peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/sentiment
/util.py
| # | |
| # Natural Language Toolkit: Sentiment Analyzer | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Pierpaolo Pantone <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| Utility methods for Sentiment Analysis. | |
| """ | |
| import codecs | |
| import csv | |
| import json | |
| import pickle | |
| import random | |
| import re | |
| import sys | |
| import time | |
| from copy import deepcopy | |
| import nltk | |
| from nltk.corpus import CategorizedPlaintextCorpusReader | |
| from nltk.data import load | |
| from nltk.tokenize.casual import EMOTICON_RE | |
| # //////////////////////////////////////////////////////////// | |
| # { Regular expressions | |
| # //////////////////////////////////////////////////////////// | |
| # Regular expression for negation by Christopher Potts | |
| NEGATION = r""" | |
| (?: | |
| ^(?:never|no|nothing|nowhere|noone|none|not| | |
| havent|hasnt|hadnt|cant|couldnt|shouldnt| | |
| wont|wouldnt|dont|doesnt|didnt|isnt|arent|aint | |
| )$ | |
| ) | |
| | | |
| n't""" | |
| NEGATION_RE = re.compile(NEGATION, re.VERBOSE) | |
| CLAUSE_PUNCT = r"^[.:;!?]$" | |
| CLAUSE_PUNCT_RE = re.compile(CLAUSE_PUNCT) | |
| # Happy and sad emoticons | |
| HAPPY = { | |
| ":-)", | |
| ":)", | |
| ";)", | |
| ":o)", | |
| ":]", | |
| ":3", | |
| ":c)", | |
| ":>", | |
| "=]", | |
| "8)", | |
| "=)", | |
| ":}", | |
| ":^)", | |
| ":-D", | |
| ":D", | |
| "8-D", | |
| "8D", | |
| "x-D", | |
| "xD", | |
| "X-D", | |
| "XD", | |
| "=-D", | |
| "=D", | |
| "=-3", | |
| "=3", | |
| ":-))", | |
| ":'-)", | |
| ":')", | |
| ":*", | |
| ":^*", | |
| ">:P", | |
| ":-P", | |
| ":P", | |
| "X-P", | |
| "x-p", | |
| "xp", | |
| "XP", | |
| ":-p", | |
| ":p", | |
| "=p", | |
| ":-b", | |
| ":b", | |
| ">:)", | |
| ">;)", | |
| ">:-)", | |
| "<3", | |
| } | |
| SAD = { | |
| ":L", | |
| ":-/", | |
| ">:/", | |
| ":S", | |
| ">:[", | |
| ":@", | |
| ":-(", | |
| ":[", | |
| ":-||", | |
| "=L", | |
| ":<", | |
| ":-[", | |
| ":-<", | |
| "=\\", | |
| "=/", | |
| ">:(", | |
| ":(", | |
| ">.<", | |
| ":'-(", | |
| ":'(", | |
| ":\\", | |
| ":-c", | |
| ":c", | |
| ":{", | |
| ">:\\", | |
| ";(", | |
| } | |
| def timer(method): | |
| """ | |
| A timer decorator to measure execution performance of methods. | |
| """ | |
| def timed(*args, **kw): | |
| start = time.time() | |
| result = method(*args, **kw) | |
| end = time.time() | |
| tot_time = end - start | |
| hours = tot_time // 3600 | |
| mins = tot_time // 60 % 60 | |
| # in Python 2.x round() will return a float, so we convert it to int | |
| secs = int(round(tot_time % 60)) | |
| if hours == 0 and mins == 0 and secs < 10: | |
| print(f"[TIMER] {method.__name__}(): {method.__name__:.3f} seconds") | |
| else: | |
| print(f"[TIMER] {method.__name__}(): {hours}h {mins}m {secs}s") | |
| return result | |
| return timed | |
| # //////////////////////////////////////////////////////////// | |
| # { Feature extractor functions | |
| # //////////////////////////////////////////////////////////// | |
| """ | |
| Feature extractor functions are declared outside the SentimentAnalyzer class. | |
| Users should have the possibility to create their own feature extractors | |
| without modifying SentimentAnalyzer. | |
| """ | |
| def extract_unigram_feats(document, unigrams, handle_negation=False): | |
| """ | |
| Populate a dictionary of unigram features, reflecting the presence/absence in | |
| the document of each of the tokens in `unigrams`. | |
| :param document: a list of words/tokens. | |
| :param unigrams: a list of words/tokens whose presence/absence has to be | |
| checked in `document`. | |
| :param handle_negation: if `handle_negation == True` apply `mark_negation` | |
| method to `document` before checking for unigram presence/absence. | |
| :return: a dictionary of unigram features {unigram : boolean}. | |
| >>> words = ['ice', 'police', 'riot'] | |
| >>> document = 'ice is melting due to global warming'.split() | |
| >>> sorted(extract_unigram_feats(document, words).items()) | |
| [('contains(ice)', True), ('contains(police)', False), ('contains(riot)', False)] | |
| """ | |
| features = {} | |
| if handle_negation: | |
| document = mark_negation(document) | |
| for word in unigrams: | |
| features[f"contains({word})"] = word in set(document) | |
| return features | |
| def extract_bigram_feats(document, bigrams): | |
| """ | |
| Populate a dictionary of bigram features, reflecting the presence/absence in | |
| the document of each of the tokens in `bigrams`. This extractor function only | |
| considers contiguous bigrams obtained by `nltk.bigrams`. | |
| :param document: a list of words/tokens. | |
| :param unigrams: a list of bigrams whose presence/absence has to be | |
| checked in `document`. | |
| :return: a dictionary of bigram features {bigram : boolean}. | |
| >>> bigrams = [('global', 'warming'), ('police', 'prevented'), ('love', 'you')] | |
| >>> document = 'ice is melting due to global warming'.split() | |
| >>> sorted(extract_bigram_feats(document, bigrams).items()) # doctest: +NORMALIZE_WHITESPACE | |
| [('contains(global - warming)', True), ('contains(love - you)', False), | |
| ('contains(police - prevented)', False)] | |
| """ | |
| features = {} | |
| for bigr in bigrams: | |
| features[f"contains({bigr[0]} - {bigr[1]})"] = bigr in nltk.bigrams(document) | |
| return features | |
| # //////////////////////////////////////////////////////////// | |
| # { Helper Functions | |
| # //////////////////////////////////////////////////////////// | |
| def mark_negation(document, double_neg_flip=False, shallow=False): | |
| """ | |
| Append _NEG suffix to words that appear in the scope between a negation | |
| and a punctuation mark. | |
| :param document: a list of words/tokens, or a tuple (words, label). | |
| :param shallow: if True, the method will modify the original document in place. | |
| :param double_neg_flip: if True, double negation is considered affirmation | |
| (we activate/deactivate negation scope every time we find a negation). | |
| :return: if `shallow == True` the method will modify the original document | |
| and return it. If `shallow == False` the method will return a modified | |
| document, leaving the original unmodified. | |
| >>> sent = "I didn't like this movie . It was bad .".split() | |
| >>> mark_negation(sent) | |
| ['I', "didn't", 'like_NEG', 'this_NEG', 'movie_NEG', '.', 'It', 'was', 'bad', '.'] | |
| """ | |
| if not shallow: | |
| document = deepcopy(document) | |
| # check if the document is labeled. If so, do not consider the label. | |
| labeled = document and isinstance(document[0], (tuple, list)) | |
| if labeled: | |
| doc = document[0] | |
| else: | |
| doc = document | |
| neg_scope = False | |
| for i, word in enumerate(doc): | |
| if NEGATION_RE.search(word): | |
| if not neg_scope or (neg_scope and double_neg_flip): | |
| neg_scope = not neg_scope | |
| continue | |
| else: | |
| doc[i] += "_NEG" | |
| elif neg_scope and CLAUSE_PUNCT_RE.search(word): | |
| neg_scope = not neg_scope | |
| elif neg_scope and not CLAUSE_PUNCT_RE.search(word): | |
| doc[i] += "_NEG" | |
| return document | |
| def output_markdown(filename, **kwargs): | |
| """ | |
| Write the output of an analysis to a file. | |
| """ | |
| with codecs.open(filename, "at") as outfile: | |
| text = "\n*** \n\n" | |
| text += "{} \n\n".format(time.strftime("%d/%m/%Y, %H:%M")) | |
| for k in sorted(kwargs): | |
| if isinstance(kwargs[k], dict): | |
| dictionary = kwargs[k] | |
| text += f" - **{k}:**\n" | |
| for entry in sorted(dictionary): | |
| text += f" - {entry}: {dictionary[entry]} \n" | |
| elif isinstance(kwargs[k], list): | |
| text += f" - **{k}:**\n" | |
| for entry in kwargs[k]: | |
| text += f" - {entry}\n" | |
| else: | |
| text += f" - **{k}:** {kwargs[k]} \n" | |
| outfile.write(text) | |
| def split_train_test(all_instances, n=None): | |
| """ | |
| Randomly split `n` instances of the dataset into train and test sets. | |
| :param all_instances: a list of instances (e.g. documents) that will be split. | |
| :param n: the number of instances to consider (in case we want to use only a | |
| subset). | |
| :return: two lists of instances. Train set is 8/10 of the total and test set | |
| is 2/10 of the total. | |
| """ | |
| random.seed(12345) | |
| random.shuffle(all_instances) | |
| if not n or n > len(all_instances): | |
| n = len(all_instances) | |
| train_set = all_instances[: int(0.8 * n)] | |
| test_set = all_instances[int(0.8 * n) : n] | |
| return train_set, test_set | |
| def _show_plot(x_values, y_values, x_labels=None, y_labels=None): | |
| try: | |
| import matplotlib.pyplot as plt | |
| except ImportError as e: | |
| raise ImportError( | |
| "The plot function requires matplotlib to be installed." | |
| "See https://matplotlib.org/" | |
| ) from e | |
| plt.locator_params(axis="y", nbins=3) | |
| axes = plt.axes() | |
| axes.yaxis.grid() | |
| plt.plot(x_values, y_values, "ro", color="red") | |
| plt.ylim(ymin=-1.2, ymax=1.2) | |
| plt.tight_layout(pad=5) | |
| if x_labels: | |
| plt.xticks(x_values, x_labels, rotation="vertical") | |
| if y_labels: | |
| plt.yticks([-1, 0, 1], y_labels, rotation="horizontal") | |
| # Pad margins so that markers are not clipped by the axes | |
| plt.margins(0.2) | |
| plt.show() | |
| # //////////////////////////////////////////////////////////// | |
| # { Parsing and conversion functions | |
| # //////////////////////////////////////////////////////////// | |
| def json2csv_preprocess( | |
| json_file, | |
| outfile, | |
| fields, | |
| encoding="utf8", | |
| errors="replace", | |
| gzip_compress=False, | |
| skip_retweets=True, | |
| skip_tongue_tweets=True, | |
| skip_ambiguous_tweets=True, | |
| strip_off_emoticons=True, | |
| remove_duplicates=True, | |
| limit=None, | |
| ): | |
| """ | |
| Convert json file to csv file, preprocessing each row to obtain a suitable | |
| dataset for tweets Semantic Analysis. | |
| :param json_file: the original json file containing tweets. | |
| :param outfile: the output csv filename. | |
| :param fields: a list of fields that will be extracted from the json file and | |
| kept in the output csv file. | |
| :param encoding: the encoding of the files. | |
| :param errors: the error handling strategy for the output writer. | |
| :param gzip_compress: if True, create a compressed GZIP file. | |
| :param skip_retweets: if True, remove retweets. | |
| :param skip_tongue_tweets: if True, remove tweets containing ":P" and ":-P" | |
| emoticons. | |
| :param skip_ambiguous_tweets: if True, remove tweets containing both happy | |
| and sad emoticons. | |
| :param strip_off_emoticons: if True, strip off emoticons from all tweets. | |
| :param remove_duplicates: if True, remove tweets appearing more than once. | |
| :param limit: an integer to set the number of tweets to convert. After the | |
| limit is reached the conversion will stop. It can be useful to create | |
| subsets of the original tweets json data. | |
| """ | |
| with codecs.open(json_file, encoding=encoding) as fp: | |
| (writer, outf) = _outf_writer(outfile, encoding, errors, gzip_compress) | |
| # write the list of fields as header | |
| writer.writerow(fields) | |
| if remove_duplicates == True: | |
| tweets_cache = [] | |
| i = 0 | |
| for line in fp: | |
| tweet = json.loads(line) | |
| row = extract_fields(tweet, fields) | |
| try: | |
| text = row[fields.index("text")] | |
| # Remove retweets | |
| if skip_retweets == True: | |
| if re.search(r"\bRT\b", text): | |
| continue | |
| # Remove tweets containing ":P" and ":-P" emoticons | |
| if skip_tongue_tweets == True: | |
| if re.search(r"\:\-?P\b", text): | |
| continue | |
| # Remove tweets containing both happy and sad emoticons | |
| if skip_ambiguous_tweets == True: | |
| all_emoticons = EMOTICON_RE.findall(text) | |
| if all_emoticons: | |
| if (set(all_emoticons) & HAPPY) and (set(all_emoticons) & SAD): | |
| continue | |
| # Strip off emoticons from all tweets | |
| if strip_off_emoticons == True: | |
| row[fields.index("text")] = re.sub( | |
| r"(?!\n)\s+", " ", EMOTICON_RE.sub("", text) | |
| ) | |
| # Remove duplicate tweets | |
| if remove_duplicates == True: | |
| if row[fields.index("text")] in tweets_cache: | |
| continue | |
| else: | |
| tweets_cache.append(row[fields.index("text")]) | |
| except ValueError: | |
| pass | |
| writer.writerow(row) | |
| i += 1 | |
| if limit and i >= limit: | |
| break | |
| outf.close() | |
| def parse_tweets_set( | |
| filename, label, word_tokenizer=None, sent_tokenizer=None, skip_header=True | |
| ): | |
| """ | |
| Parse csv file containing tweets and output data a list of (text, label) tuples. | |
| :param filename: the input csv filename. | |
| :param label: the label to be appended to each tweet contained in the csv file. | |
| :param word_tokenizer: the tokenizer instance that will be used to tokenize | |
| each sentence into tokens (e.g. WordPunctTokenizer() or BlanklineTokenizer()). | |
| If no word_tokenizer is specified, tweets will not be tokenized. | |
| :param sent_tokenizer: the tokenizer that will be used to split each tweet into | |
| sentences. | |
| :param skip_header: if True, skip the first line of the csv file (which usually | |
| contains headers). | |
| :return: a list of (text, label) tuples. | |
| """ | |
| tweets = [] | |
| if not sent_tokenizer: | |
| sent_tokenizer = load("tokenizers/punkt/english.pickle") | |
| with codecs.open(filename, "rt") as csvfile: | |
| reader = csv.reader(csvfile) | |
| if skip_header == True: | |
| next(reader, None) # skip the header | |
| i = 0 | |
| for tweet_id, text in reader: | |
| # text = text[1] | |
| i += 1 | |
| sys.stdout.write(f"Loaded {i} tweets\r") | |
| # Apply sentence and word tokenizer to text | |
| if word_tokenizer: | |
| tweet = [ | |
| w | |
| for sent in sent_tokenizer.tokenize(text) | |
| for w in word_tokenizer.tokenize(sent) | |
| ] | |
| else: | |
| tweet = text | |
| tweets.append((tweet, label)) | |
| print(f"Loaded {i} tweets") | |
| return tweets | |
| # //////////////////////////////////////////////////////////// | |
| # { Demos | |
| # //////////////////////////////////////////////////////////// | |
| def demo_tweets(trainer, n_instances=None, output=None): | |
| """ | |
| Train and test Naive Bayes classifier on 10000 tweets, tokenized using | |
| TweetTokenizer. | |
| Features are composed of: | |
| - 1000 most frequent unigrams | |
| - 100 top bigrams (using BigramAssocMeasures.pmi) | |
| :param trainer: `train` method of a classifier. | |
| :param n_instances: the number of total tweets that have to be used for | |
| training and testing. Tweets will be equally split between positive and | |
| negative. | |
| :param output: the output file where results have to be reported. | |
| """ | |
| from nltk.corpus import stopwords, twitter_samples | |
| from nltk.sentiment import SentimentAnalyzer | |
| from nltk.tokenize import TweetTokenizer | |
| # Different customizations for the TweetTokenizer | |
| tokenizer = TweetTokenizer(preserve_case=False) | |
| # tokenizer = TweetTokenizer(preserve_case=True, strip_handles=True) | |
| # tokenizer = TweetTokenizer(reduce_len=True, strip_handles=True) | |
| if n_instances is not None: | |
| n_instances = int(n_instances / 2) | |
| fields = ["id", "text"] | |
| positive_json = twitter_samples.abspath("positive_tweets.json") | |
| positive_csv = "positive_tweets.csv" | |
| json2csv_preprocess(positive_json, positive_csv, fields, limit=n_instances) | |
| negative_json = twitter_samples.abspath("negative_tweets.json") | |
| negative_csv = "negative_tweets.csv" | |
| json2csv_preprocess(negative_json, negative_csv, fields, limit=n_instances) | |
| neg_docs = parse_tweets_set(negative_csv, label="neg", word_tokenizer=tokenizer) | |
| pos_docs = parse_tweets_set(positive_csv, label="pos", word_tokenizer=tokenizer) | |
| # We separately split subjective and objective instances to keep a balanced | |
| # uniform class distribution in both train and test sets. | |
| train_pos_docs, test_pos_docs = split_train_test(pos_docs) | |
| train_neg_docs, test_neg_docs = split_train_test(neg_docs) | |
| training_tweets = train_pos_docs + train_neg_docs | |
| testing_tweets = test_pos_docs + test_neg_docs | |
| sentim_analyzer = SentimentAnalyzer() | |
| # stopwords = stopwords.words('english') | |
| # all_words = [word for word in sentim_analyzer.all_words(training_tweets) if word.lower() not in stopwords] | |
| all_words = [word for word in sentim_analyzer.all_words(training_tweets)] | |
| # Add simple unigram word features | |
| unigram_feats = sentim_analyzer.unigram_word_feats(all_words, top_n=1000) | |
| sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats) | |
| # Add bigram collocation features | |
| bigram_collocs_feats = sentim_analyzer.bigram_collocation_feats( | |
| [tweet[0] for tweet in training_tweets], top_n=100, min_freq=12 | |
| ) | |
| sentim_analyzer.add_feat_extractor( | |
| extract_bigram_feats, bigrams=bigram_collocs_feats | |
| ) | |
| training_set = sentim_analyzer.apply_features(training_tweets) | |
| test_set = sentim_analyzer.apply_features(testing_tweets) | |
| classifier = sentim_analyzer.train(trainer, training_set) | |
| # classifier = sentim_analyzer.train(trainer, training_set, max_iter=4) | |
| try: | |
| classifier.show_most_informative_features() | |
| except AttributeError: | |
| print( | |
| "Your classifier does not provide a show_most_informative_features() method." | |
| ) | |
| results = sentim_analyzer.evaluate(test_set) | |
| if output: | |
| extr = [f.__name__ for f in sentim_analyzer.feat_extractors] | |
| output_markdown( | |
| output, | |
| Dataset="labeled_tweets", | |
| Classifier=type(classifier).__name__, | |
| Tokenizer=tokenizer.__class__.__name__, | |
| Feats=extr, | |
| Results=results, | |
| Instances=n_instances, | |
| ) | |
| def demo_movie_reviews(trainer, n_instances=None, output=None): | |
| """ | |
| Train classifier on all instances of the Movie Reviews dataset. | |
| The corpus has been preprocessed using the default sentence tokenizer and | |
| WordPunctTokenizer. | |
| Features are composed of: | |
| - most frequent unigrams | |
| :param trainer: `train` method of a classifier. | |
| :param n_instances: the number of total reviews that have to be used for | |
| training and testing. Reviews will be equally split between positive and | |
| negative. | |
| :param output: the output file where results have to be reported. | |
| """ | |
| from nltk.corpus import movie_reviews | |
| from nltk.sentiment import SentimentAnalyzer | |
| if n_instances is not None: | |
| n_instances = int(n_instances / 2) | |
| pos_docs = [ | |
| (list(movie_reviews.words(pos_id)), "pos") | |
| for pos_id in movie_reviews.fileids("pos")[:n_instances] | |
| ] | |
| neg_docs = [ | |
| (list(movie_reviews.words(neg_id)), "neg") | |
| for neg_id in movie_reviews.fileids("neg")[:n_instances] | |
| ] | |
| # We separately split positive and negative instances to keep a balanced | |
| # uniform class distribution in both train and test sets. | |
| train_pos_docs, test_pos_docs = split_train_test(pos_docs) | |
| train_neg_docs, test_neg_docs = split_train_test(neg_docs) | |
| training_docs = train_pos_docs + train_neg_docs | |
| testing_docs = test_pos_docs + test_neg_docs | |
| sentim_analyzer = SentimentAnalyzer() | |
| all_words = sentim_analyzer.all_words(training_docs) | |
| # Add simple unigram word features | |
| unigram_feats = sentim_analyzer.unigram_word_feats(all_words, min_freq=4) | |
| sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats) | |
| # Apply features to obtain a feature-value representation of our datasets | |
| training_set = sentim_analyzer.apply_features(training_docs) | |
| test_set = sentim_analyzer.apply_features(testing_docs) | |
| classifier = sentim_analyzer.train(trainer, training_set) | |
| try: | |
| classifier.show_most_informative_features() | |
| except AttributeError: | |
| print( | |
| "Your classifier does not provide a show_most_informative_features() method." | |
| ) | |
| results = sentim_analyzer.evaluate(test_set) | |
| if output: | |
| extr = [f.__name__ for f in sentim_analyzer.feat_extractors] | |
| output_markdown( | |
| output, | |
| Dataset="Movie_reviews", | |
| Classifier=type(classifier).__name__, | |
| Tokenizer="WordPunctTokenizer", | |
| Feats=extr, | |
| Results=results, | |
| Instances=n_instances, | |
| ) | |
| def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None): | |
| """ | |
| Train and test a classifier on instances of the Subjective Dataset by Pang and | |
| Lee. The dataset is made of 5000 subjective and 5000 objective sentences. | |
| All tokens (words and punctuation marks) are separated by a whitespace, so | |
| we use the basic WhitespaceTokenizer to parse the data. | |
| :param trainer: `train` method of a classifier. | |
| :param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file. | |
| :param n_instances: the number of total sentences that have to be used for | |
| training and testing. Sentences will be equally split between positive | |
| and negative. | |
| :param output: the output file where results have to be reported. | |
| """ | |
| from nltk.corpus import subjectivity | |
| from nltk.sentiment import SentimentAnalyzer | |
| if n_instances is not None: | |
| n_instances = int(n_instances / 2) | |
| subj_docs = [ | |
| (sent, "subj") for sent in subjectivity.sents(categories="subj")[:n_instances] | |
| ] | |
| obj_docs = [ | |
| (sent, "obj") for sent in subjectivity.sents(categories="obj")[:n_instances] | |
| ] | |
| # We separately split subjective and objective instances to keep a balanced | |
| # uniform class distribution in both train and test sets. | |
| train_subj_docs, test_subj_docs = split_train_test(subj_docs) | |
| train_obj_docs, test_obj_docs = split_train_test(obj_docs) | |
| training_docs = train_subj_docs + train_obj_docs | |
| testing_docs = test_subj_docs + test_obj_docs | |
| sentim_analyzer = SentimentAnalyzer() | |
| all_words_neg = sentim_analyzer.all_words( | |
| [mark_negation(doc) for doc in training_docs] | |
| ) | |
| # Add simple unigram word features handling negation | |
| unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4) | |
| sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats) | |
| # Apply features to obtain a feature-value representation of our datasets | |
| training_set = sentim_analyzer.apply_features(training_docs) | |
| test_set = sentim_analyzer.apply_features(testing_docs) | |
| classifier = sentim_analyzer.train(trainer, training_set) | |
| try: | |
| classifier.show_most_informative_features() | |
| except AttributeError: | |
| print( | |
| "Your classifier does not provide a show_most_informative_features() method." | |
| ) | |
| results = sentim_analyzer.evaluate(test_set) | |
| if save_analyzer == True: | |
| sentim_analyzer.save_file(sentim_analyzer, "sa_subjectivity.pickle") | |
| if output: | |
| extr = [f.__name__ for f in sentim_analyzer.feat_extractors] | |
| output_markdown( | |
| output, | |
| Dataset="subjectivity", | |
| Classifier=type(classifier).__name__, | |
| Tokenizer="WhitespaceTokenizer", | |
| Feats=extr, | |
| Instances=n_instances, | |
| Results=results, | |
| ) | |
| return sentim_analyzer | |
| def demo_sent_subjectivity(text): | |
| """ | |
| Classify a single sentence as subjective or objective using a stored | |
| SentimentAnalyzer. | |
| :param text: a sentence whose subjectivity has to be classified. | |
| """ | |
| from nltk.classify import NaiveBayesClassifier | |
| from nltk.tokenize import regexp | |
| word_tokenizer = regexp.WhitespaceTokenizer() | |
| try: | |
| sentim_analyzer = load("sa_subjectivity.pickle") | |
| except LookupError: | |
| print("Cannot find the sentiment analyzer you want to load.") | |
| print("Training a new one using NaiveBayesClassifier.") | |
| sentim_analyzer = demo_subjectivity(NaiveBayesClassifier.train, True) | |
| # Tokenize and convert to lower case | |
| tokenized_text = [word.lower() for word in word_tokenizer.tokenize(text)] | |
| print(sentim_analyzer.classify(tokenized_text)) | |
| def demo_liu_hu_lexicon(sentence, plot=False): | |
| """ | |
| Basic example of sentiment classification using Liu and Hu opinion lexicon. | |
| This function simply counts the number of positive, negative and neutral words | |
| in the sentence and classifies it depending on which polarity is more represented. | |
| Words that do not appear in the lexicon are considered as neutral. | |
| :param sentence: a sentence whose polarity has to be classified. | |
| :param plot: if True, plot a visual representation of the sentence polarity. | |
| """ | |
| from nltk.corpus import opinion_lexicon | |
| from nltk.tokenize import treebank | |
| tokenizer = treebank.TreebankWordTokenizer() | |
| pos_words = 0 | |
| neg_words = 0 | |
| tokenized_sent = [word.lower() for word in tokenizer.tokenize(sentence)] | |
| x = list(range(len(tokenized_sent))) # x axis for the plot | |
| y = [] | |
| for word in tokenized_sent: | |
| if word in opinion_lexicon.positive(): | |
| pos_words += 1 | |
| y.append(1) # positive | |
| elif word in opinion_lexicon.negative(): | |
| neg_words += 1 | |
| y.append(-1) # negative | |
| else: | |
| y.append(0) # neutral | |
| if pos_words > neg_words: | |
| print("Positive") | |
| elif pos_words < neg_words: | |
| print("Negative") | |
| elif pos_words == neg_words: | |
| print("Neutral") | |
| if plot == True: | |
| _show_plot( | |
| x, y, x_labels=tokenized_sent, y_labels=["Negative", "Neutral", "Positive"] | |
| ) | |
| def demo_vader_instance(text): | |
| """ | |
| Output polarity scores for a text using Vader approach. | |
| :param text: a text whose polarity has to be evaluated. | |
| """ | |
| from nltk.sentiment import SentimentIntensityAnalyzer | |
| vader_analyzer = SentimentIntensityAnalyzer() | |
| print(vader_analyzer.polarity_scores(text)) | |
| def demo_vader_tweets(n_instances=None, output=None): | |
| """ | |
| Classify 10000 positive and negative tweets using Vader approach. | |
| :param n_instances: the number of total tweets that have to be classified. | |
| :param output: the output file where results have to be reported. | |
| """ | |
| from collections import defaultdict | |
| from nltk.corpus import twitter_samples | |
| from nltk.metrics import accuracy as eval_accuracy | |
| from nltk.metrics import f_measure as eval_f_measure | |
| from nltk.metrics import precision as eval_precision | |
| from nltk.metrics import recall as eval_recall | |
| from nltk.sentiment import SentimentIntensityAnalyzer | |
| if n_instances is not None: | |
| n_instances = int(n_instances / 2) | |
| fields = ["id", "text"] | |
| positive_json = twitter_samples.abspath("positive_tweets.json") | |
| positive_csv = "positive_tweets.csv" | |
| json2csv_preprocess( | |
| positive_json, | |
| positive_csv, | |
| fields, | |
| strip_off_emoticons=False, | |
| limit=n_instances, | |
| ) | |
| negative_json = twitter_samples.abspath("negative_tweets.json") | |
| negative_csv = "negative_tweets.csv" | |
| json2csv_preprocess( | |
| negative_json, | |
| negative_csv, | |
| fields, | |
| strip_off_emoticons=False, | |
| limit=n_instances, | |
| ) | |
| pos_docs = parse_tweets_set(positive_csv, label="pos") | |
| neg_docs = parse_tweets_set(negative_csv, label="neg") | |
| # We separately split subjective and objective instances to keep a balanced | |
| # uniform class distribution in both train and test sets. | |
| train_pos_docs, test_pos_docs = split_train_test(pos_docs) | |
| train_neg_docs, test_neg_docs = split_train_test(neg_docs) | |
| training_tweets = train_pos_docs + train_neg_docs | |
| testing_tweets = test_pos_docs + test_neg_docs | |
| vader_analyzer = SentimentIntensityAnalyzer() | |
| gold_results = defaultdict(set) | |
| test_results = defaultdict(set) | |
| acc_gold_results = [] | |
| acc_test_results = [] | |
| labels = set() | |
| num = 0 | |
| for i, (text, label) in enumerate(testing_tweets): | |
| labels.add(label) | |
| gold_results[label].add(i) | |
| acc_gold_results.append(label) | |
| score = vader_analyzer.polarity_scores(text)["compound"] | |
| if score > 0: | |
| observed = "pos" | |
| else: | |
| observed = "neg" | |
| num += 1 | |
| acc_test_results.append(observed) | |
| test_results[observed].add(i) | |
| metrics_results = {} | |
| for label in labels: | |
| accuracy_score = eval_accuracy(acc_gold_results, acc_test_results) | |
| metrics_results["Accuracy"] = accuracy_score | |
| precision_score = eval_precision(gold_results[label], test_results[label]) | |
| metrics_results[f"Precision [{label}]"] = precision_score | |
| recall_score = eval_recall(gold_results[label], test_results[label]) | |
| metrics_results[f"Recall [{label}]"] = recall_score | |
| f_measure_score = eval_f_measure(gold_results[label], test_results[label]) | |
| metrics_results[f"F-measure [{label}]"] = f_measure_score | |
| for result in sorted(metrics_results): | |
| print(f"{result}: {metrics_results[result]}") | |
| if output: | |
| output_markdown( | |
| output, | |
| Approach="Vader", | |
| Dataset="labeled_tweets", | |
| Instances=n_instances, | |
| Results=metrics_results, | |
| ) | |
| if __name__ == "__main__": | |
| from sklearn.svm import LinearSVC | |
| from nltk.classify import MaxentClassifier, NaiveBayesClassifier | |
| from nltk.classify.scikitlearn import SklearnClassifier | |
| from nltk.twitter.common import _outf_writer, extract_fields | |
| naive_bayes = NaiveBayesClassifier.train | |
| svm = SklearnClassifier(LinearSVC()).train | |
| maxent = MaxentClassifier.train | |
| demo_tweets(naive_bayes) | |
| # demo_movie_reviews(svm) | |
| # demo_subjectivity(svm) | |
| # demo_sent_subjectivity("she's an artist , but hasn't picked up a brush in a year . ") | |
| # demo_liu_hu_lexicon("This movie was actually neither that funny, nor super witty.", plot=True) | |
| # demo_vader_instance("This movie was actually neither that funny, nor super witty.") | |
| # demo_vader_tweets() | |