peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/parse
/dependencygraph.py
| # Natural Language Toolkit: Dependency Grammars | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Jason Narad <[email protected]> | |
| # Steven Bird <[email protected]> (modifications) | |
| # | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| # | |
| """ | |
| Tools for reading and writing dependency trees. | |
| The input is assumed to be in Malt-TAB format | |
| (https://stp.lingfil.uu.se/~nivre/research/MaltXML.html). | |
| """ | |
| import subprocess | |
| import warnings | |
| from collections import defaultdict | |
| from itertools import chain | |
| from pprint import pformat | |
| from nltk.internals import find_binary | |
| from nltk.tree import Tree | |
| ################################################################# | |
| # DependencyGraph Class | |
| ################################################################# | |
| class DependencyGraph: | |
| """ | |
| A container for the nodes and labelled edges of a dependency structure. | |
| """ | |
| def __init__( | |
| self, | |
| tree_str=None, | |
| cell_extractor=None, | |
| zero_based=False, | |
| cell_separator=None, | |
| top_relation_label="ROOT", | |
| ): | |
| """Dependency graph. | |
| We place a dummy `TOP` node with the index 0, since the root node is | |
| often assigned 0 as its head. This also means that the indexing of the | |
| nodes corresponds directly to the Malt-TAB format, which starts at 1. | |
| If zero-based is True, then Malt-TAB-like input with node numbers | |
| starting at 0 and the root node assigned -1 (as produced by, e.g., | |
| zpar). | |
| :param str cell_separator: the cell separator. If not provided, cells | |
| are split by whitespace. | |
| :param str top_relation_label: the label by which the top relation is | |
| identified, for examlple, `ROOT`, `null` or `TOP`. | |
| """ | |
| self.nodes = defaultdict( | |
| lambda: { | |
| "address": None, | |
| "word": None, | |
| "lemma": None, | |
| "ctag": None, | |
| "tag": None, | |
| "feats": None, | |
| "head": None, | |
| "deps": defaultdict(list), | |
| "rel": None, | |
| } | |
| ) | |
| self.nodes[0].update({"ctag": "TOP", "tag": "TOP", "address": 0}) | |
| self.root = None | |
| if tree_str: | |
| self._parse( | |
| tree_str, | |
| cell_extractor=cell_extractor, | |
| zero_based=zero_based, | |
| cell_separator=cell_separator, | |
| top_relation_label=top_relation_label, | |
| ) | |
| def remove_by_address(self, address): | |
| """ | |
| Removes the node with the given address. References | |
| to this node in others will still exist. | |
| """ | |
| del self.nodes[address] | |
| def redirect_arcs(self, originals, redirect): | |
| """ | |
| Redirects arcs to any of the nodes in the originals list | |
| to the redirect node address. | |
| """ | |
| for node in self.nodes.values(): | |
| new_deps = [] | |
| for dep in node["deps"]: | |
| if dep in originals: | |
| new_deps.append(redirect) | |
| else: | |
| new_deps.append(dep) | |
| node["deps"] = new_deps | |
| def add_arc(self, head_address, mod_address): | |
| """ | |
| Adds an arc from the node specified by head_address to the | |
| node specified by the mod address. | |
| """ | |
| relation = self.nodes[mod_address]["rel"] | |
| self.nodes[head_address]["deps"].setdefault(relation, []) | |
| self.nodes[head_address]["deps"][relation].append(mod_address) | |
| # self.nodes[head_address]['deps'].append(mod_address) | |
| def connect_graph(self): | |
| """ | |
| Fully connects all non-root nodes. All nodes are set to be dependents | |
| of the root node. | |
| """ | |
| for node1 in self.nodes.values(): | |
| for node2 in self.nodes.values(): | |
| if node1["address"] != node2["address"] and node2["rel"] != "TOP": | |
| relation = node2["rel"] | |
| node1["deps"].setdefault(relation, []) | |
| node1["deps"][relation].append(node2["address"]) | |
| # node1['deps'].append(node2['address']) | |
| def get_by_address(self, node_address): | |
| """Return the node with the given address.""" | |
| return self.nodes[node_address] | |
| def contains_address(self, node_address): | |
| """ | |
| Returns true if the graph contains a node with the given node | |
| address, false otherwise. | |
| """ | |
| return node_address in self.nodes | |
| def to_dot(self): | |
| """Return a dot representation suitable for using with Graphviz. | |
| >>> dg = DependencyGraph( | |
| ... 'John N 2\\n' | |
| ... 'loves V 0\\n' | |
| ... 'Mary N 2' | |
| ... ) | |
| >>> print(dg.to_dot()) | |
| digraph G{ | |
| edge [dir=forward] | |
| node [shape=plaintext] | |
| <BLANKLINE> | |
| 0 [label="0 (None)"] | |
| 0 -> 2 [label="ROOT"] | |
| 1 [label="1 (John)"] | |
| 2 [label="2 (loves)"] | |
| 2 -> 1 [label=""] | |
| 2 -> 3 [label=""] | |
| 3 [label="3 (Mary)"] | |
| } | |
| """ | |
| # Start the digraph specification | |
| s = "digraph G{\n" | |
| s += "edge [dir=forward]\n" | |
| s += "node [shape=plaintext]\n" | |
| # Draw the remaining nodes | |
| for node in sorted(self.nodes.values(), key=lambda v: v["address"]): | |
| s += '\n{} [label="{} ({})"]'.format( | |
| node["address"], | |
| node["address"], | |
| node["word"], | |
| ) | |
| for rel, deps in node["deps"].items(): | |
| for dep in deps: | |
| if rel is not None: | |
| s += '\n{} -> {} [label="{}"]'.format(node["address"], dep, rel) | |
| else: | |
| s += "\n{} -> {} ".format(node["address"], dep) | |
| s += "\n}" | |
| return s | |
| def _repr_svg_(self): | |
| """Show SVG representation of the transducer (IPython magic). | |
| >>> from nltk.test.setup_fixt import check_binary | |
| >>> check_binary('dot') | |
| >>> dg = DependencyGraph( | |
| ... 'John N 2\\n' | |
| ... 'loves V 0\\n' | |
| ... 'Mary N 2' | |
| ... ) | |
| >>> dg._repr_svg_().split('\\n')[0] | |
| '<?xml version="1.0" encoding="UTF-8" standalone="no"?>' | |
| """ | |
| dot_string = self.to_dot() | |
| return dot2img(dot_string) | |
| def __str__(self): | |
| return pformat(self.nodes) | |
| def __repr__(self): | |
| return f"<DependencyGraph with {len(self.nodes)} nodes>" | |
| def load( | |
| filename, zero_based=False, cell_separator=None, top_relation_label="ROOT" | |
| ): | |
| """ | |
| :param filename: a name of a file in Malt-TAB format | |
| :param zero_based: nodes in the input file are numbered starting from 0 | |
| rather than 1 (as produced by, e.g., zpar) | |
| :param str cell_separator: the cell separator. If not provided, cells | |
| are split by whitespace. | |
| :param str top_relation_label: the label by which the top relation is | |
| identified, for examlple, `ROOT`, `null` or `TOP`. | |
| :return: a list of DependencyGraphs | |
| """ | |
| with open(filename) as infile: | |
| return [ | |
| DependencyGraph( | |
| tree_str, | |
| zero_based=zero_based, | |
| cell_separator=cell_separator, | |
| top_relation_label=top_relation_label, | |
| ) | |
| for tree_str in infile.read().split("\n\n") | |
| ] | |
| def left_children(self, node_index): | |
| """ | |
| Returns the number of left children under the node specified | |
| by the given address. | |
| """ | |
| children = chain.from_iterable(self.nodes[node_index]["deps"].values()) | |
| index = self.nodes[node_index]["address"] | |
| return sum(1 for c in children if c < index) | |
| def right_children(self, node_index): | |
| """ | |
| Returns the number of right children under the node specified | |
| by the given address. | |
| """ | |
| children = chain.from_iterable(self.nodes[node_index]["deps"].values()) | |
| index = self.nodes[node_index]["address"] | |
| return sum(1 for c in children if c > index) | |
| def add_node(self, node): | |
| if not self.contains_address(node["address"]): | |
| self.nodes[node["address"]].update(node) | |
| def _parse( | |
| self, | |
| input_, | |
| cell_extractor=None, | |
| zero_based=False, | |
| cell_separator=None, | |
| top_relation_label="ROOT", | |
| ): | |
| """Parse a sentence. | |
| :param extractor: a function that given a tuple of cells returns a | |
| 7-tuple, where the values are ``word, lemma, ctag, tag, feats, head, | |
| rel``. | |
| :param str cell_separator: the cell separator. If not provided, cells | |
| are split by whitespace. | |
| :param str top_relation_label: the label by which the top relation is | |
| identified, for examlple, `ROOT`, `null` or `TOP`. | |
| """ | |
| def extract_3_cells(cells, index): | |
| word, tag, head = cells | |
| return index, word, word, tag, tag, "", head, "" | |
| def extract_4_cells(cells, index): | |
| word, tag, head, rel = cells | |
| return index, word, word, tag, tag, "", head, rel | |
| def extract_7_cells(cells, index): | |
| line_index, word, lemma, tag, _, head, rel = cells | |
| try: | |
| index = int(line_index) | |
| except ValueError: | |
| # index can't be parsed as an integer, use default | |
| pass | |
| return index, word, lemma, tag, tag, "", head, rel | |
| def extract_10_cells(cells, index): | |
| line_index, word, lemma, ctag, tag, feats, head, rel, _, _ = cells | |
| try: | |
| index = int(line_index) | |
| except ValueError: | |
| # index can't be parsed as an integer, use default | |
| pass | |
| return index, word, lemma, ctag, tag, feats, head, rel | |
| extractors = { | |
| 3: extract_3_cells, | |
| 4: extract_4_cells, | |
| 7: extract_7_cells, | |
| 10: extract_10_cells, | |
| } | |
| if isinstance(input_, str): | |
| input_ = (line for line in input_.split("\n")) | |
| lines = (l.rstrip() for l in input_) | |
| lines = (l for l in lines if l) | |
| cell_number = None | |
| for index, line in enumerate(lines, start=1): | |
| cells = line.split(cell_separator) | |
| if cell_number is None: | |
| cell_number = len(cells) | |
| else: | |
| assert cell_number == len(cells) | |
| if cell_extractor is None: | |
| try: | |
| cell_extractor = extractors[cell_number] | |
| except KeyError as e: | |
| raise ValueError( | |
| "Number of tab-delimited fields ({}) not supported by " | |
| "CoNLL(10) or Malt-Tab(4) format".format(cell_number) | |
| ) from e | |
| try: | |
| index, word, lemma, ctag, tag, feats, head, rel = cell_extractor( | |
| cells, index | |
| ) | |
| except (TypeError, ValueError): | |
| # cell_extractor doesn't take 2 arguments or doesn't return 8 | |
| # values; assume the cell_extractor is an older external | |
| # extractor and doesn't accept or return an index. | |
| word, lemma, ctag, tag, feats, head, rel = cell_extractor(cells) | |
| if head == "_": | |
| continue | |
| head = int(head) | |
| if zero_based: | |
| head += 1 | |
| self.nodes[index].update( | |
| { | |
| "address": index, | |
| "word": word, | |
| "lemma": lemma, | |
| "ctag": ctag, | |
| "tag": tag, | |
| "feats": feats, | |
| "head": head, | |
| "rel": rel, | |
| } | |
| ) | |
| # Make sure that the fake root node has labeled dependencies. | |
| if (cell_number == 3) and (head == 0): | |
| rel = top_relation_label | |
| self.nodes[head]["deps"][rel].append(index) | |
| if self.nodes[0]["deps"][top_relation_label]: | |
| root_address = self.nodes[0]["deps"][top_relation_label][0] | |
| self.root = self.nodes[root_address] | |
| self.top_relation_label = top_relation_label | |
| else: | |
| warnings.warn( | |
| "The graph doesn't contain a node " "that depends on the root element." | |
| ) | |
| def _word(self, node, filter=True): | |
| w = node["word"] | |
| if filter: | |
| if w != ",": | |
| return w | |
| return w | |
| def _tree(self, i): | |
| """Turn dependency graphs into NLTK trees. | |
| :param int i: index of a node | |
| :return: either a word (if the indexed node is a leaf) or a ``Tree``. | |
| """ | |
| node = self.get_by_address(i) | |
| word = node["word"] | |
| deps = sorted(chain.from_iterable(node["deps"].values())) | |
| if deps: | |
| return Tree(word, [self._tree(dep) for dep in deps]) | |
| else: | |
| return word | |
| def tree(self): | |
| """ | |
| Starting with the ``root`` node, build a dependency tree using the NLTK | |
| ``Tree`` constructor. Dependency labels are omitted. | |
| """ | |
| node = self.root | |
| word = node["word"] | |
| deps = sorted(chain.from_iterable(node["deps"].values())) | |
| return Tree(word, [self._tree(dep) for dep in deps]) | |
| def triples(self, node=None): | |
| """ | |
| Extract dependency triples of the form: | |
| ((head word, head tag), rel, (dep word, dep tag)) | |
| """ | |
| if not node: | |
| node = self.root | |
| head = (node["word"], node["ctag"]) | |
| for i in sorted(chain.from_iterable(node["deps"].values())): | |
| dep = self.get_by_address(i) | |
| yield (head, dep["rel"], (dep["word"], dep["ctag"])) | |
| yield from self.triples(node=dep) | |
| def _hd(self, i): | |
| try: | |
| return self.nodes[i]["head"] | |
| except IndexError: | |
| return None | |
| def _rel(self, i): | |
| try: | |
| return self.nodes[i]["rel"] | |
| except IndexError: | |
| return None | |
| # what's the return type? Boolean or list? | |
| def contains_cycle(self): | |
| """Check whether there are cycles. | |
| >>> dg = DependencyGraph(treebank_data) | |
| >>> dg.contains_cycle() | |
| False | |
| >>> cyclic_dg = DependencyGraph() | |
| >>> top = {'word': None, 'deps': [1], 'rel': 'TOP', 'address': 0} | |
| >>> child1 = {'word': None, 'deps': [2], 'rel': 'NTOP', 'address': 1} | |
| >>> child2 = {'word': None, 'deps': [4], 'rel': 'NTOP', 'address': 2} | |
| >>> child3 = {'word': None, 'deps': [1], 'rel': 'NTOP', 'address': 3} | |
| >>> child4 = {'word': None, 'deps': [3], 'rel': 'NTOP', 'address': 4} | |
| >>> cyclic_dg.nodes = { | |
| ... 0: top, | |
| ... 1: child1, | |
| ... 2: child2, | |
| ... 3: child3, | |
| ... 4: child4, | |
| ... } | |
| >>> cyclic_dg.root = top | |
| >>> cyclic_dg.contains_cycle() | |
| [1, 2, 4, 3] | |
| """ | |
| distances = {} | |
| for node in self.nodes.values(): | |
| for dep in node["deps"]: | |
| key = tuple([node["address"], dep]) | |
| distances[key] = 1 | |
| for _ in self.nodes: | |
| new_entries = {} | |
| for pair1 in distances: | |
| for pair2 in distances: | |
| if pair1[1] == pair2[0]: | |
| key = tuple([pair1[0], pair2[1]]) | |
| new_entries[key] = distances[pair1] + distances[pair2] | |
| for pair in new_entries: | |
| distances[pair] = new_entries[pair] | |
| if pair[0] == pair[1]: | |
| path = self.get_cycle_path(self.get_by_address(pair[0]), pair[0]) | |
| return path | |
| return False # return []? | |
| def get_cycle_path(self, curr_node, goal_node_index): | |
| for dep in curr_node["deps"]: | |
| if dep == goal_node_index: | |
| return [curr_node["address"]] | |
| for dep in curr_node["deps"]: | |
| path = self.get_cycle_path(self.get_by_address(dep), goal_node_index) | |
| if len(path) > 0: | |
| path.insert(0, curr_node["address"]) | |
| return path | |
| return [] | |
| def to_conll(self, style): | |
| """ | |
| The dependency graph in CoNLL format. | |
| :param style: the style to use for the format (3, 4, 10 columns) | |
| :type style: int | |
| :rtype: str | |
| """ | |
| if style == 3: | |
| template = "{word}\t{tag}\t{head}\n" | |
| elif style == 4: | |
| template = "{word}\t{tag}\t{head}\t{rel}\n" | |
| elif style == 10: | |
| template = ( | |
| "{i}\t{word}\t{lemma}\t{ctag}\t{tag}\t{feats}\t{head}\t{rel}\t_\t_\n" | |
| ) | |
| else: | |
| raise ValueError( | |
| "Number of tab-delimited fields ({}) not supported by " | |
| "CoNLL(10) or Malt-Tab(4) format".format(style) | |
| ) | |
| return "".join( | |
| template.format(i=i, **node) | |
| for i, node in sorted(self.nodes.items()) | |
| if node["tag"] != "TOP" | |
| ) | |
| def nx_graph(self): | |
| """Convert the data in a ``nodelist`` into a networkx labeled directed graph.""" | |
| import networkx | |
| nx_nodelist = list(range(1, len(self.nodes))) | |
| nx_edgelist = [ | |
| (n, self._hd(n), self._rel(n)) for n in nx_nodelist if self._hd(n) | |
| ] | |
| self.nx_labels = {} | |
| for n in nx_nodelist: | |
| self.nx_labels[n] = self.nodes[n]["word"] | |
| g = networkx.MultiDiGraph() | |
| g.add_nodes_from(nx_nodelist) | |
| g.add_edges_from(nx_edgelist) | |
| return g | |
| def dot2img(dot_string, t="svg"): | |
| """ | |
| Create image representation fom dot_string, using the 'dot' program | |
| from the Graphviz package. | |
| Use the 't' argument to specify the image file format, for ex. 'jpeg', 'eps', | |
| 'json', 'png' or 'webp' (Running 'dot -T:' lists all available formats). | |
| Note that the "capture_output" option of subprocess.run() is only available | |
| with text formats (like svg), but not with binary image formats (like png). | |
| """ | |
| try: | |
| find_binary("dot") | |
| try: | |
| if t in ["dot", "dot_json", "json", "svg"]: | |
| proc = subprocess.run( | |
| ["dot", "-T%s" % t], | |
| capture_output=True, | |
| input=dot_string, | |
| text=True, | |
| ) | |
| else: | |
| proc = subprocess.run( | |
| ["dot", "-T%s" % t], | |
| input=bytes(dot_string, encoding="utf8"), | |
| ) | |
| return proc.stdout | |
| except: | |
| raise Exception( | |
| "Cannot create image representation by running dot from string: {}" | |
| "".format(dot_string) | |
| ) | |
| except OSError as e: | |
| raise Exception("Cannot find the dot binary from Graphviz package") from e | |
| class DependencyGraphError(Exception): | |
| """Dependency graph exception.""" | |
| def demo(): | |
| malt_demo() | |
| conll_demo() | |
| conll_file_demo() | |
| cycle_finding_demo() | |
| def malt_demo(nx=False): | |
| """ | |
| A demonstration of the result of reading a dependency | |
| version of the first sentence of the Penn Treebank. | |
| """ | |
| dg = DependencyGraph( | |
| """Pierre NNP 2 NMOD | |
| Vinken NNP 8 SUB | |
| , , 2 P | |
| 61 CD 5 NMOD | |
| years NNS 6 AMOD | |
| old JJ 2 NMOD | |
| , , 2 P | |
| will MD 0 ROOT | |
| join VB 8 VC | |
| the DT 11 NMOD | |
| board NN 9 OBJ | |
| as IN 9 VMOD | |
| a DT 15 NMOD | |
| nonexecutive JJ 15 NMOD | |
| director NN 12 PMOD | |
| Nov. NNP 9 VMOD | |
| 29 CD 16 NMOD | |
| . . 9 VMOD | |
| """ | |
| ) | |
| tree = dg.tree() | |
| tree.pprint() | |
| if nx: | |
| # currently doesn't work | |
| import networkx | |
| from matplotlib import pylab | |
| g = dg.nx_graph() | |
| g.info() | |
| pos = networkx.spring_layout(g, dim=1) | |
| networkx.draw_networkx_nodes(g, pos, node_size=50) | |
| # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8) | |
| networkx.draw_networkx_labels(g, pos, dg.nx_labels) | |
| pylab.xticks([]) | |
| pylab.yticks([]) | |
| pylab.savefig("tree.png") | |
| pylab.show() | |
| def conll_demo(): | |
| """ | |
| A demonstration of how to read a string representation of | |
| a CoNLL format dependency tree. | |
| """ | |
| dg = DependencyGraph(conll_data1) | |
| tree = dg.tree() | |
| tree.pprint() | |
| print(dg) | |
| print(dg.to_conll(4)) | |
| def conll_file_demo(): | |
| print("Mass conll_read demo...") | |
| graphs = [DependencyGraph(entry) for entry in conll_data2.split("\n\n") if entry] | |
| for graph in graphs: | |
| tree = graph.tree() | |
| print("\n") | |
| tree.pprint() | |
| def cycle_finding_demo(): | |
| dg = DependencyGraph(treebank_data) | |
| print(dg.contains_cycle()) | |
| cyclic_dg = DependencyGraph() | |
| cyclic_dg.add_node({"word": None, "deps": [1], "rel": "TOP", "address": 0}) | |
| cyclic_dg.add_node({"word": None, "deps": [2], "rel": "NTOP", "address": 1}) | |
| cyclic_dg.add_node({"word": None, "deps": [4], "rel": "NTOP", "address": 2}) | |
| cyclic_dg.add_node({"word": None, "deps": [1], "rel": "NTOP", "address": 3}) | |
| cyclic_dg.add_node({"word": None, "deps": [3], "rel": "NTOP", "address": 4}) | |
| print(cyclic_dg.contains_cycle()) | |
| treebank_data = """Pierre NNP 2 NMOD | |
| Vinken NNP 8 SUB | |
| , , 2 P | |
| 61 CD 5 NMOD | |
| years NNS 6 AMOD | |
| old JJ 2 NMOD | |
| , , 2 P | |
| will MD 0 ROOT | |
| join VB 8 VC | |
| the DT 11 NMOD | |
| board NN 9 OBJ | |
| as IN 9 VMOD | |
| a DT 15 NMOD | |
| nonexecutive JJ 15 NMOD | |
| director NN 12 PMOD | |
| Nov. NNP 9 VMOD | |
| 29 CD 16 NMOD | |
| . . 9 VMOD | |
| """ | |
| conll_data1 = """ | |
| 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ | |
| 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ | |
| 3 met met Prep Prep voor 8 mod _ _ | |
| 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ | |
| 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ | |
| 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ | |
| 7 gaan ga V V hulp|inf 6 vc _ _ | |
| 8 winkelen winkel V V intrans|inf 11 cnj _ _ | |
| 9 , , Punc Punc komma 8 punct _ _ | |
| 10 zwemmen zwem V V intrans|inf 11 cnj _ _ | |
| 11 of of Conj Conj neven 7 vc _ _ | |
| 12 terrassen terras N N soort|mv|neut 11 cnj _ _ | |
| 13 . . Punc Punc punt 12 punct _ _ | |
| """ | |
| conll_data2 = """1 Cathy Cathy N N eigen|ev|neut 2 su _ _ | |
| 2 zag zie V V trans|ovt|1of2of3|ev 0 ROOT _ _ | |
| 3 hen hen Pron Pron per|3|mv|datofacc 2 obj1 _ _ | |
| 4 wild wild Adj Adj attr|stell|onverv 5 mod _ _ | |
| 5 zwaaien zwaai N N soort|mv|neut 2 vc _ _ | |
| 6 . . Punc Punc punt 5 punct _ _ | |
| 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ | |
| 2 had heb V V trans|ovt|1of2of3|ev 0 ROOT _ _ | |
| 3 met met Prep Prep voor 8 mod _ _ | |
| 4 haar haar Pron Pron bez|3|ev|neut|attr 5 det _ _ | |
| 5 moeder moeder N N soort|ev|neut 3 obj1 _ _ | |
| 6 kunnen kan V V hulp|ott|1of2of3|mv 2 vc _ _ | |
| 7 gaan ga V V hulp|inf 6 vc _ _ | |
| 8 winkelen winkel V V intrans|inf 11 cnj _ _ | |
| 9 , , Punc Punc komma 8 punct _ _ | |
| 10 zwemmen zwem V V intrans|inf 11 cnj _ _ | |
| 11 of of Conj Conj neven 7 vc _ _ | |
| 12 terrassen terras N N soort|mv|neut 11 cnj _ _ | |
| 13 . . Punc Punc punt 12 punct _ _ | |
| 1 Dat dat Pron Pron aanw|neut|attr 2 det _ _ | |
| 2 werkwoord werkwoord N N soort|ev|neut 6 obj1 _ _ | |
| 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ | |
| 4 ze ze Pron Pron per|3|evofmv|nom 6 su _ _ | |
| 5 zelf zelf Pron Pron aanw|neut|attr|wzelf 3 predm _ _ | |
| 6 uitgevonden vind V V trans|verldw|onverv 3 vc _ _ | |
| 7 . . Punc Punc punt 6 punct _ _ | |
| 1 Het het Pron Pron onbep|neut|zelfst 2 su _ _ | |
| 2 hoorde hoor V V trans|ovt|1of2of3|ev 0 ROOT _ _ | |
| 3 bij bij Prep Prep voor 2 ld _ _ | |
| 4 de de Art Art bep|zijdofmv|neut 6 det _ _ | |
| 5 warme warm Adj Adj attr|stell|vervneut 6 mod _ _ | |
| 6 zomerdag zomerdag N N soort|ev|neut 3 obj1 _ _ | |
| 7 die die Pron Pron betr|neut|zelfst 6 mod _ _ | |
| 8 ze ze Pron Pron per|3|evofmv|nom 12 su _ _ | |
| 9 ginds ginds Adv Adv gew|aanw 12 mod _ _ | |
| 10 achter achter Adv Adv gew|geenfunc|stell|onverv 12 svp _ _ | |
| 11 had heb V V hulp|ovt|1of2of3|ev 7 body _ _ | |
| 12 gelaten laat V V trans|verldw|onverv 11 vc _ _ | |
| 13 . . Punc Punc punt 12 punct _ _ | |
| 1 Ze ze Pron Pron per|3|evofmv|nom 2 su _ _ | |
| 2 hadden heb V V trans|ovt|1of2of3|mv 0 ROOT _ _ | |
| 3 languit languit Adv Adv gew|geenfunc|stell|onverv 11 mod _ _ | |
| 4 naast naast Prep Prep voor 11 mod _ _ | |
| 5 elkaar elkaar Pron Pron rec|neut 4 obj1 _ _ | |
| 6 op op Prep Prep voor 11 ld _ _ | |
| 7 de de Art Art bep|zijdofmv|neut 8 det _ _ | |
| 8 strandstoelen strandstoel N N soort|mv|neut 6 obj1 _ _ | |
| 9 kunnen kan V V hulp|inf 2 vc _ _ | |
| 10 gaan ga V V hulp|inf 9 vc _ _ | |
| 11 liggen lig V V intrans|inf 10 vc _ _ | |
| 12 . . Punc Punc punt 11 punct _ _ | |
| 1 Zij zij Pron Pron per|3|evofmv|nom 2 su _ _ | |
| 2 zou zal V V hulp|ovt|1of2of3|ev 7 cnj _ _ | |
| 3 mams mams N N soort|ev|neut 4 det _ _ | |
| 4 rug rug N N soort|ev|neut 5 obj1 _ _ | |
| 5 ingewreven wrijf V V trans|verldw|onverv 6 vc _ _ | |
| 6 hebben heb V V hulp|inf 2 vc _ _ | |
| 7 en en Conj Conj neven 0 ROOT _ _ | |
| 8 mam mam V V trans|ovt|1of2of3|ev 7 cnj _ _ | |
| 9 de de Art Art bep|zijdofmv|neut 10 det _ _ | |
| 10 hare hare Pron Pron bez|3|ev|neut|attr 8 obj1 _ _ | |
| 11 . . Punc Punc punt 10 punct _ _ | |
| 1 Of of Conj Conj onder|metfin 0 ROOT _ _ | |
| 2 ze ze Pron Pron per|3|evofmv|nom 3 su _ _ | |
| 3 had heb V V hulp|ovt|1of2of3|ev 0 ROOT _ _ | |
| 4 gewoon gewoon Adj Adj adv|stell|onverv 10 mod _ _ | |
| 5 met met Prep Prep voor 10 mod _ _ | |
| 6 haar haar Pron Pron bez|3|ev|neut|attr 7 det _ _ | |
| 7 vriendinnen vriendin N N soort|mv|neut 5 obj1 _ _ | |
| 8 rond rond Adv Adv deelv 10 svp _ _ | |
| 9 kunnen kan V V hulp|inf 3 vc _ _ | |
| 10 slenteren slenter V V intrans|inf 9 vc _ _ | |
| 11 in in Prep Prep voor 10 mod _ _ | |
| 12 de de Art Art bep|zijdofmv|neut 13 det _ _ | |
| 13 buurt buurt N N soort|ev|neut 11 obj1 _ _ | |
| 14 van van Prep Prep voor 13 mod _ _ | |
| 15 Trafalgar_Square Trafalgar_Square MWU N_N eigen|ev|neut_eigen|ev|neut 14 obj1 _ _ | |
| 16 . . Punc Punc punt 15 punct _ _ | |
| """ | |
| if __name__ == "__main__": | |
| demo() | |