peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/joblib
/memory.py
| """ | |
| A context object for caching a function's return value each time it | |
| is called with the same input arguments. | |
| """ | |
| # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> | |
| # Copyright (c) 2009 Gael Varoquaux | |
| # License: BSD Style, 3 clauses. | |
| import asyncio | |
| import datetime | |
| import functools | |
| import inspect | |
| import logging | |
| import os | |
| import pathlib | |
| import pydoc | |
| import re | |
| import textwrap | |
| import time | |
| import tokenize | |
| import traceback | |
| import warnings | |
| import weakref | |
| from . import hashing | |
| from ._store_backends import CacheWarning # noqa | |
| from ._store_backends import FileSystemStoreBackend, StoreBackendBase | |
| from .func_inspect import (filter_args, format_call, format_signature, | |
| get_func_code, get_func_name) | |
| from .logger import Logger, format_time, pformat | |
| FIRST_LINE_TEXT = "# first line:" | |
| # TODO: The following object should have a data store object as a sub | |
| # object, and the interface to persist and query should be separated in | |
| # the data store. | |
| # | |
| # This would enable creating 'Memory' objects with a different logic for | |
| # pickling that would simply span a MemorizedFunc with the same | |
| # store (or do we want to copy it to avoid cross-talks?), for instance to | |
| # implement HDF5 pickling. | |
| # TODO: Same remark for the logger, and probably use the Python logging | |
| # mechanism. | |
| def extract_first_line(func_code): | |
| """ Extract the first line information from the function code | |
| text if available. | |
| """ | |
| if func_code.startswith(FIRST_LINE_TEXT): | |
| func_code = func_code.split('\n') | |
| first_line = int(func_code[0][len(FIRST_LINE_TEXT):]) | |
| func_code = '\n'.join(func_code[1:]) | |
| else: | |
| first_line = -1 | |
| return func_code, first_line | |
| class JobLibCollisionWarning(UserWarning): | |
| """ Warn that there might be a collision between names of functions. | |
| """ | |
| _STORE_BACKENDS = {'local': FileSystemStoreBackend} | |
| def register_store_backend(backend_name, backend): | |
| """Extend available store backends. | |
| The Memory, MemorizeResult and MemorizeFunc objects are designed to be | |
| agnostic to the type of store used behind. By default, the local file | |
| system is used but this function gives the possibility to extend joblib's | |
| memory pattern with other types of storage such as cloud storage (S3, GCS, | |
| OpenStack, HadoopFS, etc) or blob DBs. | |
| Parameters | |
| ---------- | |
| backend_name: str | |
| The name identifying the store backend being registered. For example, | |
| 'local' is used with FileSystemStoreBackend. | |
| backend: StoreBackendBase subclass | |
| The name of a class that implements the StoreBackendBase interface. | |
| """ | |
| if not isinstance(backend_name, str): | |
| raise ValueError("Store backend name should be a string, " | |
| "'{0}' given.".format(backend_name)) | |
| if backend is None or not issubclass(backend, StoreBackendBase): | |
| raise ValueError("Store backend should inherit " | |
| "StoreBackendBase, " | |
| "'{0}' given.".format(backend)) | |
| _STORE_BACKENDS[backend_name] = backend | |
| def _store_backend_factory(backend, location, verbose=0, backend_options=None): | |
| """Return the correct store object for the given location.""" | |
| if backend_options is None: | |
| backend_options = {} | |
| if isinstance(location, pathlib.Path): | |
| location = str(location) | |
| if isinstance(location, StoreBackendBase): | |
| return location | |
| elif isinstance(location, str): | |
| obj = None | |
| location = os.path.expanduser(location) | |
| # The location is not a local file system, we look in the | |
| # registered backends if there's one matching the given backend | |
| # name. | |
| for backend_key, backend_obj in _STORE_BACKENDS.items(): | |
| if backend == backend_key: | |
| obj = backend_obj() | |
| # By default, we assume the FileSystemStoreBackend can be used if no | |
| # matching backend could be found. | |
| if obj is None: | |
| raise TypeError('Unknown location {0} or backend {1}'.format( | |
| location, backend)) | |
| # The store backend is configured with the extra named parameters, | |
| # some of them are specific to the underlying store backend. | |
| obj.configure(location, verbose=verbose, | |
| backend_options=backend_options) | |
| return obj | |
| elif location is not None: | |
| warnings.warn( | |
| "Instantiating a backend using a {} as a location is not " | |
| "supported by joblib. Returning None instead.".format( | |
| location.__class__.__name__), UserWarning) | |
| return None | |
| def _build_func_identifier(func): | |
| """Build a roughly unique identifier for the cached function.""" | |
| modules, funcname = get_func_name(func) | |
| # We reuse historical fs-like way of building a function identifier | |
| return os.path.join(*modules, funcname) | |
| # An in-memory store to avoid looking at the disk-based function | |
| # source code to check if a function definition has changed | |
| _FUNCTION_HASHES = weakref.WeakKeyDictionary() | |
| ############################################################################### | |
| # class `MemorizedResult` | |
| ############################################################################### | |
| class MemorizedResult(Logger): | |
| """Object representing a cached value. | |
| Attributes | |
| ---------- | |
| location: str | |
| The location of joblib cache. Depends on the store backend used. | |
| func: function or str | |
| function whose output is cached. The string case is intended only for | |
| instantiation based on the output of repr() on another instance. | |
| (namely eval(repr(memorized_instance)) works). | |
| argument_hash: str | |
| hash of the function arguments. | |
| backend: str | |
| Type of store backend for reading/writing cache files. | |
| Default is 'local'. | |
| mmap_mode: {None, 'r+', 'r', 'w+', 'c'} | |
| The memmapping mode used when loading from cache numpy arrays. See | |
| numpy.load for the meaning of the different values. | |
| verbose: int | |
| verbosity level (0 means no message). | |
| timestamp, metadata: string | |
| for internal use only. | |
| """ | |
| def __init__(self, location, call_id, backend='local', mmap_mode=None, | |
| verbose=0, timestamp=None, metadata=None): | |
| Logger.__init__(self) | |
| self._call_id = call_id | |
| self.store_backend = _store_backend_factory(backend, location, | |
| verbose=verbose) | |
| self.mmap_mode = mmap_mode | |
| if metadata is not None: | |
| self.metadata = metadata | |
| else: | |
| self.metadata = self.store_backend.get_metadata(self._call_id) | |
| self.duration = self.metadata.get('duration', None) | |
| self.verbose = verbose | |
| self.timestamp = timestamp | |
| def func(self): | |
| return self.func_id | |
| def func_id(self): | |
| return self._call_id[0] | |
| def args_id(self): | |
| return self._call_id[1] | |
| def argument_hash(self): | |
| warnings.warn( | |
| "The 'argument_hash' attribute has been deprecated in version " | |
| "0.12 and will be removed in version 0.14.\n" | |
| "Use `args_id` attribute instead.", | |
| DeprecationWarning, stacklevel=2) | |
| return self.args_id | |
| def get(self): | |
| """Read value from cache and return it.""" | |
| try: | |
| return self.store_backend.load_item( | |
| self._call_id, | |
| timestamp=self.timestamp, | |
| metadata=self.metadata, | |
| verbose=self.verbose | |
| ) | |
| except ValueError as exc: | |
| new_exc = KeyError( | |
| "Error while trying to load a MemorizedResult's value. " | |
| "It seems that this folder is corrupted : {}".format( | |
| os.path.join(self.store_backend.location, *self._call_id))) | |
| raise new_exc from exc | |
| def clear(self): | |
| """Clear value from cache""" | |
| self.store_backend.clear_item(self._call_id) | |
| def __repr__(self): | |
| return '{}(location="{}", func="{}", args_id="{}")'.format( | |
| self.__class__.__name__, self.store_backend.location, | |
| *self._call_id | |
| ) | |
| def __getstate__(self): | |
| state = self.__dict__.copy() | |
| state['timestamp'] = None | |
| return state | |
| class NotMemorizedResult(object): | |
| """Class representing an arbitrary value. | |
| This class is a replacement for MemorizedResult when there is no cache. | |
| """ | |
| __slots__ = ('value', 'valid') | |
| def __init__(self, value): | |
| self.value = value | |
| self.valid = True | |
| def get(self): | |
| if self.valid: | |
| return self.value | |
| else: | |
| raise KeyError("No value stored.") | |
| def clear(self): | |
| self.valid = False | |
| self.value = None | |
| def __repr__(self): | |
| if self.valid: | |
| return ('{class_name}({value})' | |
| .format(class_name=self.__class__.__name__, | |
| value=pformat(self.value))) | |
| else: | |
| return self.__class__.__name__ + ' with no value' | |
| # __getstate__ and __setstate__ are required because of __slots__ | |
| def __getstate__(self): | |
| return {"valid": self.valid, "value": self.value} | |
| def __setstate__(self, state): | |
| self.valid = state["valid"] | |
| self.value = state["value"] | |
| ############################################################################### | |
| # class `NotMemorizedFunc` | |
| ############################################################################### | |
| class NotMemorizedFunc(object): | |
| """No-op object decorating a function. | |
| This class replaces MemorizedFunc when there is no cache. It provides an | |
| identical API but does not write anything on disk. | |
| Attributes | |
| ---------- | |
| func: callable | |
| Original undecorated function. | |
| """ | |
| # Should be a light as possible (for speed) | |
| def __init__(self, func): | |
| self.func = func | |
| def __call__(self, *args, **kwargs): | |
| return self.func(*args, **kwargs) | |
| def call_and_shelve(self, *args, **kwargs): | |
| return NotMemorizedResult(self.func(*args, **kwargs)) | |
| def __repr__(self): | |
| return '{0}(func={1})'.format(self.__class__.__name__, self.func) | |
| def clear(self, warn=True): | |
| # Argument "warn" is for compatibility with MemorizedFunc.clear | |
| pass | |
| def call(self, *args, **kwargs): | |
| return self.func(*args, **kwargs) | |
| def check_call_in_cache(self, *args, **kwargs): | |
| return False | |
| ############################################################################### | |
| # class `AsyncNotMemorizedFunc` | |
| ############################################################################### | |
| class AsyncNotMemorizedFunc(NotMemorizedFunc): | |
| async def call_and_shelve(self, *args, **kwargs): | |
| return NotMemorizedResult(await self.func(*args, **kwargs)) | |
| ############################################################################### | |
| # class `MemorizedFunc` | |
| ############################################################################### | |
| class MemorizedFunc(Logger): | |
| """Callable object decorating a function for caching its return value | |
| each time it is called. | |
| Methods are provided to inspect the cache or clean it. | |
| Attributes | |
| ---------- | |
| func: callable | |
| The original, undecorated, function. | |
| location: string | |
| The location of joblib cache. Depends on the store backend used. | |
| backend: str | |
| Type of store backend for reading/writing cache files. | |
| Default is 'local', in which case the location is the path to a | |
| disk storage. | |
| ignore: list or None | |
| List of variable names to ignore when choosing whether to | |
| recompute. | |
| mmap_mode: {None, 'r+', 'r', 'w+', 'c'} | |
| The memmapping mode used when loading from cache | |
| numpy arrays. See numpy.load for the meaning of the different | |
| values. | |
| compress: boolean, or integer | |
| Whether to zip the stored data on disk. If an integer is | |
| given, it should be between 1 and 9, and sets the amount | |
| of compression. Note that compressed arrays cannot be | |
| read by memmapping. | |
| verbose: int, optional | |
| The verbosity flag, controls messages that are issued as | |
| the function is evaluated. | |
| cache_validation_callback: callable, optional | |
| Callable to check if a result in cache is valid or is to be recomputed. | |
| When the function is called with arguments for which a cache exists, | |
| the callback is called with the cache entry's metadata as its sole | |
| argument. If it returns True, the cached result is returned, else the | |
| cache for these arguments is cleared and the result is recomputed. | |
| """ | |
| # ------------------------------------------------------------------------ | |
| # Public interface | |
| # ------------------------------------------------------------------------ | |
| def __init__(self, func, location, backend='local', ignore=None, | |
| mmap_mode=None, compress=False, verbose=1, timestamp=None, | |
| cache_validation_callback=None): | |
| Logger.__init__(self) | |
| self.mmap_mode = mmap_mode | |
| self.compress = compress | |
| self.func = func | |
| self.cache_validation_callback = cache_validation_callback | |
| self.func_id = _build_func_identifier(func) | |
| self.ignore = ignore if ignore is not None else [] | |
| self._verbose = verbose | |
| # retrieve store object from backend type and location. | |
| self.store_backend = _store_backend_factory(backend, location, | |
| verbose=verbose, | |
| backend_options=dict( | |
| compress=compress, | |
| mmap_mode=mmap_mode), | |
| ) | |
| if self.store_backend is not None: | |
| # Create func directory on demand. | |
| self.store_backend.store_cached_func_code([self.func_id]) | |
| self.timestamp = timestamp if timestamp is not None else time.time() | |
| try: | |
| functools.update_wrapper(self, func) | |
| except Exception: | |
| pass # Objects like ufunc don't like that | |
| if inspect.isfunction(func): | |
| doc = pydoc.TextDoc().document(func) | |
| # Remove blank line | |
| doc = doc.replace('\n', '\n\n', 1) | |
| # Strip backspace-overprints for compatibility with autodoc | |
| doc = re.sub('\x08.', '', doc) | |
| else: | |
| # Pydoc does a poor job on other objects | |
| doc = func.__doc__ | |
| self.__doc__ = 'Memoized version of %s' % doc | |
| self._func_code_info = None | |
| self._func_code_id = None | |
| def _is_in_cache_and_valid(self, call_id): | |
| """Check if the function call is cached and valid for given arguments. | |
| - Compare the function code with the one from the cached function, | |
| asserting if it has changed. | |
| - Check if the function call is present in the cache. | |
| - Call `cache_validation_callback` for user define cache validation. | |
| Returns True if the function call is in cache and can be used, and | |
| returns False otherwise. | |
| """ | |
| # Check if the code of the function has changed | |
| if not self._check_previous_func_code(stacklevel=4): | |
| return False | |
| # Check if this specific call is in the cache | |
| if not self.store_backend.contains_item(call_id): | |
| return False | |
| # Call the user defined cache validation callback | |
| metadata = self.store_backend.get_metadata(call_id) | |
| if (self.cache_validation_callback is not None and | |
| not self.cache_validation_callback(metadata)): | |
| self.store_backend.clear_item(call_id) | |
| return False | |
| return True | |
| def _cached_call(self, args, kwargs, shelving): | |
| """Call wrapped function and cache result, or read cache if available. | |
| This function returns the wrapped function output or a reference to | |
| the cached result. | |
| Arguments: | |
| ---------- | |
| args, kwargs: list and dict | |
| input arguments for wrapped function | |
| shelving: bool | |
| True when called via the call_and_shelve function. | |
| Returns | |
| ------- | |
| Output of the wrapped function if shelving is false, or a | |
| MemorizedResult reference to the value if shelving is true. | |
| """ | |
| args_id = self._get_args_id(*args, **kwargs) | |
| call_id = (self.func_id, args_id) | |
| _, func_name = get_func_name(self.func) | |
| func_info = self.store_backend.get_cached_func_info([self.func_id]) | |
| location = func_info['location'] | |
| if self._verbose >= 20: | |
| logging.basicConfig(level=logging.INFO) | |
| _, signature = format_signature(self.func, *args, **kwargs) | |
| self.info( | |
| textwrap.dedent( | |
| f""" | |
| Querying {func_name} with signature | |
| {signature}. | |
| (argument hash {args_id}) | |
| The store location is {location}. | |
| """ | |
| ) | |
| ) | |
| # Compare the function code with the previous to see if the | |
| # function code has changed and check if the results are present in | |
| # the cache. | |
| if self._is_in_cache_and_valid(call_id): | |
| if shelving: | |
| return self._get_memorized_result(call_id) | |
| try: | |
| start_time = time.time() | |
| output = self._load_item(call_id) | |
| if self._verbose > 4: | |
| self._print_duration(time.time() - start_time, | |
| context='cache loaded ') | |
| return output | |
| except Exception: | |
| # XXX: Should use an exception logger | |
| _, signature = format_signature(self.func, *args, **kwargs) | |
| self.warn('Exception while loading results for ' | |
| '{}\n {}'.format(signature, traceback.format_exc())) | |
| if self._verbose > 10: | |
| self.warn( | |
| f"Computing func {func_name}, argument hash {args_id} " | |
| f"in location {location}" | |
| ) | |
| return self._call(call_id, args, kwargs, shelving) | |
| def func_code_info(self): | |
| # 3-tuple property containing: the function source code, source file, | |
| # and first line of the code inside the source file | |
| if hasattr(self.func, '__code__'): | |
| if self._func_code_id is None: | |
| self._func_code_id = id(self.func.__code__) | |
| elif id(self.func.__code__) != self._func_code_id: | |
| # Be robust to dynamic reassignments of self.func.__code__ | |
| self._func_code_info = None | |
| if self._func_code_info is None: | |
| # Cache the source code of self.func . Provided that get_func_code | |
| # (which should be called once on self) gets called in the process | |
| # in which self.func was defined, this caching mechanism prevents | |
| # undesired cache clearing when the cached function is called in | |
| # an environment where the introspection utilities get_func_code | |
| # relies on do not work (typically, in joblib child processes). | |
| # See #1035 for more info | |
| # TODO (pierreglaser): do the same with get_func_name? | |
| self._func_code_info = get_func_code(self.func) | |
| return self._func_code_info | |
| def call_and_shelve(self, *args, **kwargs): | |
| """Call wrapped function, cache result and return a reference. | |
| This method returns a reference to the cached result instead of the | |
| result itself. The reference object is small and pickeable, allowing | |
| to send or store it easily. Call .get() on reference object to get | |
| result. | |
| Returns | |
| ------- | |
| cached_result: MemorizedResult or NotMemorizedResult | |
| reference to the value returned by the wrapped function. The | |
| class "NotMemorizedResult" is used when there is no cache | |
| activated (e.g. location=None in Memory). | |
| """ | |
| return self._cached_call(args, kwargs, shelving=True) | |
| def __call__(self, *args, **kwargs): | |
| return self._cached_call(args, kwargs, shelving=False) | |
| def __getstate__(self): | |
| # Make sure self.func's source is introspected prior to being pickled - | |
| # code introspection utilities typically do not work inside child | |
| # processes | |
| _ = self.func_code_info | |
| # We don't store the timestamp when pickling, to avoid the hash | |
| # depending from it. | |
| state = self.__dict__.copy() | |
| state['timestamp'] = None | |
| # Invalidate the code id as id(obj) will be different in the child | |
| state['_func_code_id'] = None | |
| return state | |
| def check_call_in_cache(self, *args, **kwargs): | |
| """Check if function call is in the memory cache. | |
| Does not call the function or do any work besides func inspection | |
| and arg hashing. | |
| Returns | |
| ------- | |
| is_call_in_cache: bool | |
| Whether or not the result of the function has been cached | |
| for the input arguments that have been passed. | |
| """ | |
| call_id = (self.func_id, self._get_args_id(*args, **kwargs)) | |
| return self.store_backend.contains_item(call_id) | |
| # ------------------------------------------------------------------------ | |
| # Private interface | |
| # ------------------------------------------------------------------------ | |
| def _get_args_id(self, *args, **kwargs): | |
| """Return the input parameter hash of a result.""" | |
| return hashing.hash(filter_args(self.func, self.ignore, args, kwargs), | |
| coerce_mmap=self.mmap_mode is not None) | |
| def _hash_func(self): | |
| """Hash a function to key the online cache""" | |
| func_code_h = hash(getattr(self.func, '__code__', None)) | |
| return id(self.func), hash(self.func), func_code_h | |
| def _write_func_code(self, func_code, first_line): | |
| """ Write the function code and the filename to a file. | |
| """ | |
| # We store the first line because the filename and the function | |
| # name is not always enough to identify a function: people | |
| # sometimes have several functions named the same way in a | |
| # file. This is bad practice, but joblib should be robust to bad | |
| # practice. | |
| func_code = u'%s %i\n%s' % (FIRST_LINE_TEXT, first_line, func_code) | |
| self.store_backend.store_cached_func_code([self.func_id], func_code) | |
| # Also store in the in-memory store of function hashes | |
| is_named_callable = (hasattr(self.func, '__name__') and | |
| self.func.__name__ != '<lambda>') | |
| if is_named_callable: | |
| # Don't do this for lambda functions or strange callable | |
| # objects, as it ends up being too fragile | |
| func_hash = self._hash_func() | |
| try: | |
| _FUNCTION_HASHES[self.func] = func_hash | |
| except TypeError: | |
| # Some callable are not hashable | |
| pass | |
| def _check_previous_func_code(self, stacklevel=2): | |
| """ | |
| stacklevel is the depth a which this function is called, to | |
| issue useful warnings to the user. | |
| """ | |
| # First check if our function is in the in-memory store. | |
| # Using the in-memory store not only makes things faster, but it | |
| # also renders us robust to variations of the files when the | |
| # in-memory version of the code does not vary | |
| try: | |
| if self.func in _FUNCTION_HASHES: | |
| # We use as an identifier the id of the function and its | |
| # hash. This is more likely to falsely change than have hash | |
| # collisions, thus we are on the safe side. | |
| func_hash = self._hash_func() | |
| if func_hash == _FUNCTION_HASHES[self.func]: | |
| return True | |
| except TypeError: | |
| # Some callables are not hashable | |
| pass | |
| # Here, we go through some effort to be robust to dynamically | |
| # changing code and collision. We cannot inspect.getsource | |
| # because it is not reliable when using IPython's magic "%run". | |
| func_code, source_file, first_line = self.func_code_info | |
| try: | |
| old_func_code, old_first_line = extract_first_line( | |
| self.store_backend.get_cached_func_code([self.func_id])) | |
| except (IOError, OSError): # some backend can also raise OSError | |
| self._write_func_code(func_code, first_line) | |
| return False | |
| if old_func_code == func_code: | |
| return True | |
| # We have differing code, is this because we are referring to | |
| # different functions, or because the function we are referring to has | |
| # changed? | |
| _, func_name = get_func_name(self.func, resolv_alias=False, | |
| win_characters=False) | |
| if old_first_line == first_line == -1 or func_name == '<lambda>': | |
| if not first_line == -1: | |
| func_description = ("{0} ({1}:{2})" | |
| .format(func_name, source_file, | |
| first_line)) | |
| else: | |
| func_description = func_name | |
| warnings.warn(JobLibCollisionWarning( | |
| "Cannot detect name collisions for function '{0}'" | |
| .format(func_description)), stacklevel=stacklevel) | |
| # Fetch the code at the old location and compare it. If it is the | |
| # same than the code store, we have a collision: the code in the | |
| # file has not changed, but the name we have is pointing to a new | |
| # code block. | |
| if not old_first_line == first_line and source_file is not None: | |
| if os.path.exists(source_file): | |
| _, func_name = get_func_name(self.func, resolv_alias=False) | |
| num_lines = len(func_code.split('\n')) | |
| with tokenize.open(source_file) as f: | |
| on_disk_func_code = f.readlines()[ | |
| old_first_line - 1:old_first_line - 1 + num_lines - 1] | |
| on_disk_func_code = ''.join(on_disk_func_code) | |
| possible_collision = (on_disk_func_code.rstrip() == | |
| old_func_code.rstrip()) | |
| else: | |
| possible_collision = source_file.startswith('<doctest ') | |
| if possible_collision: | |
| warnings.warn(JobLibCollisionWarning( | |
| 'Possible name collisions between functions ' | |
| "'%s' (%s:%i) and '%s' (%s:%i)" % | |
| (func_name, source_file, old_first_line, | |
| func_name, source_file, first_line)), | |
| stacklevel=stacklevel) | |
| # The function has changed, wipe the cache directory. | |
| # XXX: Should be using warnings, and giving stacklevel | |
| if self._verbose > 10: | |
| _, func_name = get_func_name(self.func, resolv_alias=False) | |
| self.warn("Function {0} (identified by {1}) has changed" | |
| ".".format(func_name, self.func_id)) | |
| self.clear(warn=True) | |
| return False | |
| def clear(self, warn=True): | |
| """Empty the function's cache.""" | |
| func_id = self.func_id | |
| if self._verbose > 0 and warn: | |
| self.warn("Clearing function cache identified by %s" % func_id) | |
| self.store_backend.clear_path([func_id, ]) | |
| func_code, _, first_line = self.func_code_info | |
| self._write_func_code(func_code, first_line) | |
| def call(self, *args, **kwargs): | |
| """Force the execution of the function with the given arguments. | |
| The output values will be persisted, i.e., the cache will be updated | |
| with any new values. | |
| Parameters | |
| ---------- | |
| *args: arguments | |
| The arguments. | |
| **kwargs: keyword arguments | |
| Keyword arguments. | |
| Returns | |
| ------- | |
| output : object | |
| The output of the function call. | |
| """ | |
| call_id = (self.func_id, self._get_args_id(*args, **kwargs)) | |
| return self._call(call_id, args, kwargs) | |
| def _call(self, call_id, args, kwargs, shelving=False): | |
| self._before_call(args, kwargs) | |
| start_time = time.time() | |
| output = self.func(*args, **kwargs) | |
| return self._after_call(call_id, args, kwargs, shelving, | |
| output, start_time) | |
| def _before_call(self, args, kwargs): | |
| if self._verbose > 0: | |
| print(format_call(self.func, args, kwargs)) | |
| def _after_call(self, call_id, args, kwargs, shelving, output, start_time): | |
| self.store_backend.dump_item(call_id, output, verbose=self._verbose) | |
| duration = time.time() - start_time | |
| if self._verbose > 0: | |
| self._print_duration(duration) | |
| metadata = self._persist_input(duration, call_id, args, kwargs) | |
| if shelving: | |
| return self._get_memorized_result(call_id, metadata) | |
| if self.mmap_mode is not None: | |
| # Memmap the output at the first call to be consistent with | |
| # later calls | |
| output = self._load_item(call_id, metadata) | |
| return output | |
| def _persist_input(self, duration, call_id, args, kwargs, | |
| this_duration_limit=0.5): | |
| """ Save a small summary of the call using json format in the | |
| output directory. | |
| output_dir: string | |
| directory where to write metadata. | |
| duration: float | |
| time taken by hashing input arguments, calling the wrapped | |
| function and persisting its output. | |
| args, kwargs: list and dict | |
| input arguments for wrapped function | |
| this_duration_limit: float | |
| Max execution time for this function before issuing a warning. | |
| """ | |
| start_time = time.time() | |
| argument_dict = filter_args(self.func, self.ignore, | |
| args, kwargs) | |
| input_repr = dict((k, repr(v)) for k, v in argument_dict.items()) | |
| # This can fail due to race-conditions with multiple | |
| # concurrent joblibs removing the file or the directory | |
| metadata = { | |
| "duration": duration, "input_args": input_repr, "time": start_time, | |
| } | |
| self.store_backend.store_metadata(call_id, metadata) | |
| this_duration = time.time() - start_time | |
| if this_duration > this_duration_limit: | |
| # This persistence should be fast. It will not be if repr() takes | |
| # time and its output is large, because json.dump will have to | |
| # write a large file. This should not be an issue with numpy arrays | |
| # for which repr() always output a short representation, but can | |
| # be with complex dictionaries. Fixing the problem should be a | |
| # matter of replacing repr() above by something smarter. | |
| warnings.warn("Persisting input arguments took %.2fs to run." | |
| "If this happens often in your code, it can cause " | |
| "performance problems " | |
| "(results will be correct in all cases). " | |
| "The reason for this is probably some large input " | |
| "arguments for a wrapped function." | |
| % this_duration, stacklevel=5) | |
| return metadata | |
| def _get_memorized_result(self, call_id, metadata=None): | |
| return MemorizedResult(self.store_backend, call_id, | |
| metadata=metadata, timestamp=self.timestamp, | |
| verbose=self._verbose - 1) | |
| def _load_item(self, call_id, metadata=None): | |
| return self.store_backend.load_item(call_id, metadata=metadata, | |
| timestamp=self.timestamp, | |
| verbose=self._verbose) | |
| def _print_duration(self, duration, context=''): | |
| _, name = get_func_name(self.func) | |
| msg = f"{name} {context}- {format_time(duration)}" | |
| print(max(0, (80 - len(msg))) * '_' + msg) | |
| # ------------------------------------------------------------------------ | |
| # Private `object` interface | |
| # ------------------------------------------------------------------------ | |
| def __repr__(self): | |
| return '{class_name}(func={func}, location={location})'.format( | |
| class_name=self.__class__.__name__, | |
| func=self.func, | |
| location=self.store_backend.location,) | |
| ############################################################################### | |
| # class `AsyncMemorizedFunc` | |
| ############################################################################### | |
| class AsyncMemorizedFunc(MemorizedFunc): | |
| async def __call__(self, *args, **kwargs): | |
| out = super().__call__(*args, **kwargs) | |
| return await out if asyncio.iscoroutine(out) else out | |
| async def call_and_shelve(self, *args, **kwargs): | |
| out = super().call_and_shelve(*args, **kwargs) | |
| return await out if asyncio.iscoroutine(out) else out | |
| async def call(self, *args, **kwargs): | |
| out = super().call(*args, **kwargs) | |
| return await out if asyncio.iscoroutine(out) else out | |
| async def _call(self, call_id, args, kwargs, shelving=False): | |
| self._before_call(args, kwargs) | |
| start_time = time.time() | |
| output = await self.func(*args, **kwargs) | |
| return self._after_call(call_id, args, kwargs, shelving, | |
| output, start_time) | |
| ############################################################################### | |
| # class `Memory` | |
| ############################################################################### | |
| class Memory(Logger): | |
| """ A context object for caching a function's return value each time it | |
| is called with the same input arguments. | |
| All values are cached on the filesystem, in a deep directory | |
| structure. | |
| Read more in the :ref:`User Guide <memory>`. | |
| Parameters | |
| ---------- | |
| location: str, pathlib.Path or None | |
| The path of the base directory to use as a data store | |
| or None. If None is given, no caching is done and | |
| the Memory object is completely transparent. This option | |
| replaces cachedir since version 0.12. | |
| backend: str, optional | |
| Type of store backend for reading/writing cache files. | |
| Default: 'local'. | |
| The 'local' backend is using regular filesystem operations to | |
| manipulate data (open, mv, etc) in the backend. | |
| mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional | |
| The memmapping mode used when loading from cache | |
| numpy arrays. See numpy.load for the meaning of the | |
| arguments. | |
| compress: boolean, or integer, optional | |
| Whether to zip the stored data on disk. If an integer is | |
| given, it should be between 1 and 9, and sets the amount | |
| of compression. Note that compressed arrays cannot be | |
| read by memmapping. | |
| verbose: int, optional | |
| Verbosity flag, controls the debug messages that are issued | |
| as functions are evaluated. | |
| bytes_limit: int | str, optional | |
| Limit in bytes of the size of the cache. By default, the size of | |
| the cache is unlimited. When reducing the size of the cache, | |
| ``joblib`` keeps the most recently accessed items first. If a | |
| str is passed, it is converted to a number of bytes using units | |
| { K | M | G} for kilo, mega, giga. | |
| **Note:** You need to call :meth:`joblib.Memory.reduce_size` to | |
| actually reduce the cache size to be less than ``bytes_limit``. | |
| **Note:** This argument has been deprecated. One should give the | |
| value of ``bytes_limit`` directly in | |
| :meth:`joblib.Memory.reduce_size`. | |
| backend_options: dict, optional | |
| Contains a dictionary of named parameters used to configure | |
| the store backend. | |
| """ | |
| # ------------------------------------------------------------------------ | |
| # Public interface | |
| # ------------------------------------------------------------------------ | |
| def __init__(self, location=None, backend='local', | |
| mmap_mode=None, compress=False, verbose=1, bytes_limit=None, | |
| backend_options=None): | |
| Logger.__init__(self) | |
| self._verbose = verbose | |
| self.mmap_mode = mmap_mode | |
| self.timestamp = time.time() | |
| if bytes_limit is not None: | |
| warnings.warn( | |
| "bytes_limit argument has been deprecated. It will be removed " | |
| "in version 1.5. Please pass its value directly to " | |
| "Memory.reduce_size.", | |
| category=DeprecationWarning | |
| ) | |
| self.bytes_limit = bytes_limit | |
| self.backend = backend | |
| self.compress = compress | |
| if backend_options is None: | |
| backend_options = {} | |
| self.backend_options = backend_options | |
| if compress and mmap_mode is not None: | |
| warnings.warn('Compressed results cannot be memmapped', | |
| stacklevel=2) | |
| self.location = location | |
| if isinstance(location, str): | |
| location = os.path.join(location, 'joblib') | |
| self.store_backend = _store_backend_factory( | |
| backend, location, verbose=self._verbose, | |
| backend_options=dict(compress=compress, mmap_mode=mmap_mode, | |
| **backend_options)) | |
| def cache(self, func=None, ignore=None, verbose=None, mmap_mode=False, | |
| cache_validation_callback=None): | |
| """ Decorates the given function func to only compute its return | |
| value for input arguments not cached on disk. | |
| Parameters | |
| ---------- | |
| func: callable, optional | |
| The function to be decorated | |
| ignore: list of strings | |
| A list of arguments name to ignore in the hashing | |
| verbose: integer, optional | |
| The verbosity mode of the function. By default that | |
| of the memory object is used. | |
| mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional | |
| The memmapping mode used when loading from cache | |
| numpy arrays. See numpy.load for the meaning of the | |
| arguments. By default that of the memory object is used. | |
| cache_validation_callback: callable, optional | |
| Callable to validate whether or not the cache is valid. When | |
| the cached function is called with arguments for which a cache | |
| exists, this callable is called with the metadata of the cached | |
| result as its sole argument. If it returns True, then the | |
| cached result is returned, else the cache for these arguments | |
| is cleared and recomputed. | |
| Returns | |
| ------- | |
| decorated_func: MemorizedFunc object | |
| The returned object is a MemorizedFunc object, that is | |
| callable (behaves like a function), but offers extra | |
| methods for cache lookup and management. See the | |
| documentation for :class:`joblib.memory.MemorizedFunc`. | |
| """ | |
| if (cache_validation_callback is not None and | |
| not callable(cache_validation_callback)): | |
| raise ValueError( | |
| "cache_validation_callback needs to be callable. " | |
| f"Got {cache_validation_callback}." | |
| ) | |
| if func is None: | |
| # Partial application, to be able to specify extra keyword | |
| # arguments in decorators | |
| return functools.partial( | |
| self.cache, ignore=ignore, | |
| mmap_mode=mmap_mode, | |
| verbose=verbose, | |
| cache_validation_callback=cache_validation_callback | |
| ) | |
| if self.store_backend is None: | |
| cls = (AsyncNotMemorizedFunc | |
| if asyncio.iscoroutinefunction(func) | |
| else NotMemorizedFunc) | |
| return cls(func) | |
| if verbose is None: | |
| verbose = self._verbose | |
| if mmap_mode is False: | |
| mmap_mode = self.mmap_mode | |
| if isinstance(func, MemorizedFunc): | |
| func = func.func | |
| cls = (AsyncMemorizedFunc | |
| if asyncio.iscoroutinefunction(func) | |
| else MemorizedFunc) | |
| return cls( | |
| func, location=self.store_backend, backend=self.backend, | |
| ignore=ignore, mmap_mode=mmap_mode, compress=self.compress, | |
| verbose=verbose, timestamp=self.timestamp, | |
| cache_validation_callback=cache_validation_callback | |
| ) | |
| def clear(self, warn=True): | |
| """ Erase the complete cache directory. | |
| """ | |
| if warn: | |
| self.warn('Flushing completely the cache') | |
| if self.store_backend is not None: | |
| self.store_backend.clear() | |
| # As the cache is completely clear, make sure the _FUNCTION_HASHES | |
| # cache is also reset. Else, for a function that is present in this | |
| # table, results cached after this clear will be have cache miss | |
| # as the function code is not re-written. | |
| _FUNCTION_HASHES.clear() | |
| def reduce_size(self, bytes_limit=None, items_limit=None, age_limit=None): | |
| """Remove cache elements to make the cache fit its limits. | |
| The limitation can impose that the cache size fits in ``bytes_limit``, | |
| that the number of cache items is no more than ``items_limit``, and | |
| that all files in cache are not older than ``age_limit``. | |
| Parameters | |
| ---------- | |
| bytes_limit: int | str, optional | |
| Limit in bytes of the size of the cache. By default, the size of | |
| the cache is unlimited. When reducing the size of the cache, | |
| ``joblib`` keeps the most recently accessed items first. If a | |
| str is passed, it is converted to a number of bytes using units | |
| { K | M | G} for kilo, mega, giga. | |
| items_limit: int, optional | |
| Number of items to limit the cache to. By default, the number of | |
| items in the cache is unlimited. When reducing the size of the | |
| cache, ``joblib`` keeps the most recently accessed items first. | |
| age_limit: datetime.timedelta, optional | |
| Maximum age of items to limit the cache to. When reducing the size | |
| of the cache, any items last accessed more than the given length of | |
| time ago are deleted. | |
| """ | |
| if bytes_limit is None: | |
| bytes_limit = self.bytes_limit | |
| if self.store_backend is None: | |
| # No cached results, this function does nothing. | |
| return | |
| if bytes_limit is None and items_limit is None and age_limit is None: | |
| # No limitation to impose, returning | |
| return | |
| # Defers the actual limits enforcing to the store backend. | |
| self.store_backend.enforce_store_limits( | |
| bytes_limit, items_limit, age_limit | |
| ) | |
| def eval(self, func, *args, **kwargs): | |
| """ Eval function func with arguments `*args` and `**kwargs`, | |
| in the context of the memory. | |
| This method works similarly to the builtin `apply`, except | |
| that the function is called only if the cache is not | |
| up to date. | |
| """ | |
| if self.store_backend is None: | |
| return func(*args, **kwargs) | |
| return self.cache(func)(*args, **kwargs) | |
| # ------------------------------------------------------------------------ | |
| # Private `object` interface | |
| # ------------------------------------------------------------------------ | |
| def __repr__(self): | |
| return '{class_name}(location={location})'.format( | |
| class_name=self.__class__.__name__, | |
| location=(None if self.store_backend is None | |
| else self.store_backend.location)) | |
| def __getstate__(self): | |
| """ We don't store the timestamp when pickling, to avoid the hash | |
| depending from it. | |
| """ | |
| state = self.__dict__.copy() | |
| state['timestamp'] = None | |
| return state | |
| ############################################################################### | |
| # cache_validation_callback helpers | |
| ############################################################################### | |
| def expires_after(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, | |
| hours=0, weeks=0): | |
| """Helper cache_validation_callback to force recompute after a duration. | |
| Parameters | |
| ---------- | |
| days, seconds, microseconds, milliseconds, minutes, hours, weeks: numbers | |
| argument passed to a timedelta. | |
| """ | |
| delta = datetime.timedelta( | |
| days=days, seconds=seconds, microseconds=microseconds, | |
| milliseconds=milliseconds, minutes=minutes, hours=hours, weeks=weeks | |
| ) | |
| def cache_validation_callback(metadata): | |
| computation_age = time.time() - metadata['time'] | |
| return computation_age < delta.total_seconds() | |
| return cache_validation_callback | |