peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/dataclasses.py
""" | |
The main purpose is to enhance stdlib dataclasses by adding validation | |
A pydantic dataclass can be generated from scratch or from a stdlib one. | |
Behind the scene, a pydantic dataclass is just like a regular one on which we attach | |
a `BaseModel` and magic methods to trigger the validation of the data. | |
`__init__` and `__post_init__` are hence overridden and have extra logic to be | |
able to validate input data. | |
When a pydantic dataclass is generated from scratch, it's just a plain dataclass | |
with validation triggered at initialization | |
The tricky part if for stdlib dataclasses that are converted after into pydantic ones e.g. | |
```py | |
@dataclasses.dataclass | |
class M: | |
x: int | |
ValidatedM = pydantic.dataclasses.dataclass(M) | |
``` | |
We indeed still want to support equality, hashing, repr, ... as if it was the stdlib one! | |
```py | |
assert isinstance(ValidatedM(x=1), M) | |
assert ValidatedM(x=1) == M(x=1) | |
``` | |
This means we **don't want to create a new dataclass that inherits from it** | |
The trick is to create a wrapper around `M` that will act as a proxy to trigger | |
validation without altering default `M` behaviour. | |
""" | |
import copy | |
import dataclasses | |
import sys | |
from contextlib import contextmanager | |
from functools import wraps | |
try: | |
from functools import cached_property | |
except ImportError: | |
# cached_property available only for python3.8+ | |
pass | |
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Generator, Optional, Type, TypeVar, Union, overload | |
from typing_extensions import dataclass_transform | |
from .class_validators import gather_all_validators | |
from .config import BaseConfig, ConfigDict, Extra, get_config | |
from .error_wrappers import ValidationError | |
from .errors import DataclassTypeError | |
from .fields import Field, FieldInfo, Required, Undefined | |
from .main import create_model, validate_model | |
from .utils import ClassAttribute | |
if TYPE_CHECKING: | |
from .main import BaseModel | |
from .typing import CallableGenerator, NoArgAnyCallable | |
DataclassT = TypeVar('DataclassT', bound='Dataclass') | |
DataclassClassOrWrapper = Union[Type['Dataclass'], 'DataclassProxy'] | |
class Dataclass: | |
# stdlib attributes | |
__dataclass_fields__: ClassVar[Dict[str, Any]] | |
__dataclass_params__: ClassVar[Any] # in reality `dataclasses._DataclassParams` | |
__post_init__: ClassVar[Callable[..., None]] | |
# Added by pydantic | |
__pydantic_run_validation__: ClassVar[bool] | |
__post_init_post_parse__: ClassVar[Callable[..., None]] | |
__pydantic_initialised__: ClassVar[bool] | |
__pydantic_model__: ClassVar[Type[BaseModel]] | |
__pydantic_validate_values__: ClassVar[Callable[['Dataclass'], None]] | |
__pydantic_has_field_info_default__: ClassVar[bool] # whether a `pydantic.Field` is used as default value | |
def __init__(self, *args: object, **kwargs: object) -> None: | |
pass | |
def __get_validators__(cls: Type['Dataclass']) -> 'CallableGenerator': | |
pass | |
def __validate__(cls: Type['DataclassT'], v: Any) -> 'DataclassT': | |
pass | |
__all__ = [ | |
'dataclass', | |
'set_validation', | |
'create_pydantic_model_from_dataclass', | |
'is_builtin_dataclass', | |
'make_dataclass_validator', | |
] | |
_T = TypeVar('_T') | |
if sys.version_info >= (3, 10): | |
def dataclass( | |
*, | |
init: bool = True, | |
repr: bool = True, | |
eq: bool = True, | |
order: bool = False, | |
unsafe_hash: bool = False, | |
frozen: bool = False, | |
config: Union[ConfigDict, Type[object], None] = None, | |
validate_on_init: Optional[bool] = None, | |
use_proxy: Optional[bool] = None, | |
kw_only: bool = ..., | |
) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']: | |
... | |
def dataclass( | |
_cls: Type[_T], | |
*, | |
init: bool = True, | |
repr: bool = True, | |
eq: bool = True, | |
order: bool = False, | |
unsafe_hash: bool = False, | |
frozen: bool = False, | |
config: Union[ConfigDict, Type[object], None] = None, | |
validate_on_init: Optional[bool] = None, | |
use_proxy: Optional[bool] = None, | |
kw_only: bool = ..., | |
) -> 'DataclassClassOrWrapper': | |
... | |
else: | |
def dataclass( | |
*, | |
init: bool = True, | |
repr: bool = True, | |
eq: bool = True, | |
order: bool = False, | |
unsafe_hash: bool = False, | |
frozen: bool = False, | |
config: Union[ConfigDict, Type[object], None] = None, | |
validate_on_init: Optional[bool] = None, | |
use_proxy: Optional[bool] = None, | |
) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']: | |
... | |
def dataclass( | |
_cls: Type[_T], | |
*, | |
init: bool = True, | |
repr: bool = True, | |
eq: bool = True, | |
order: bool = False, | |
unsafe_hash: bool = False, | |
frozen: bool = False, | |
config: Union[ConfigDict, Type[object], None] = None, | |
validate_on_init: Optional[bool] = None, | |
use_proxy: Optional[bool] = None, | |
) -> 'DataclassClassOrWrapper': | |
... | |
def dataclass( | |
_cls: Optional[Type[_T]] = None, | |
*, | |
init: bool = True, | |
repr: bool = True, | |
eq: bool = True, | |
order: bool = False, | |
unsafe_hash: bool = False, | |
frozen: bool = False, | |
config: Union[ConfigDict, Type[object], None] = None, | |
validate_on_init: Optional[bool] = None, | |
use_proxy: Optional[bool] = None, | |
kw_only: bool = False, | |
) -> Union[Callable[[Type[_T]], 'DataclassClassOrWrapper'], 'DataclassClassOrWrapper']: | |
""" | |
Like the python standard lib dataclasses but with type validation. | |
The result is either a pydantic dataclass that will validate input data | |
or a wrapper that will trigger validation around a stdlib dataclass | |
to avoid modifying it directly | |
""" | |
the_config = get_config(config) | |
def wrap(cls: Type[Any]) -> 'DataclassClassOrWrapper': | |
should_use_proxy = ( | |
use_proxy | |
if use_proxy is not None | |
else ( | |
is_builtin_dataclass(cls) | |
and (cls.__bases__[0] is object or set(dir(cls)) == set(dir(cls.__bases__[0]))) | |
) | |
) | |
if should_use_proxy: | |
dc_cls_doc = '' | |
dc_cls = DataclassProxy(cls) | |
default_validate_on_init = False | |
else: | |
dc_cls_doc = cls.__doc__ or '' # needs to be done before generating dataclass | |
if sys.version_info >= (3, 10): | |
dc_cls = dataclasses.dataclass( | |
cls, | |
init=init, | |
repr=repr, | |
eq=eq, | |
order=order, | |
unsafe_hash=unsafe_hash, | |
frozen=frozen, | |
kw_only=kw_only, | |
) | |
else: | |
dc_cls = dataclasses.dataclass( # type: ignore | |
cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen | |
) | |
default_validate_on_init = True | |
should_validate_on_init = default_validate_on_init if validate_on_init is None else validate_on_init | |
_add_pydantic_validation_attributes(cls, the_config, should_validate_on_init, dc_cls_doc) | |
dc_cls.__pydantic_model__.__try_update_forward_refs__(**{cls.__name__: cls}) | |
return dc_cls | |
if _cls is None: | |
return wrap | |
return wrap(_cls) | |
def set_validation(cls: Type['DataclassT'], value: bool) -> Generator[Type['DataclassT'], None, None]: | |
original_run_validation = cls.__pydantic_run_validation__ | |
try: | |
cls.__pydantic_run_validation__ = value | |
yield cls | |
finally: | |
cls.__pydantic_run_validation__ = original_run_validation | |
class DataclassProxy: | |
__slots__ = '__dataclass__' | |
def __init__(self, dc_cls: Type['Dataclass']) -> None: | |
object.__setattr__(self, '__dataclass__', dc_cls) | |
def __call__(self, *args: Any, **kwargs: Any) -> Any: | |
with set_validation(self.__dataclass__, True): | |
return self.__dataclass__(*args, **kwargs) | |
def __getattr__(self, name: str) -> Any: | |
return getattr(self.__dataclass__, name) | |
def __setattr__(self, __name: str, __value: Any) -> None: | |
return setattr(self.__dataclass__, __name, __value) | |
def __instancecheck__(self, instance: Any) -> bool: | |
return isinstance(instance, self.__dataclass__) | |
def __copy__(self) -> 'DataclassProxy': | |
return DataclassProxy(copy.copy(self.__dataclass__)) | |
def __deepcopy__(self, memo: Any) -> 'DataclassProxy': | |
return DataclassProxy(copy.deepcopy(self.__dataclass__, memo)) | |
def _add_pydantic_validation_attributes( # noqa: C901 (ignore complexity) | |
dc_cls: Type['Dataclass'], | |
config: Type[BaseConfig], | |
validate_on_init: bool, | |
dc_cls_doc: str, | |
) -> None: | |
""" | |
We need to replace the right method. If no `__post_init__` has been set in the stdlib dataclass | |
it won't even exist (code is generated on the fly by `dataclasses`) | |
By default, we run validation after `__init__` or `__post_init__` if defined | |
""" | |
init = dc_cls.__init__ | |
def handle_extra_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None: | |
if config.extra == Extra.ignore: | |
init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__}) | |
elif config.extra == Extra.allow: | |
for k, v in kwargs.items(): | |
self.__dict__.setdefault(k, v) | |
init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__}) | |
else: | |
init(self, *args, **kwargs) | |
if hasattr(dc_cls, '__post_init__'): | |
try: | |
post_init = dc_cls.__post_init__.__wrapped__ # type: ignore[attr-defined] | |
except AttributeError: | |
post_init = dc_cls.__post_init__ | |
def new_post_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None: | |
if config.post_init_call == 'before_validation': | |
post_init(self, *args, **kwargs) | |
if self.__class__.__pydantic_run_validation__: | |
self.__pydantic_validate_values__() | |
if hasattr(self, '__post_init_post_parse__'): | |
self.__post_init_post_parse__(*args, **kwargs) | |
if config.post_init_call == 'after_validation': | |
post_init(self, *args, **kwargs) | |
setattr(dc_cls, '__init__', handle_extra_init) | |
setattr(dc_cls, '__post_init__', new_post_init) | |
else: | |
def new_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None: | |
handle_extra_init(self, *args, **kwargs) | |
if self.__class__.__pydantic_run_validation__: | |
self.__pydantic_validate_values__() | |
if hasattr(self, '__post_init_post_parse__'): | |
# We need to find again the initvars. To do that we use `__dataclass_fields__` instead of | |
# public method `dataclasses.fields` | |
# get all initvars and their default values | |
initvars_and_values: Dict[str, Any] = {} | |
for i, f in enumerate(self.__class__.__dataclass_fields__.values()): | |
if f._field_type is dataclasses._FIELD_INITVAR: # type: ignore[attr-defined] | |
try: | |
# set arg value by default | |
initvars_and_values[f.name] = args[i] | |
except IndexError: | |
initvars_and_values[f.name] = kwargs.get(f.name, f.default) | |
self.__post_init_post_parse__(**initvars_and_values) | |
setattr(dc_cls, '__init__', new_init) | |
setattr(dc_cls, '__pydantic_run_validation__', ClassAttribute('__pydantic_run_validation__', validate_on_init)) | |
setattr(dc_cls, '__pydantic_initialised__', False) | |
setattr(dc_cls, '__pydantic_model__', create_pydantic_model_from_dataclass(dc_cls, config, dc_cls_doc)) | |
setattr(dc_cls, '__pydantic_validate_values__', _dataclass_validate_values) | |
setattr(dc_cls, '__validate__', classmethod(_validate_dataclass)) | |
setattr(dc_cls, '__get_validators__', classmethod(_get_validators)) | |
if dc_cls.__pydantic_model__.__config__.validate_assignment and not dc_cls.__dataclass_params__.frozen: | |
setattr(dc_cls, '__setattr__', _dataclass_validate_assignment_setattr) | |
def _get_validators(cls: 'DataclassClassOrWrapper') -> 'CallableGenerator': | |
yield cls.__validate__ | |
def _validate_dataclass(cls: Type['DataclassT'], v: Any) -> 'DataclassT': | |
with set_validation(cls, True): | |
if isinstance(v, cls): | |
v.__pydantic_validate_values__() | |
return v | |
elif isinstance(v, (list, tuple)): | |
return cls(*v) | |
elif isinstance(v, dict): | |
return cls(**v) | |
else: | |
raise DataclassTypeError(class_name=cls.__name__) | |
def create_pydantic_model_from_dataclass( | |
dc_cls: Type['Dataclass'], | |
config: Type[Any] = BaseConfig, | |
dc_cls_doc: Optional[str] = None, | |
) -> Type['BaseModel']: | |
field_definitions: Dict[str, Any] = {} | |
for field in dataclasses.fields(dc_cls): | |
default: Any = Undefined | |
default_factory: Optional['NoArgAnyCallable'] = None | |
field_info: FieldInfo | |
if field.default is not dataclasses.MISSING: | |
default = field.default | |
elif field.default_factory is not dataclasses.MISSING: | |
default_factory = field.default_factory | |
else: | |
default = Required | |
if isinstance(default, FieldInfo): | |
field_info = default | |
dc_cls.__pydantic_has_field_info_default__ = True | |
else: | |
field_info = Field(default=default, default_factory=default_factory, **field.metadata) | |
field_definitions[field.name] = (field.type, field_info) | |
validators = gather_all_validators(dc_cls) | |
model: Type['BaseModel'] = create_model( | |
dc_cls.__name__, | |
__config__=config, | |
__module__=dc_cls.__module__, | |
__validators__=validators, | |
__cls_kwargs__={'__resolve_forward_refs__': False}, | |
**field_definitions, | |
) | |
model.__doc__ = dc_cls_doc if dc_cls_doc is not None else dc_cls.__doc__ or '' | |
return model | |
if sys.version_info >= (3, 8): | |
def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool: | |
return isinstance(getattr(type(obj), k, None), cached_property) | |
else: | |
def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool: | |
return False | |
def _dataclass_validate_values(self: 'Dataclass') -> None: | |
# validation errors can occur if this function is called twice on an already initialised dataclass. | |
# for example if Extra.forbid is enabled, it would consider __pydantic_initialised__ an invalid extra property | |
if getattr(self, '__pydantic_initialised__'): | |
return | |
if getattr(self, '__pydantic_has_field_info_default__', False): | |
# We need to remove `FieldInfo` values since they are not valid as input | |
# It's ok to do that because they are obviously the default values! | |
input_data = { | |
k: v | |
for k, v in self.__dict__.items() | |
if not (isinstance(v, FieldInfo) or _is_field_cached_property(self, k)) | |
} | |
else: | |
input_data = {k: v for k, v in self.__dict__.items() if not _is_field_cached_property(self, k)} | |
d, _, validation_error = validate_model(self.__pydantic_model__, input_data, cls=self.__class__) | |
if validation_error: | |
raise validation_error | |
self.__dict__.update(d) | |
object.__setattr__(self, '__pydantic_initialised__', True) | |
def _dataclass_validate_assignment_setattr(self: 'Dataclass', name: str, value: Any) -> None: | |
if self.__pydantic_initialised__: | |
d = dict(self.__dict__) | |
d.pop(name, None) | |
known_field = self.__pydantic_model__.__fields__.get(name, None) | |
if known_field: | |
value, error_ = known_field.validate(value, d, loc=name, cls=self.__class__) | |
if error_: | |
raise ValidationError([error_], self.__class__) | |
object.__setattr__(self, name, value) | |
def is_builtin_dataclass(_cls: Type[Any]) -> bool: | |
""" | |
Whether a class is a stdlib dataclass | |
(useful to discriminated a pydantic dataclass that is actually a wrapper around a stdlib dataclass) | |
we check that | |
- `_cls` is a dataclass | |
- `_cls` is not a processed pydantic dataclass (with a basemodel attached) | |
- `_cls` is not a pydantic dataclass inheriting directly from a stdlib dataclass | |
e.g. | |
``` | |
@dataclasses.dataclass | |
class A: | |
x: int | |
@pydantic.dataclasses.dataclass | |
class B(A): | |
y: int | |
``` | |
In this case, when we first check `B`, we make an extra check and look at the annotations ('y'), | |
which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x') | |
""" | |
return ( | |
dataclasses.is_dataclass(_cls) | |
and not hasattr(_cls, '__pydantic_model__') | |
and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {}))) | |
) | |
def make_dataclass_validator(dc_cls: Type['Dataclass'], config: Type[BaseConfig]) -> 'CallableGenerator': | |
""" | |
Create a pydantic.dataclass from a builtin dataclass to add type validation | |
and yield the validators | |
It retrieves the parameters of the dataclass and forwards them to the newly created dataclass | |
""" | |
yield from _get_validators(dataclass(dc_cls, config=config, use_proxy=True)) | |