peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/tokenize
/__init__.py
| # Natural Language Toolkit: Tokenizers | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Edward Loper <[email protected]> | |
| # Steven Bird <[email protected]> (minor additions) | |
| # Contributors: matthewmc, clouds56 | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| r""" | |
| NLTK Tokenizer Package | |
| Tokenizers divide strings into lists of substrings. For example, | |
| tokenizers can be used to find the words and punctuation in a string: | |
| >>> from nltk.tokenize import word_tokenize | |
| >>> s = '''Good muffins cost $3.88\nin New York. Please buy me | |
| ... two of them.\n\nThanks.''' | |
| >>> word_tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', | |
| 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
| This particular tokenizer requires the Punkt sentence tokenization | |
| models to be installed. NLTK also provides a simpler, | |
| regular-expression based tokenizer, which splits text on whitespace | |
| and punctuation: | |
| >>> from nltk.tokenize import wordpunct_tokenize | |
| >>> wordpunct_tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', '.', | |
| 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
| We can also operate at the level of sentences, using the sentence | |
| tokenizer directly as follows: | |
| >>> from nltk.tokenize import sent_tokenize, word_tokenize | |
| >>> sent_tokenize(s) | |
| ['Good muffins cost $3.88\nin New York.', 'Please buy me\ntwo of them.', 'Thanks.'] | |
| >>> [word_tokenize(t) for t in sent_tokenize(s)] # doctest: +NORMALIZE_WHITESPACE | |
| [['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.'], | |
| ['Please', 'buy', 'me', 'two', 'of', 'them', '.'], ['Thanks', '.']] | |
| Caution: when tokenizing a Unicode string, make sure you are not | |
| using an encoded version of the string (it may be necessary to | |
| decode it first, e.g. with ``s.decode("utf8")``. | |
| NLTK tokenizers can produce token-spans, represented as tuples of integers | |
| having the same semantics as string slices, to support efficient comparison | |
| of tokenizers. (These methods are implemented as generators.) | |
| >>> from nltk.tokenize import WhitespaceTokenizer | |
| >>> list(WhitespaceTokenizer().span_tokenize(s)) # doctest: +NORMALIZE_WHITESPACE | |
| [(0, 4), (5, 12), (13, 17), (18, 23), (24, 26), (27, 30), (31, 36), (38, 44), | |
| (45, 48), (49, 51), (52, 55), (56, 58), (59, 64), (66, 73)] | |
| There are numerous ways to tokenize text. If you need more control over | |
| tokenization, see the other methods provided in this package. | |
| For further information, please see Chapter 3 of the NLTK book. | |
| """ | |
| import re | |
| from nltk.data import load | |
| from nltk.tokenize.casual import TweetTokenizer, casual_tokenize | |
| from nltk.tokenize.destructive import NLTKWordTokenizer | |
| from nltk.tokenize.legality_principle import LegalitySyllableTokenizer | |
| from nltk.tokenize.mwe import MWETokenizer | |
| from nltk.tokenize.punkt import PunktSentenceTokenizer | |
| from nltk.tokenize.regexp import ( | |
| BlanklineTokenizer, | |
| RegexpTokenizer, | |
| WhitespaceTokenizer, | |
| WordPunctTokenizer, | |
| blankline_tokenize, | |
| regexp_tokenize, | |
| wordpunct_tokenize, | |
| ) | |
| from nltk.tokenize.repp import ReppTokenizer | |
| from nltk.tokenize.sexpr import SExprTokenizer, sexpr_tokenize | |
| from nltk.tokenize.simple import ( | |
| LineTokenizer, | |
| SpaceTokenizer, | |
| TabTokenizer, | |
| line_tokenize, | |
| ) | |
| from nltk.tokenize.sonority_sequencing import SyllableTokenizer | |
| from nltk.tokenize.stanford_segmenter import StanfordSegmenter | |
| from nltk.tokenize.texttiling import TextTilingTokenizer | |
| from nltk.tokenize.toktok import ToktokTokenizer | |
| from nltk.tokenize.treebank import TreebankWordDetokenizer, TreebankWordTokenizer | |
| from nltk.tokenize.util import regexp_span_tokenize, string_span_tokenize | |
| # Standard sentence tokenizer. | |
| def sent_tokenize(text, language="english"): | |
| """ | |
| Return a sentence-tokenized copy of *text*, | |
| using NLTK's recommended sentence tokenizer | |
| (currently :class:`.PunktSentenceTokenizer` | |
| for the specified language). | |
| :param text: text to split into sentences | |
| :param language: the model name in the Punkt corpus | |
| """ | |
| tokenizer = load(f"tokenizers/punkt/{language}.pickle") | |
| return tokenizer.tokenize(text) | |
| # Standard word tokenizer. | |
| _treebank_word_tokenizer = NLTKWordTokenizer() | |
| def word_tokenize(text, language="english", preserve_line=False): | |
| """ | |
| Return a tokenized copy of *text*, | |
| using NLTK's recommended word tokenizer | |
| (currently an improved :class:`.TreebankWordTokenizer` | |
| along with :class:`.PunktSentenceTokenizer` | |
| for the specified language). | |
| :param text: text to split into words | |
| :type text: str | |
| :param language: the model name in the Punkt corpus | |
| :type language: str | |
| :param preserve_line: A flag to decide whether to sentence tokenize the text or not. | |
| :type preserve_line: bool | |
| """ | |
| sentences = [text] if preserve_line else sent_tokenize(text, language) | |
| return [ | |
| token for sent in sentences for token in _treebank_word_tokenizer.tokenize(sent) | |
| ] | |