peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/main.py
import warnings | |
from abc import ABCMeta | |
from copy import deepcopy | |
from enum import Enum | |
from functools import partial | |
from pathlib import Path | |
from types import FunctionType, prepare_class, resolve_bases | |
from typing import ( | |
TYPE_CHECKING, | |
AbstractSet, | |
Any, | |
Callable, | |
ClassVar, | |
Dict, | |
List, | |
Mapping, | |
Optional, | |
Tuple, | |
Type, | |
TypeVar, | |
Union, | |
cast, | |
no_type_check, | |
overload, | |
) | |
from typing_extensions import dataclass_transform | |
from .class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators | |
from .config import BaseConfig, Extra, inherit_config, prepare_config | |
from .error_wrappers import ErrorWrapper, ValidationError | |
from .errors import ConfigError, DictError, ExtraError, MissingError | |
from .fields import ( | |
MAPPING_LIKE_SHAPES, | |
Field, | |
ModelField, | |
ModelPrivateAttr, | |
PrivateAttr, | |
Undefined, | |
is_finalvar_with_default_val, | |
) | |
from .json import custom_pydantic_encoder, pydantic_encoder | |
from .parse import Protocol, load_file, load_str_bytes | |
from .schema import default_ref_template, model_schema | |
from .types import PyObject, StrBytes | |
from .typing import ( | |
AnyCallable, | |
get_args, | |
get_origin, | |
is_classvar, | |
is_namedtuple, | |
is_union, | |
resolve_annotations, | |
update_model_forward_refs, | |
) | |
from .utils import ( | |
DUNDER_ATTRIBUTES, | |
ROOT_KEY, | |
ClassAttribute, | |
GetterDict, | |
Representation, | |
ValueItems, | |
generate_model_signature, | |
is_valid_field, | |
is_valid_private_name, | |
lenient_issubclass, | |
sequence_like, | |
smart_deepcopy, | |
unique_list, | |
validate_field_name, | |
) | |
if TYPE_CHECKING: | |
from inspect import Signature | |
from .class_validators import ValidatorListDict | |
from .types import ModelOrDc | |
from .typing import ( | |
AbstractSetIntStr, | |
AnyClassMethod, | |
CallableGenerator, | |
DictAny, | |
DictStrAny, | |
MappingIntStrAny, | |
ReprArgs, | |
SetStr, | |
TupleGenerator, | |
) | |
Model = TypeVar('Model', bound='BaseModel') | |
__all__ = 'BaseModel', 'create_model', 'validate_model' | |
_T = TypeVar('_T') | |
def validate_custom_root_type(fields: Dict[str, ModelField]) -> None: | |
if len(fields) > 1: | |
raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields') | |
def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]: | |
def hash_function(self_: Any) -> int: | |
return hash(self_.__class__) + hash(tuple(self_.__dict__.values())) | |
return hash_function if frozen else None | |
# If a field is of type `Callable`, its default value should be a function and cannot to ignored. | |
ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod) | |
# When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model | |
UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES | |
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra | |
# (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's | |
# safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for | |
# the `BaseModel` class, since that's defined immediately after the metaclass. | |
_is_base_model_class_defined = False | |
class ModelMetaclass(ABCMeta): | |
# noqa C901 | |
def __new__(mcs, name, bases, namespace, **kwargs): # noqa C901 | |
fields: Dict[str, ModelField] = {} | |
config = BaseConfig | |
validators: 'ValidatorListDict' = {} | |
pre_root_validators, post_root_validators = [], [] | |
private_attributes: Dict[str, ModelPrivateAttr] = {} | |
base_private_attributes: Dict[str, ModelPrivateAttr] = {} | |
slots: SetStr = namespace.get('__slots__', ()) | |
slots = {slots} if isinstance(slots, str) else set(slots) | |
class_vars: SetStr = set() | |
hash_func: Optional[Callable[[Any], int]] = None | |
for base in reversed(bases): | |
if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel: | |
fields.update(smart_deepcopy(base.__fields__)) | |
config = inherit_config(base.__config__, config) | |
validators = inherit_validators(base.__validators__, validators) | |
pre_root_validators += base.__pre_root_validators__ | |
post_root_validators += base.__post_root_validators__ | |
base_private_attributes.update(base.__private_attributes__) | |
class_vars.update(base.__class_vars__) | |
hash_func = base.__hash__ | |
resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True) | |
allowed_config_kwargs: SetStr = { | |
key | |
for key in dir(config) | |
if not (key.startswith('__') and key.endswith('__')) # skip dunder methods and attributes | |
} | |
config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs} | |
config_from_namespace = namespace.get('Config') | |
if config_kwargs and config_from_namespace: | |
raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs') | |
config = inherit_config(config_from_namespace, config, **config_kwargs) | |
validators = inherit_validators(extract_validators(namespace), validators) | |
vg = ValidatorGroup(validators) | |
for f in fields.values(): | |
f.set_config(config) | |
extra_validators = vg.get_validators(f.name) | |
if extra_validators: | |
f.class_validators.update(extra_validators) | |
# re-run prepare to add extra validators | |
f.populate_validators() | |
prepare_config(config, name) | |
untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES | |
def is_untouched(v: Any) -> bool: | |
return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method' | |
if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'): | |
annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None)) | |
# annotation only fields need to come first in fields | |
for ann_name, ann_type in annotations.items(): | |
if is_classvar(ann_type): | |
class_vars.add(ann_name) | |
elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)): | |
class_vars.add(ann_name) | |
elif is_valid_field(ann_name): | |
validate_field_name(bases, ann_name) | |
value = namespace.get(ann_name, Undefined) | |
allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,) | |
if ( | |
is_untouched(value) | |
and ann_type != PyObject | |
and not any( | |
lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types | |
) | |
): | |
continue | |
fields[ann_name] = ModelField.infer( | |
name=ann_name, | |
value=value, | |
annotation=ann_type, | |
class_validators=vg.get_validators(ann_name), | |
config=config, | |
) | |
elif ann_name not in namespace and config.underscore_attrs_are_private: | |
private_attributes[ann_name] = PrivateAttr() | |
untouched_types = UNTOUCHED_TYPES + config.keep_untouched | |
for var_name, value in namespace.items(): | |
can_be_changed = var_name not in class_vars and not is_untouched(value) | |
if isinstance(value, ModelPrivateAttr): | |
if not is_valid_private_name(var_name): | |
raise NameError( | |
f'Private attributes "{var_name}" must not be a valid field name; ' | |
f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"' | |
) | |
private_attributes[var_name] = value | |
elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed: | |
private_attributes[var_name] = PrivateAttr(default=value) | |
elif is_valid_field(var_name) and var_name not in annotations and can_be_changed: | |
validate_field_name(bases, var_name) | |
inferred = ModelField.infer( | |
name=var_name, | |
value=value, | |
annotation=annotations.get(var_name, Undefined), | |
class_validators=vg.get_validators(var_name), | |
config=config, | |
) | |
if var_name in fields: | |
if lenient_issubclass(inferred.type_, fields[var_name].type_): | |
inferred.type_ = fields[var_name].type_ | |
else: | |
raise TypeError( | |
f'The type of {name}.{var_name} differs from the new default value; ' | |
f'if you wish to change the type of this field, please use a type annotation' | |
) | |
fields[var_name] = inferred | |
_custom_root_type = ROOT_KEY in fields | |
if _custom_root_type: | |
validate_custom_root_type(fields) | |
vg.check_for_unused() | |
if config.json_encoders: | |
json_encoder = partial(custom_pydantic_encoder, config.json_encoders) | |
else: | |
json_encoder = pydantic_encoder | |
pre_rv_new, post_rv_new = extract_root_validators(namespace) | |
if hash_func is None: | |
hash_func = generate_hash_function(config.frozen) | |
exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'} | |
new_namespace = { | |
'__config__': config, | |
'__fields__': fields, | |
'__exclude_fields__': { | |
name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None | |
} | |
or None, | |
'__include_fields__': { | |
name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None | |
} | |
or None, | |
'__validators__': vg.validators, | |
'__pre_root_validators__': unique_list( | |
pre_root_validators + pre_rv_new, | |
name_factory=lambda v: v.__name__, | |
), | |
'__post_root_validators__': unique_list( | |
post_root_validators + post_rv_new, | |
name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__, | |
), | |
'__schema_cache__': {}, | |
'__json_encoder__': staticmethod(json_encoder), | |
'__custom_root_type__': _custom_root_type, | |
'__private_attributes__': {**base_private_attributes, **private_attributes}, | |
'__slots__': slots | private_attributes.keys(), | |
'__hash__': hash_func, | |
'__class_vars__': class_vars, | |
**{n: v for n, v in namespace.items() if n not in exclude_from_namespace}, | |
} | |
cls = super().__new__(mcs, name, bases, new_namespace, **kwargs) | |
# set __signature__ attr only for model class, but not for its instances | |
cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config)) | |
if resolve_forward_refs: | |
cls.__try_update_forward_refs__() | |
# preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 | |
# for attributes not in `new_namespace` (e.g. private attributes) | |
for name, obj in namespace.items(): | |
if name not in new_namespace: | |
set_name = getattr(obj, '__set_name__', None) | |
if callable(set_name): | |
set_name(cls, name) | |
return cls | |
def __instancecheck__(self, instance: Any) -> bool: | |
""" | |
Avoid calling ABC _abc_subclasscheck unless we're pretty sure. | |
See #3829 and python/cpython#92810 | |
""" | |
return hasattr(instance, '__fields__') and super().__instancecheck__(instance) | |
object_setattr = object.__setattr__ | |
class BaseModel(Representation, metaclass=ModelMetaclass): | |
if TYPE_CHECKING: | |
# populated by the metaclass, defined here to help IDEs only | |
__fields__: ClassVar[Dict[str, ModelField]] = {} | |
__include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None | |
__exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None | |
__validators__: ClassVar[Dict[str, AnyCallable]] = {} | |
__pre_root_validators__: ClassVar[List[AnyCallable]] | |
__post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]] | |
__config__: ClassVar[Type[BaseConfig]] = BaseConfig | |
__json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x | |
__schema_cache__: ClassVar['DictAny'] = {} | |
__custom_root_type__: ClassVar[bool] = False | |
__signature__: ClassVar['Signature'] | |
__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] | |
__class_vars__: ClassVar[SetStr] | |
__fields_set__: ClassVar[SetStr] = set() | |
Config = BaseConfig | |
__slots__ = ('__dict__', '__fields_set__') | |
__doc__ = '' # Null out the Representation docstring | |
def __init__(__pydantic_self__, **data: Any) -> None: | |
""" | |
Create a new model by parsing and validating input data from keyword arguments. | |
Raises ValidationError if the input data cannot be parsed to form a valid model. | |
""" | |
# Uses something other than `self` the first arg to allow "self" as a settable attribute | |
values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) | |
if validation_error: | |
raise validation_error | |
try: | |
object_setattr(__pydantic_self__, '__dict__', values) | |
except TypeError as e: | |
raise TypeError( | |
'Model values must be a dict; you may not have returned a dictionary from a root validator' | |
) from e | |
object_setattr(__pydantic_self__, '__fields_set__', fields_set) | |
__pydantic_self__._init_private_attributes() | |
def __setattr__(self, name, value): # noqa: C901 (ignore complexity) | |
if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES: | |
return object_setattr(self, name, value) | |
if self.__config__.extra is not Extra.allow and name not in self.__fields__: | |
raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') | |
elif not self.__config__.allow_mutation or self.__config__.frozen: | |
raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment') | |
elif name in self.__fields__ and self.__fields__[name].final: | |
raise TypeError( | |
f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment' | |
) | |
elif self.__config__.validate_assignment: | |
new_values = {**self.__dict__, name: value} | |
for validator in self.__pre_root_validators__: | |
try: | |
new_values = validator(self.__class__, new_values) | |
except (ValueError, TypeError, AssertionError) as exc: | |
raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__) | |
known_field = self.__fields__.get(name, None) | |
if known_field: | |
# We want to | |
# - make sure validators are called without the current value for this field inside `values` | |
# - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts) | |
# - keep the order of the fields | |
if not known_field.field_info.allow_mutation: | |
raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned') | |
dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name} | |
value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__) | |
if error_: | |
raise ValidationError([error_], self.__class__) | |
else: | |
new_values[name] = value | |
errors = [] | |
for skip_on_failure, validator in self.__post_root_validators__: | |
if skip_on_failure and errors: | |
continue | |
try: | |
new_values = validator(self.__class__, new_values) | |
except (ValueError, TypeError, AssertionError) as exc: | |
errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) | |
if errors: | |
raise ValidationError(errors, self.__class__) | |
# update the whole __dict__ as other values than just `value` | |
# may be changed (e.g. with `root_validator`) | |
object_setattr(self, '__dict__', new_values) | |
else: | |
self.__dict__[name] = value | |
self.__fields_set__.add(name) | |
def __getstate__(self) -> 'DictAny': | |
private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__) | |
return { | |
'__dict__': self.__dict__, | |
'__fields_set__': self.__fields_set__, | |
'__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined}, | |
} | |
def __setstate__(self, state: 'DictAny') -> None: | |
object_setattr(self, '__dict__', state['__dict__']) | |
object_setattr(self, '__fields_set__', state['__fields_set__']) | |
for name, value in state.get('__private_attribute_values__', {}).items(): | |
object_setattr(self, name, value) | |
def _init_private_attributes(self) -> None: | |
for name, private_attr in self.__private_attributes__.items(): | |
default = private_attr.get_default() | |
if default is not Undefined: | |
object_setattr(self, name, default) | |
def dict( | |
self, | |
*, | |
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
by_alias: bool = False, | |
skip_defaults: Optional[bool] = None, | |
exclude_unset: bool = False, | |
exclude_defaults: bool = False, | |
exclude_none: bool = False, | |
) -> 'DictStrAny': | |
""" | |
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. | |
""" | |
if skip_defaults is not None: | |
warnings.warn( | |
f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"', | |
DeprecationWarning, | |
) | |
exclude_unset = skip_defaults | |
return dict( | |
self._iter( | |
to_dict=True, | |
by_alias=by_alias, | |
include=include, | |
exclude=exclude, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
exclude_none=exclude_none, | |
) | |
) | |
def json( | |
self, | |
*, | |
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
by_alias: bool = False, | |
skip_defaults: Optional[bool] = None, | |
exclude_unset: bool = False, | |
exclude_defaults: bool = False, | |
exclude_none: bool = False, | |
encoder: Optional[Callable[[Any], Any]] = None, | |
models_as_dict: bool = True, | |
**dumps_kwargs: Any, | |
) -> str: | |
""" | |
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`. | |
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`. | |
""" | |
if skip_defaults is not None: | |
warnings.warn( | |
f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"', | |
DeprecationWarning, | |
) | |
exclude_unset = skip_defaults | |
encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__) | |
# We don't directly call `self.dict()`, which does exactly this with `to_dict=True` | |
# because we want to be able to keep raw `BaseModel` instances and not as `dict`. | |
# This allows users to write custom JSON encoders for given `BaseModel` classes. | |
data = dict( | |
self._iter( | |
to_dict=models_as_dict, | |
by_alias=by_alias, | |
include=include, | |
exclude=exclude, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
exclude_none=exclude_none, | |
) | |
) | |
if self.__custom_root_type__: | |
data = data[ROOT_KEY] | |
return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs) | |
def _enforce_dict_if_root(cls, obj: Any) -> Any: | |
if cls.__custom_root_type__ and ( | |
not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY}) | |
and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY}) | |
or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES | |
): | |
return {ROOT_KEY: obj} | |
else: | |
return obj | |
def parse_obj(cls: Type['Model'], obj: Any) -> 'Model': | |
obj = cls._enforce_dict_if_root(obj) | |
if not isinstance(obj, dict): | |
try: | |
obj = dict(obj) | |
except (TypeError, ValueError) as e: | |
exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}') | |
raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e | |
return cls(**obj) | |
def parse_raw( | |
cls: Type['Model'], | |
b: StrBytes, | |
*, | |
content_type: str = None, | |
encoding: str = 'utf8', | |
proto: Protocol = None, | |
allow_pickle: bool = False, | |
) -> 'Model': | |
try: | |
obj = load_str_bytes( | |
b, | |
proto=proto, | |
content_type=content_type, | |
encoding=encoding, | |
allow_pickle=allow_pickle, | |
json_loads=cls.__config__.json_loads, | |
) | |
except (ValueError, TypeError, UnicodeDecodeError) as e: | |
raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls) | |
return cls.parse_obj(obj) | |
def parse_file( | |
cls: Type['Model'], | |
path: Union[str, Path], | |
*, | |
content_type: str = None, | |
encoding: str = 'utf8', | |
proto: Protocol = None, | |
allow_pickle: bool = False, | |
) -> 'Model': | |
obj = load_file( | |
path, | |
proto=proto, | |
content_type=content_type, | |
encoding=encoding, | |
allow_pickle=allow_pickle, | |
json_loads=cls.__config__.json_loads, | |
) | |
return cls.parse_obj(obj) | |
def from_orm(cls: Type['Model'], obj: Any) -> 'Model': | |
if not cls.__config__.orm_mode: | |
raise ConfigError('You must have the config attribute orm_mode=True to use from_orm') | |
obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj) | |
m = cls.__new__(cls) | |
values, fields_set, validation_error = validate_model(cls, obj) | |
if validation_error: | |
raise validation_error | |
object_setattr(m, '__dict__', values) | |
object_setattr(m, '__fields_set__', fields_set) | |
m._init_private_attributes() | |
return m | |
def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model': | |
""" | |
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. | |
Default values are respected, but no other validation is performed. | |
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values | |
""" | |
m = cls.__new__(cls) | |
fields_values: Dict[str, Any] = {} | |
for name, field in cls.__fields__.items(): | |
if field.alt_alias and field.alias in values: | |
fields_values[name] = values[field.alias] | |
elif name in values: | |
fields_values[name] = values[name] | |
elif not field.required: | |
fields_values[name] = field.get_default() | |
fields_values.update(values) | |
object_setattr(m, '__dict__', fields_values) | |
if _fields_set is None: | |
_fields_set = set(values.keys()) | |
object_setattr(m, '__fields_set__', _fields_set) | |
m._init_private_attributes() | |
return m | |
def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model': | |
if deep: | |
# chances of having empty dict here are quite low for using smart_deepcopy | |
values = deepcopy(values) | |
cls = self.__class__ | |
m = cls.__new__(cls) | |
object_setattr(m, '__dict__', values) | |
object_setattr(m, '__fields_set__', fields_set) | |
for name in self.__private_attributes__: | |
value = getattr(self, name, Undefined) | |
if value is not Undefined: | |
if deep: | |
value = deepcopy(value) | |
object_setattr(m, name, value) | |
return m | |
def copy( | |
self: 'Model', | |
*, | |
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
update: Optional['DictStrAny'] = None, | |
deep: bool = False, | |
) -> 'Model': | |
""" | |
Duplicate a model, optionally choose which fields to include, exclude and change. | |
:param include: fields to include in new model | |
:param exclude: fields to exclude from new model, as with values this takes precedence over include | |
:param update: values to change/add in the new model. Note: the data is not validated before creating | |
the new model: you should trust this data | |
:param deep: set to `True` to make a deep copy of the model | |
:return: new model instance | |
""" | |
values = dict( | |
self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False), | |
**(update or {}), | |
) | |
# new `__fields_set__` can have unset optional fields with a set value in `update` kwarg | |
if update: | |
fields_set = self.__fields_set__ | update.keys() | |
else: | |
fields_set = set(self.__fields_set__) | |
return self._copy_and_set_values(values, fields_set, deep=deep) | |
def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny': | |
cached = cls.__schema_cache__.get((by_alias, ref_template)) | |
if cached is not None: | |
return cached | |
s = model_schema(cls, by_alias=by_alias, ref_template=ref_template) | |
cls.__schema_cache__[(by_alias, ref_template)] = s | |
return s | |
def schema_json( | |
cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any | |
) -> str: | |
from .json import pydantic_encoder | |
return cls.__config__.json_dumps( | |
cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs | |
) | |
def __get_validators__(cls) -> 'CallableGenerator': | |
yield cls.validate | |
def validate(cls: Type['Model'], value: Any) -> 'Model': | |
if isinstance(value, cls): | |
copy_on_model_validation = cls.__config__.copy_on_model_validation | |
# whether to deep or shallow copy the model on validation, None means do not copy | |
deep_copy: Optional[bool] = None | |
if copy_on_model_validation not in {'deep', 'shallow', 'none'}: | |
# Warn about deprecated behavior | |
warnings.warn( | |
"`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning | |
) | |
if copy_on_model_validation: | |
deep_copy = False | |
if copy_on_model_validation == 'shallow': | |
# shallow copy | |
deep_copy = False | |
elif copy_on_model_validation == 'deep': | |
# deep copy | |
deep_copy = True | |
if deep_copy is None: | |
return value | |
else: | |
return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy) | |
value = cls._enforce_dict_if_root(value) | |
if isinstance(value, dict): | |
return cls(**value) | |
elif cls.__config__.orm_mode: | |
return cls.from_orm(value) | |
else: | |
try: | |
value_as_dict = dict(value) | |
except (TypeError, ValueError) as e: | |
raise DictError() from e | |
return cls(**value_as_dict) | |
def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict: | |
if isinstance(obj, GetterDict): | |
return obj | |
return cls.__config__.getter_dict(obj) | |
def _get_value( | |
cls, | |
v: Any, | |
to_dict: bool, | |
by_alias: bool, | |
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], | |
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], | |
exclude_unset: bool, | |
exclude_defaults: bool, | |
exclude_none: bool, | |
) -> Any: | |
if isinstance(v, BaseModel): | |
if to_dict: | |
v_dict = v.dict( | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
include=include, | |
exclude=exclude, | |
exclude_none=exclude_none, | |
) | |
if ROOT_KEY in v_dict: | |
return v_dict[ROOT_KEY] | |
return v_dict | |
else: | |
return v.copy(include=include, exclude=exclude) | |
value_exclude = ValueItems(v, exclude) if exclude else None | |
value_include = ValueItems(v, include) if include else None | |
if isinstance(v, dict): | |
return { | |
k_: cls._get_value( | |
v_, | |
to_dict=to_dict, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
include=value_include and value_include.for_element(k_), | |
exclude=value_exclude and value_exclude.for_element(k_), | |
exclude_none=exclude_none, | |
) | |
for k_, v_ in v.items() | |
if (not value_exclude or not value_exclude.is_excluded(k_)) | |
and (not value_include or value_include.is_included(k_)) | |
} | |
elif sequence_like(v): | |
seq_args = ( | |
cls._get_value( | |
v_, | |
to_dict=to_dict, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
include=value_include and value_include.for_element(i), | |
exclude=value_exclude and value_exclude.for_element(i), | |
exclude_none=exclude_none, | |
) | |
for i, v_ in enumerate(v) | |
if (not value_exclude or not value_exclude.is_excluded(i)) | |
and (not value_include or value_include.is_included(i)) | |
) | |
return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args) | |
elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False): | |
return v.value | |
else: | |
return v | |
def __try_update_forward_refs__(cls, **localns: Any) -> None: | |
""" | |
Same as update_forward_refs but will not raise exception | |
when forward references are not defined. | |
""" | |
update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,)) | |
def update_forward_refs(cls, **localns: Any) -> None: | |
""" | |
Try to update ForwardRefs on fields based on this Model, globalns and localns. | |
""" | |
update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns) | |
def __iter__(self) -> 'TupleGenerator': | |
""" | |
so `dict(model)` works | |
""" | |
yield from self.__dict__.items() | |
def _iter( | |
self, | |
to_dict: bool = False, | |
by_alias: bool = False, | |
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, | |
exclude_unset: bool = False, | |
exclude_defaults: bool = False, | |
exclude_none: bool = False, | |
) -> 'TupleGenerator': | |
# Merge field set excludes with explicit exclude parameter with explicit overriding field set options. | |
# The extra "is not None" guards are not logically necessary but optimizes performance for the simple case. | |
if exclude is not None or self.__exclude_fields__ is not None: | |
exclude = ValueItems.merge(self.__exclude_fields__, exclude) | |
if include is not None or self.__include_fields__ is not None: | |
include = ValueItems.merge(self.__include_fields__, include, intersect=True) | |
allowed_keys = self._calculate_keys( | |
include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore | |
) | |
if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none): | |
# huge boost for plain _iter() | |
yield from self.__dict__.items() | |
return | |
value_exclude = ValueItems(self, exclude) if exclude is not None else None | |
value_include = ValueItems(self, include) if include is not None else None | |
for field_key, v in self.__dict__.items(): | |
if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None): | |
continue | |
if exclude_defaults: | |
model_field = self.__fields__.get(field_key) | |
if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v: | |
continue | |
if by_alias and field_key in self.__fields__: | |
dict_key = self.__fields__[field_key].alias | |
else: | |
dict_key = field_key | |
if to_dict or value_include or value_exclude: | |
v = self._get_value( | |
v, | |
to_dict=to_dict, | |
by_alias=by_alias, | |
include=value_include and value_include.for_element(field_key), | |
exclude=value_exclude and value_exclude.for_element(field_key), | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
exclude_none=exclude_none, | |
) | |
yield dict_key, v | |
def _calculate_keys( | |
self, | |
include: Optional['MappingIntStrAny'], | |
exclude: Optional['MappingIntStrAny'], | |
exclude_unset: bool, | |
update: Optional['DictStrAny'] = None, | |
) -> Optional[AbstractSet[str]]: | |
if include is None and exclude is None and exclude_unset is False: | |
return None | |
keys: AbstractSet[str] | |
if exclude_unset: | |
keys = self.__fields_set__.copy() | |
else: | |
keys = self.__dict__.keys() | |
if include is not None: | |
keys &= include.keys() | |
if update: | |
keys -= update.keys() | |
if exclude: | |
keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)} | |
return keys | |
def __eq__(self, other: Any) -> bool: | |
if isinstance(other, BaseModel): | |
return self.dict() == other.dict() | |
else: | |
return self.dict() == other | |
def __repr_args__(self) -> 'ReprArgs': | |
return [ | |
(k, v) | |
for k, v in self.__dict__.items() | |
if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr) | |
] | |
_is_base_model_class_defined = True | |
def create_model( | |
__model_name: str, | |
*, | |
__config__: Optional[Type[BaseConfig]] = None, | |
__base__: None = None, | |
__module__: str = __name__, | |
__validators__: Dict[str, 'AnyClassMethod'] = None, | |
__cls_kwargs__: Dict[str, Any] = None, | |
**field_definitions: Any, | |
) -> Type['BaseModel']: | |
... | |
def create_model( | |
__model_name: str, | |
*, | |
__config__: Optional[Type[BaseConfig]] = None, | |
__base__: Union[Type['Model'], Tuple[Type['Model'], ...]], | |
__module__: str = __name__, | |
__validators__: Dict[str, 'AnyClassMethod'] = None, | |
__cls_kwargs__: Dict[str, Any] = None, | |
**field_definitions: Any, | |
) -> Type['Model']: | |
... | |
def create_model( | |
__model_name: str, | |
*, | |
__config__: Optional[Type[BaseConfig]] = None, | |
__base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None, | |
__module__: str = __name__, | |
__validators__: Dict[str, 'AnyClassMethod'] = None, | |
__cls_kwargs__: Dict[str, Any] = None, | |
__slots__: Optional[Tuple[str, ...]] = None, | |
**field_definitions: Any, | |
) -> Type['Model']: | |
""" | |
Dynamically create a model. | |
:param __model_name: name of the created model | |
:param __config__: config class to use for the new model | |
:param __base__: base class for the new model to inherit from | |
:param __module__: module of the created model | |
:param __validators__: a dict of method names and @validator class methods | |
:param __cls_kwargs__: a dict for class creation | |
:param __slots__: Deprecated, `__slots__` should not be passed to `create_model` | |
:param field_definitions: fields of the model (or extra fields if a base is supplied) | |
in the format `<name>=(<type>, <default default>)` or `<name>=<default value>, e.g. | |
`foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format | |
`<name>=<Field>` or `<name>=(<type>, <FieldInfo>)`, e.g. | |
`foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or | |
`foo=(str, FieldInfo(title='Foo'))` | |
""" | |
if __slots__ is not None: | |
# __slots__ will be ignored from here on | |
warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning) | |
if __base__ is not None: | |
if __config__ is not None: | |
raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together') | |
if not isinstance(__base__, tuple): | |
__base__ = (__base__,) | |
else: | |
__base__ = (cast(Type['Model'], BaseModel),) | |
__cls_kwargs__ = __cls_kwargs__ or {} | |
fields = {} | |
annotations = {} | |
for f_name, f_def in field_definitions.items(): | |
if not is_valid_field(f_name): | |
warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning) | |
if isinstance(f_def, tuple): | |
try: | |
f_annotation, f_value = f_def | |
except ValueError as e: | |
raise ConfigError( | |
'field definitions should either be a tuple of (<type>, <default>) or just a ' | |
'default value, unfortunately this means tuples as ' | |
'default values are not allowed' | |
) from e | |
else: | |
f_annotation, f_value = None, f_def | |
if f_annotation: | |
annotations[f_name] = f_annotation | |
fields[f_name] = f_value | |
namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__} | |
if __validators__: | |
namespace.update(__validators__) | |
namespace.update(fields) | |
if __config__: | |
namespace['Config'] = inherit_config(__config__, BaseConfig) | |
resolved_bases = resolve_bases(__base__) | |
meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__) | |
if resolved_bases is not __base__: | |
ns['__orig_bases__'] = __base__ | |
namespace.update(ns) | |
return meta(__model_name, resolved_bases, namespace, **kwds) | |
_missing = object() | |
def validate_model( # noqa: C901 (ignore complexity) | |
model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None | |
) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]: | |
""" | |
validate data against a model. | |
""" | |
values = {} | |
errors = [] | |
# input_data names, possibly alias | |
names_used = set() | |
# field names, never aliases | |
fields_set = set() | |
config = model.__config__ | |
check_extra = config.extra is not Extra.ignore | |
cls_ = cls or model | |
for validator in model.__pre_root_validators__: | |
try: | |
input_data = validator(cls_, input_data) | |
except (ValueError, TypeError, AssertionError) as exc: | |
return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_) | |
for name, field in model.__fields__.items(): | |
value = input_data.get(field.alias, _missing) | |
using_name = False | |
if value is _missing and config.allow_population_by_field_name and field.alt_alias: | |
value = input_data.get(field.name, _missing) | |
using_name = True | |
if value is _missing: | |
if field.required: | |
errors.append(ErrorWrapper(MissingError(), loc=field.alias)) | |
continue | |
value = field.get_default() | |
if not config.validate_all and not field.validate_always: | |
values[name] = value | |
continue | |
else: | |
fields_set.add(name) | |
if check_extra: | |
names_used.add(field.name if using_name else field.alias) | |
v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_) | |
if isinstance(errors_, ErrorWrapper): | |
errors.append(errors_) | |
elif isinstance(errors_, list): | |
errors.extend(errors_) | |
else: | |
values[name] = v_ | |
if check_extra: | |
if isinstance(input_data, GetterDict): | |
extra = input_data.extra_keys() - names_used | |
else: | |
extra = input_data.keys() - names_used | |
if extra: | |
fields_set |= extra | |
if config.extra is Extra.allow: | |
for f in extra: | |
values[f] = input_data[f] | |
else: | |
for f in sorted(extra): | |
errors.append(ErrorWrapper(ExtraError(), loc=f)) | |
for skip_on_failure, validator in model.__post_root_validators__: | |
if skip_on_failure and errors: | |
continue | |
try: | |
values = validator(cls_, values) | |
except (ValueError, TypeError, AssertionError) as exc: | |
errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) | |
if errors: | |
return values, fields_set, ValidationError(errors, cls_) | |
else: | |
return values, fields_set, None | |