peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/inference
/nonmonotonic.py
| # Natural Language Toolkit: Nonmonotonic Reasoning | |
| # | |
| # Author: Daniel H. Garrette <[email protected]> | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| A module to perform nonmonotonic reasoning. The ideas and demonstrations in | |
| this module are based on "Logical Foundations of Artificial Intelligence" by | |
| Michael R. Genesereth and Nils J. Nilsson. | |
| """ | |
| from collections import defaultdict | |
| from functools import reduce | |
| from nltk.inference.api import Prover, ProverCommandDecorator | |
| from nltk.inference.prover9 import Prover9, Prover9Command | |
| from nltk.sem.logic import ( | |
| AbstractVariableExpression, | |
| AllExpression, | |
| AndExpression, | |
| ApplicationExpression, | |
| BooleanExpression, | |
| EqualityExpression, | |
| ExistsExpression, | |
| Expression, | |
| ImpExpression, | |
| NegatedExpression, | |
| Variable, | |
| VariableExpression, | |
| operator, | |
| unique_variable, | |
| ) | |
| class ProverParseError(Exception): | |
| pass | |
| def get_domain(goal, assumptions): | |
| if goal is None: | |
| all_expressions = assumptions | |
| else: | |
| all_expressions = assumptions + [-goal] | |
| return reduce(operator.or_, (a.constants() for a in all_expressions), set()) | |
| class ClosedDomainProver(ProverCommandDecorator): | |
| """ | |
| This is a prover decorator that adds domain closure assumptions before | |
| proving. | |
| """ | |
| def assumptions(self): | |
| assumptions = [a for a in self._command.assumptions()] | |
| goal = self._command.goal() | |
| domain = get_domain(goal, assumptions) | |
| return [self.replace_quants(ex, domain) for ex in assumptions] | |
| def goal(self): | |
| goal = self._command.goal() | |
| domain = get_domain(goal, self._command.assumptions()) | |
| return self.replace_quants(goal, domain) | |
| def replace_quants(self, ex, domain): | |
| """ | |
| Apply the closed domain assumption to the expression | |
| - Domain = union([e.free()|e.constants() for e in all_expressions]) | |
| - translate "exists x.P" to "(z=d1 | z=d2 | ... ) & P.replace(x,z)" OR | |
| "P.replace(x, d1) | P.replace(x, d2) | ..." | |
| - translate "all x.P" to "P.replace(x, d1) & P.replace(x, d2) & ..." | |
| :param ex: ``Expression`` | |
| :param domain: set of {Variable}s | |
| :return: ``Expression`` | |
| """ | |
| if isinstance(ex, AllExpression): | |
| conjuncts = [ | |
| ex.term.replace(ex.variable, VariableExpression(d)) for d in domain | |
| ] | |
| conjuncts = [self.replace_quants(c, domain) for c in conjuncts] | |
| return reduce(lambda x, y: x & y, conjuncts) | |
| elif isinstance(ex, BooleanExpression): | |
| return ex.__class__( | |
| self.replace_quants(ex.first, domain), | |
| self.replace_quants(ex.second, domain), | |
| ) | |
| elif isinstance(ex, NegatedExpression): | |
| return -self.replace_quants(ex.term, domain) | |
| elif isinstance(ex, ExistsExpression): | |
| disjuncts = [ | |
| ex.term.replace(ex.variable, VariableExpression(d)) for d in domain | |
| ] | |
| disjuncts = [self.replace_quants(d, domain) for d in disjuncts] | |
| return reduce(lambda x, y: x | y, disjuncts) | |
| else: | |
| return ex | |
| class UniqueNamesProver(ProverCommandDecorator): | |
| """ | |
| This is a prover decorator that adds unique names assumptions before | |
| proving. | |
| """ | |
| def assumptions(self): | |
| """ | |
| - Domain = union([e.free()|e.constants() for e in all_expressions]) | |
| - if "d1 = d2" cannot be proven from the premises, then add "d1 != d2" | |
| """ | |
| assumptions = self._command.assumptions() | |
| domain = list(get_domain(self._command.goal(), assumptions)) | |
| # build a dictionary of obvious equalities | |
| eq_sets = SetHolder() | |
| for a in assumptions: | |
| if isinstance(a, EqualityExpression): | |
| av = a.first.variable | |
| bv = a.second.variable | |
| # put 'a' and 'b' in the same set | |
| eq_sets[av].add(bv) | |
| new_assumptions = [] | |
| for i, a in enumerate(domain): | |
| for b in domain[i + 1 :]: | |
| # if a and b are not already in the same equality set | |
| if b not in eq_sets[a]: | |
| newEqEx = EqualityExpression( | |
| VariableExpression(a), VariableExpression(b) | |
| ) | |
| if Prover9().prove(newEqEx, assumptions): | |
| # we can prove that the names are the same entity. | |
| # remember that they are equal so we don't re-check. | |
| eq_sets[a].add(b) | |
| else: | |
| # we can't prove it, so assume unique names | |
| new_assumptions.append(-newEqEx) | |
| return assumptions + new_assumptions | |
| class SetHolder(list): | |
| """ | |
| A list of sets of Variables. | |
| """ | |
| def __getitem__(self, item): | |
| """ | |
| :param item: ``Variable`` | |
| :return: the set containing 'item' | |
| """ | |
| assert isinstance(item, Variable) | |
| for s in self: | |
| if item in s: | |
| return s | |
| # item is not found in any existing set. so create a new set | |
| new = {item} | |
| self.append(new) | |
| return new | |
| class ClosedWorldProver(ProverCommandDecorator): | |
| """ | |
| This is a prover decorator that completes predicates before proving. | |
| If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion of "P". | |
| If the assumptions contain "all x.(ostrich(x) -> bird(x))", then "all x.(bird(x) -> ostrich(x))" is the completion of "bird". | |
| If the assumptions don't contain anything that are "P", then "all x.-P(x)" is the completion of "P". | |
| walk(Socrates) | |
| Socrates != Bill | |
| + all x.(walk(x) -> (x=Socrates)) | |
| ---------------- | |
| -walk(Bill) | |
| see(Socrates, John) | |
| see(John, Mary) | |
| Socrates != John | |
| John != Mary | |
| + all x.all y.(see(x,y) -> ((x=Socrates & y=John) | (x=John & y=Mary))) | |
| ---------------- | |
| -see(Socrates, Mary) | |
| all x.(ostrich(x) -> bird(x)) | |
| bird(Tweety) | |
| -ostrich(Sam) | |
| Sam != Tweety | |
| + all x.(bird(x) -> (ostrich(x) | x=Tweety)) | |
| + all x.-ostrich(x) | |
| ------------------- | |
| -bird(Sam) | |
| """ | |
| def assumptions(self): | |
| assumptions = self._command.assumptions() | |
| predicates = self._make_predicate_dict(assumptions) | |
| new_assumptions = [] | |
| for p in predicates: | |
| predHolder = predicates[p] | |
| new_sig = self._make_unique_signature(predHolder) | |
| new_sig_exs = [VariableExpression(v) for v in new_sig] | |
| disjuncts = [] | |
| # Turn the signatures into disjuncts | |
| for sig in predHolder.signatures: | |
| equality_exs = [] | |
| for v1, v2 in zip(new_sig_exs, sig): | |
| equality_exs.append(EqualityExpression(v1, v2)) | |
| disjuncts.append(reduce(lambda x, y: x & y, equality_exs)) | |
| # Turn the properties into disjuncts | |
| for prop in predHolder.properties: | |
| # replace variables from the signature with new sig variables | |
| bindings = {} | |
| for v1, v2 in zip(new_sig_exs, prop[0]): | |
| bindings[v2] = v1 | |
| disjuncts.append(prop[1].substitute_bindings(bindings)) | |
| # make the assumption | |
| if disjuncts: | |
| # disjuncts exist, so make an implication | |
| antecedent = self._make_antecedent(p, new_sig) | |
| consequent = reduce(lambda x, y: x | y, disjuncts) | |
| accum = ImpExpression(antecedent, consequent) | |
| else: | |
| # nothing has property 'p' | |
| accum = NegatedExpression(self._make_antecedent(p, new_sig)) | |
| # quantify the implication | |
| for new_sig_var in new_sig[::-1]: | |
| accum = AllExpression(new_sig_var, accum) | |
| new_assumptions.append(accum) | |
| return assumptions + new_assumptions | |
| def _make_unique_signature(self, predHolder): | |
| """ | |
| This method figures out how many arguments the predicate takes and | |
| returns a tuple containing that number of unique variables. | |
| """ | |
| return tuple(unique_variable() for i in range(predHolder.signature_len)) | |
| def _make_antecedent(self, predicate, signature): | |
| """ | |
| Return an application expression with 'predicate' as the predicate | |
| and 'signature' as the list of arguments. | |
| """ | |
| antecedent = predicate | |
| for v in signature: | |
| antecedent = antecedent(VariableExpression(v)) | |
| return antecedent | |
| def _make_predicate_dict(self, assumptions): | |
| """ | |
| Create a dictionary of predicates from the assumptions. | |
| :param assumptions: a list of ``Expression``s | |
| :return: dict mapping ``AbstractVariableExpression`` to ``PredHolder`` | |
| """ | |
| predicates = defaultdict(PredHolder) | |
| for a in assumptions: | |
| self._map_predicates(a, predicates) | |
| return predicates | |
| def _map_predicates(self, expression, predDict): | |
| if isinstance(expression, ApplicationExpression): | |
| func, args = expression.uncurry() | |
| if isinstance(func, AbstractVariableExpression): | |
| predDict[func].append_sig(tuple(args)) | |
| elif isinstance(expression, AndExpression): | |
| self._map_predicates(expression.first, predDict) | |
| self._map_predicates(expression.second, predDict) | |
| elif isinstance(expression, AllExpression): | |
| # collect all the universally quantified variables | |
| sig = [expression.variable] | |
| term = expression.term | |
| while isinstance(term, AllExpression): | |
| sig.append(term.variable) | |
| term = term.term | |
| if isinstance(term, ImpExpression): | |
| if isinstance(term.first, ApplicationExpression) and isinstance( | |
| term.second, ApplicationExpression | |
| ): | |
| func1, args1 = term.first.uncurry() | |
| func2, args2 = term.second.uncurry() | |
| if ( | |
| isinstance(func1, AbstractVariableExpression) | |
| and isinstance(func2, AbstractVariableExpression) | |
| and sig == [v.variable for v in args1] | |
| and sig == [v.variable for v in args2] | |
| ): | |
| predDict[func2].append_prop((tuple(sig), term.first)) | |
| predDict[func1].validate_sig_len(sig) | |
| class PredHolder: | |
| """ | |
| This class will be used by a dictionary that will store information | |
| about predicates to be used by the ``ClosedWorldProver``. | |
| The 'signatures' property is a list of tuples defining signatures for | |
| which the predicate is true. For instance, 'see(john, mary)' would be | |
| result in the signature '(john,mary)' for 'see'. | |
| The second element of the pair is a list of pairs such that the first | |
| element of the pair is a tuple of variables and the second element is an | |
| expression of those variables that makes the predicate true. For instance, | |
| 'all x.all y.(see(x,y) -> know(x,y))' would result in "((x,y),('see(x,y)'))" | |
| for 'know'. | |
| """ | |
| def __init__(self): | |
| self.signatures = [] | |
| self.properties = [] | |
| self.signature_len = None | |
| def append_sig(self, new_sig): | |
| self.validate_sig_len(new_sig) | |
| self.signatures.append(new_sig) | |
| def append_prop(self, new_prop): | |
| self.validate_sig_len(new_prop[0]) | |
| self.properties.append(new_prop) | |
| def validate_sig_len(self, new_sig): | |
| if self.signature_len is None: | |
| self.signature_len = len(new_sig) | |
| elif self.signature_len != len(new_sig): | |
| raise Exception("Signature lengths do not match") | |
| def __str__(self): | |
| return f"({self.signatures},{self.properties},{self.signature_len})" | |
| def __repr__(self): | |
| return "%s" % self | |
| def closed_domain_demo(): | |
| lexpr = Expression.fromstring | |
| p1 = lexpr(r"exists x.walk(x)") | |
| p2 = lexpr(r"man(Socrates)") | |
| c = lexpr(r"walk(Socrates)") | |
| prover = Prover9Command(c, [p1, p2]) | |
| print(prover.prove()) | |
| cdp = ClosedDomainProver(prover) | |
| print("assumptions:") | |
| for a in cdp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cdp.goal()) | |
| print(cdp.prove()) | |
| p1 = lexpr(r"exists x.walk(x)") | |
| p2 = lexpr(r"man(Socrates)") | |
| p3 = lexpr(r"-walk(Bill)") | |
| c = lexpr(r"walk(Socrates)") | |
| prover = Prover9Command(c, [p1, p2, p3]) | |
| print(prover.prove()) | |
| cdp = ClosedDomainProver(prover) | |
| print("assumptions:") | |
| for a in cdp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cdp.goal()) | |
| print(cdp.prove()) | |
| p1 = lexpr(r"exists x.walk(x)") | |
| p2 = lexpr(r"man(Socrates)") | |
| p3 = lexpr(r"-walk(Bill)") | |
| c = lexpr(r"walk(Socrates)") | |
| prover = Prover9Command(c, [p1, p2, p3]) | |
| print(prover.prove()) | |
| cdp = ClosedDomainProver(prover) | |
| print("assumptions:") | |
| for a in cdp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cdp.goal()) | |
| print(cdp.prove()) | |
| p1 = lexpr(r"walk(Socrates)") | |
| p2 = lexpr(r"walk(Bill)") | |
| c = lexpr(r"all x.walk(x)") | |
| prover = Prover9Command(c, [p1, p2]) | |
| print(prover.prove()) | |
| cdp = ClosedDomainProver(prover) | |
| print("assumptions:") | |
| for a in cdp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cdp.goal()) | |
| print(cdp.prove()) | |
| p1 = lexpr(r"girl(mary)") | |
| p2 = lexpr(r"dog(rover)") | |
| p3 = lexpr(r"all x.(girl(x) -> -dog(x))") | |
| p4 = lexpr(r"all x.(dog(x) -> -girl(x))") | |
| p5 = lexpr(r"chase(mary, rover)") | |
| c = lexpr(r"exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))") | |
| prover = Prover9Command(c, [p1, p2, p3, p4, p5]) | |
| print(prover.prove()) | |
| cdp = ClosedDomainProver(prover) | |
| print("assumptions:") | |
| for a in cdp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cdp.goal()) | |
| print(cdp.prove()) | |
| def unique_names_demo(): | |
| lexpr = Expression.fromstring | |
| p1 = lexpr(r"man(Socrates)") | |
| p2 = lexpr(r"man(Bill)") | |
| c = lexpr(r"exists x.exists y.(x != y)") | |
| prover = Prover9Command(c, [p1, p2]) | |
| print(prover.prove()) | |
| unp = UniqueNamesProver(prover) | |
| print("assumptions:") | |
| for a in unp.assumptions(): | |
| print(" ", a) | |
| print("goal:", unp.goal()) | |
| print(unp.prove()) | |
| p1 = lexpr(r"all x.(walk(x) -> (x = Socrates))") | |
| p2 = lexpr(r"Bill = William") | |
| p3 = lexpr(r"Bill = Billy") | |
| c = lexpr(r"-walk(William)") | |
| prover = Prover9Command(c, [p1, p2, p3]) | |
| print(prover.prove()) | |
| unp = UniqueNamesProver(prover) | |
| print("assumptions:") | |
| for a in unp.assumptions(): | |
| print(" ", a) | |
| print("goal:", unp.goal()) | |
| print(unp.prove()) | |
| def closed_world_demo(): | |
| lexpr = Expression.fromstring | |
| p1 = lexpr(r"walk(Socrates)") | |
| p2 = lexpr(r"(Socrates != Bill)") | |
| c = lexpr(r"-walk(Bill)") | |
| prover = Prover9Command(c, [p1, p2]) | |
| print(prover.prove()) | |
| cwp = ClosedWorldProver(prover) | |
| print("assumptions:") | |
| for a in cwp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cwp.goal()) | |
| print(cwp.prove()) | |
| p1 = lexpr(r"see(Socrates, John)") | |
| p2 = lexpr(r"see(John, Mary)") | |
| p3 = lexpr(r"(Socrates != John)") | |
| p4 = lexpr(r"(John != Mary)") | |
| c = lexpr(r"-see(Socrates, Mary)") | |
| prover = Prover9Command(c, [p1, p2, p3, p4]) | |
| print(prover.prove()) | |
| cwp = ClosedWorldProver(prover) | |
| print("assumptions:") | |
| for a in cwp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cwp.goal()) | |
| print(cwp.prove()) | |
| p1 = lexpr(r"all x.(ostrich(x) -> bird(x))") | |
| p2 = lexpr(r"bird(Tweety)") | |
| p3 = lexpr(r"-ostrich(Sam)") | |
| p4 = lexpr(r"Sam != Tweety") | |
| c = lexpr(r"-bird(Sam)") | |
| prover = Prover9Command(c, [p1, p2, p3, p4]) | |
| print(prover.prove()) | |
| cwp = ClosedWorldProver(prover) | |
| print("assumptions:") | |
| for a in cwp.assumptions(): | |
| print(" ", a) | |
| print("goal:", cwp.goal()) | |
| print(cwp.prove()) | |
| def combination_prover_demo(): | |
| lexpr = Expression.fromstring | |
| p1 = lexpr(r"see(Socrates, John)") | |
| p2 = lexpr(r"see(John, Mary)") | |
| c = lexpr(r"-see(Socrates, Mary)") | |
| prover = Prover9Command(c, [p1, p2]) | |
| print(prover.prove()) | |
| command = ClosedDomainProver(UniqueNamesProver(ClosedWorldProver(prover))) | |
| for a in command.assumptions(): | |
| print(a) | |
| print(command.prove()) | |
| def default_reasoning_demo(): | |
| lexpr = Expression.fromstring | |
| premises = [] | |
| # define taxonomy | |
| premises.append(lexpr(r"all x.(elephant(x) -> animal(x))")) | |
| premises.append(lexpr(r"all x.(bird(x) -> animal(x))")) | |
| premises.append(lexpr(r"all x.(dove(x) -> bird(x))")) | |
| premises.append(lexpr(r"all x.(ostrich(x) -> bird(x))")) | |
| premises.append(lexpr(r"all x.(flying_ostrich(x) -> ostrich(x))")) | |
| # default properties | |
| premises.append( | |
| lexpr(r"all x.((animal(x) & -Ab1(x)) -> -fly(x))") | |
| ) # normal animals don't fly | |
| premises.append( | |
| lexpr(r"all x.((bird(x) & -Ab2(x)) -> fly(x))") | |
| ) # normal birds fly | |
| premises.append( | |
| lexpr(r"all x.((ostrich(x) & -Ab3(x)) -> -fly(x))") | |
| ) # normal ostriches don't fly | |
| # specify abnormal entities | |
| premises.append(lexpr(r"all x.(bird(x) -> Ab1(x))")) # flight | |
| premises.append(lexpr(r"all x.(ostrich(x) -> Ab2(x))")) # non-flying bird | |
| premises.append(lexpr(r"all x.(flying_ostrich(x) -> Ab3(x))")) # flying ostrich | |
| # define entities | |
| premises.append(lexpr(r"elephant(E)")) | |
| premises.append(lexpr(r"dove(D)")) | |
| premises.append(lexpr(r"ostrich(O)")) | |
| # print the assumptions | |
| prover = Prover9Command(None, premises) | |
| command = UniqueNamesProver(ClosedWorldProver(prover)) | |
| for a in command.assumptions(): | |
| print(a) | |
| print_proof("-fly(E)", premises) | |
| print_proof("fly(D)", premises) | |
| print_proof("-fly(O)", premises) | |
| def print_proof(goal, premises): | |
| lexpr = Expression.fromstring | |
| prover = Prover9Command(lexpr(goal), premises) | |
| command = UniqueNamesProver(ClosedWorldProver(prover)) | |
| print(goal, prover.prove(), command.prove()) | |
| def demo(): | |
| closed_domain_demo() | |
| unique_names_demo() | |
| closed_world_demo() | |
| combination_prover_demo() | |
| default_reasoning_demo() | |
| if __name__ == "__main__": | |
| demo() | |