name, compression_technique, dim_reduction=need_mask) | |
| if need_mask: | |
| stored_mask.append(mask) | |
| if need_mask: | |
| for rmnl in related_module_name_lists[i]: | |
| for j, module_name in enumerate(rmnl): | |
| mask = fix_compression(c_model, | |
| module_name, | |
| compression_technique, | |
| mask=stored_mask[j], | |
| dim_reduction=True) | |
| return model | |
| def student_initialization(student_model, teacher_model, deepspeed_config): | |
| ''' | |
| Given a student model and a teacher model, select the | |
| Args: | |
| student_model (`torch.nn.Module`) | |
| The model we will update weight | |
| teacher_model (`torch.nn.Module`) | |
| The model guide the student to learn | |
| deepspeed_config (`DeepSpeedConfig`) | |
| The path of ds_config | |
| ''' | |
| config = get_compression_config(check_deepspeed_config(deepspeed_config)) | |
| compress_methods = config[LAYER_REDUCTION] | |
| module_name_prefix = compress_methods[MODULE_NAME_PREFIX] | |
| teacher_layer = compress_methods[TEACHER_LAYER] | |
| student_layer = [i for i in range(len(teacher_layer))] | |
| other_module_name = compress_methods[OTHER_MODULE_NAME] | |
| ''' | |
| name_prefix (`str`) | |
| The prefix name before the layer #. | |
| Example 1: bert.encoder.layer, for BERT_base model's prefix name | |
| Example 2: transformer.h, for GPT-2 hugging face prefix name | |
| teacher_layer (`list of integers`) | |
| The layer of teacher will be used for student's reinitialization | |
| Example 1: [1,3,5,7,9], means we want to matches the 2nd/4th/6th/8th/10th layer of teacher to the first 5 layers of student | |
| student_layer (`list` or None) | |
| The layer of student need to be re-initialized | |
| Example 1: None, means we want to reinitialize all the layers | |
| Example 1: [0,1,2,3,4], means we want to reinitialize the first 5 layers | |
| other_module_name (`list of string`) | |
| The modules will be used for student's reinitialization | |
| Example 1: ['bert.pooler', 'bert.embeddings', 'classifier'], means we want to apply the weight in teacher's embedding/pooler/classier module to the student | |
| Example 2: ['transformer.w', 'transformer.ln_f', 'lm_head'], means we want to apply the weight in teacher's embedding layers module to the student | |
| Note that teacher_layer should matches student layer | |
| ''' | |
| assert len(student_layer) == len(teacher_layer) | |
| for s_name, t_name in zip(student_layer, teacher_layer): | |
| s_module = recursive_getattr(student_model, module_name_prefix + '.' + str(s_name)) | |
| t_module = recursive_getattr(teacher_model, module_name_prefix + '.' + str(t_name)) | |
| for s_param, t_param in zip(s_module.parameters(), t_module.parameters()): | |
| s_param.data.copy_(t_param.data) | |
| for name in other_module_name: | |
| s_module = recursive_getattr(student_model, name) | |
| t_module = recursive_getattr(teacher_model, name) | |
| print(name) | |
| for s_param, t_param in zip(s_module.parameters(), t_module.parameters()): | |
| s_param.data.copy_(t_param.data) | |