peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/v1
/mypy.py
import sys | |
from configparser import ConfigParser | |
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union | |
from mypy.errorcodes import ErrorCode | |
from mypy.nodes import ( | |
ARG_NAMED, | |
ARG_NAMED_OPT, | |
ARG_OPT, | |
ARG_POS, | |
ARG_STAR2, | |
MDEF, | |
Argument, | |
AssignmentStmt, | |
Block, | |
CallExpr, | |
ClassDef, | |
Context, | |
Decorator, | |
EllipsisExpr, | |
FuncBase, | |
FuncDef, | |
JsonDict, | |
MemberExpr, | |
NameExpr, | |
PassStmt, | |
PlaceholderNode, | |
RefExpr, | |
StrExpr, | |
SymbolNode, | |
SymbolTableNode, | |
TempNode, | |
TypeInfo, | |
TypeVarExpr, | |
Var, | |
) | |
from mypy.options import Options | |
from mypy.plugin import ( | |
CheckerPluginInterface, | |
ClassDefContext, | |
FunctionContext, | |
MethodContext, | |
Plugin, | |
ReportConfigContext, | |
SemanticAnalyzerPluginInterface, | |
) | |
from mypy.plugins import dataclasses | |
from mypy.semanal import set_callable_name # type: ignore | |
from mypy.server.trigger import make_wildcard_trigger | |
from mypy.types import ( | |
AnyType, | |
CallableType, | |
Instance, | |
NoneType, | |
Overloaded, | |
ProperType, | |
Type, | |
TypeOfAny, | |
TypeType, | |
TypeVarType, | |
UnionType, | |
get_proper_type, | |
) | |
from mypy.typevars import fill_typevars | |
from mypy.util import get_unique_redefinition_name | |
from mypy.version import __version__ as mypy_version | |
from .utils import is_valid_field | |
try: | |
from mypy.types import TypeVarDef # type: ignore[attr-defined] | |
except ImportError: # pragma: no cover | |
# Backward-compatible with TypeVarDef from Mypy 0.910. | |
from mypy.types import TypeVarType as TypeVarDef | |
CONFIGFILE_KEY = 'pydantic-mypy' | |
METADATA_KEY = 'pydantic-mypy-metadata' | |
_NAMESPACE = __name__[:-5] # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X | |
BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel' | |
BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings' | |
MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass' | |
FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field' | |
DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass' | |
def parse_mypy_version(version: str) -> Tuple[int, ...]: | |
return tuple(map(int, version.partition('+')[0].split('.'))) | |
MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version) | |
BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__' | |
# Increment version if plugin changes and mypy caches should be invalidated | |
__version__ = 2 | |
def plugin(version: str) -> 'TypingType[Plugin]': | |
""" | |
`version` is the mypy version string | |
We might want to use this to print a warning if the mypy version being used is | |
newer, or especially older, than we expect (or need). | |
""" | |
return PydanticPlugin | |
class PydanticPlugin(Plugin): | |
def __init__(self, options: Options) -> None: | |
self.plugin_config = PydanticPluginConfig(options) | |
self._plugin_data = self.plugin_config.to_data() | |
super().__init__(options) | |
def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]': | |
sym = self.lookup_fully_qualified(fullname) | |
if sym and isinstance(sym.node, TypeInfo): # pragma: no branch | |
# No branching may occur if the mypy cache has not been cleared | |
if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro): | |
return self._pydantic_model_class_maker_callback | |
return None | |
def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: | |
if fullname == MODEL_METACLASS_FULLNAME: | |
return self._pydantic_model_metaclass_marker_callback | |
return None | |
def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]': | |
sym = self.lookup_fully_qualified(fullname) | |
if sym and sym.fullname == FIELD_FULLNAME: | |
return self._pydantic_field_callback | |
return None | |
def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]: | |
if fullname.endswith('.from_orm'): | |
return from_orm_callback | |
return None | |
def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: | |
"""Mark pydantic.dataclasses as dataclass. | |
Mypy version 1.1.1 added support for `@dataclass_transform` decorator. | |
""" | |
if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1): | |
return dataclasses.dataclass_class_maker_callback # type: ignore[return-value] | |
return None | |
def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]: | |
"""Return all plugin config data. | |
Used by mypy to determine if cache needs to be discarded. | |
""" | |
return self._plugin_data | |
def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None: | |
transformer = PydanticModelTransformer(ctx, self.plugin_config) | |
transformer.transform() | |
def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None: | |
"""Reset dataclass_transform_spec attribute of ModelMetaclass. | |
Let the plugin handle it. This behavior can be disabled | |
if 'debug_dataclass_transform' is set to True', for testing purposes. | |
""" | |
if self.plugin_config.debug_dataclass_transform: | |
return | |
info_metaclass = ctx.cls.info.declared_metaclass | |
assert info_metaclass, "callback not passed from 'get_metaclass_hook'" | |
if getattr(info_metaclass.type, 'dataclass_transform_spec', None): | |
info_metaclass.type.dataclass_transform_spec = None # type: ignore[attr-defined] | |
def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type': | |
""" | |
Extract the type of the `default` argument from the Field function, and use it as the return type. | |
In particular: | |
* Check whether the default and default_factory argument is specified. | |
* Output an error if both are specified. | |
* Retrieve the type of the argument which is specified, and use it as return type for the function. | |
""" | |
default_any_type = ctx.default_return_type | |
assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()' | |
assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()' | |
default_args = ctx.args[0] | |
default_factory_args = ctx.args[1] | |
if default_args and default_factory_args: | |
error_default_and_default_factory_specified(ctx.api, ctx.context) | |
return default_any_type | |
if default_args: | |
default_type = ctx.arg_types[0][0] | |
default_arg = default_args[0] | |
# Fallback to default Any type if the field is required | |
if not isinstance(default_arg, EllipsisExpr): | |
return default_type | |
elif default_factory_args: | |
default_factory_type = ctx.arg_types[1][0] | |
# Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter | |
# Pydantic calls the default factory without any argument, so we retrieve the first item | |
if isinstance(default_factory_type, Overloaded): | |
if MYPY_VERSION_TUPLE > (0, 910): | |
default_factory_type = default_factory_type.items[0] | |
else: | |
# Mypy0.910 exposes the items of overloaded types in a function | |
default_factory_type = default_factory_type.items()[0] # type: ignore[operator] | |
if isinstance(default_factory_type, CallableType): | |
ret_type = default_factory_type.ret_type | |
# mypy doesn't think `ret_type` has `args`, you'd think mypy should know, | |
# add this check in case it varies by version | |
args = getattr(ret_type, 'args', None) | |
if args: | |
if all(isinstance(arg, TypeVarType) for arg in args): | |
# Looks like the default factory is a type like `list` or `dict`, replace all args with `Any` | |
ret_type.args = tuple(default_any_type for _ in args) # type: ignore[attr-defined] | |
return ret_type | |
return default_any_type | |
class PydanticPluginConfig: | |
__slots__ = ( | |
'init_forbid_extra', | |
'init_typed', | |
'warn_required_dynamic_aliases', | |
'warn_untyped_fields', | |
'debug_dataclass_transform', | |
) | |
init_forbid_extra: bool | |
init_typed: bool | |
warn_required_dynamic_aliases: bool | |
warn_untyped_fields: bool | |
debug_dataclass_transform: bool # undocumented | |
def __init__(self, options: Options) -> None: | |
if options.config_file is None: # pragma: no cover | |
return | |
toml_config = parse_toml(options.config_file) | |
if toml_config is not None: | |
config = toml_config.get('tool', {}).get('pydantic-mypy', {}) | |
for key in self.__slots__: | |
setting = config.get(key, False) | |
if not isinstance(setting, bool): | |
raise ValueError(f'Configuration value must be a boolean for key: {key}') | |
setattr(self, key, setting) | |
else: | |
plugin_config = ConfigParser() | |
plugin_config.read(options.config_file) | |
for key in self.__slots__: | |
setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False) | |
setattr(self, key, setting) | |
def to_data(self) -> Dict[str, Any]: | |
return {key: getattr(self, key) for key in self.__slots__} | |
def from_orm_callback(ctx: MethodContext) -> Type: | |
""" | |
Raise an error if orm_mode is not enabled | |
""" | |
model_type: Instance | |
ctx_type = ctx.type | |
if isinstance(ctx_type, TypeType): | |
ctx_type = ctx_type.item | |
if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance): | |
model_type = ctx_type.ret_type # called on the class | |
elif isinstance(ctx_type, Instance): | |
model_type = ctx_type # called on an instance (unusual, but still valid) | |
else: # pragma: no cover | |
detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})' | |
error_unexpected_behavior(detail, ctx.api, ctx.context) | |
return ctx.default_return_type | |
pydantic_metadata = model_type.type.metadata.get(METADATA_KEY) | |
if pydantic_metadata is None: | |
return ctx.default_return_type | |
orm_mode = pydantic_metadata.get('config', {}).get('orm_mode') | |
if orm_mode is not True: | |
error_from_orm(get_name(model_type.type), ctx.api, ctx.context) | |
return ctx.default_return_type | |
class PydanticModelTransformer: | |
tracked_config_fields: Set[str] = { | |
'extra', | |
'allow_mutation', | |
'frozen', | |
'orm_mode', | |
'allow_population_by_field_name', | |
'alias_generator', | |
} | |
def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None: | |
self._ctx = ctx | |
self.plugin_config = plugin_config | |
def transform(self) -> None: | |
""" | |
Configures the BaseModel subclass according to the plugin settings. | |
In particular: | |
* determines the model config and fields, | |
* adds a fields-aware signature for the initializer and construct methods | |
* freezes the class if allow_mutation = False or frozen = True | |
* stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses | |
""" | |
ctx = self._ctx | |
info = ctx.cls.info | |
self.adjust_validator_signatures() | |
config = self.collect_config() | |
fields = self.collect_fields(config) | |
is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1]) | |
self.add_initializer(fields, config, is_settings) | |
self.add_construct_method(fields) | |
self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True) | |
info.metadata[METADATA_KEY] = { | |
'fields': {field.name: field.serialize() for field in fields}, | |
'config': config.set_values_dict(), | |
} | |
def adjust_validator_signatures(self) -> None: | |
"""When we decorate a function `f` with `pydantic.validator(...), mypy sees | |
`f` as a regular method taking a `self` instance, even though pydantic | |
internally wraps `f` with `classmethod` if necessary. | |
Teach mypy this by marking any function whose outermost decorator is a | |
`validator()` call as a classmethod. | |
""" | |
for name, sym in self._ctx.cls.info.names.items(): | |
if isinstance(sym.node, Decorator): | |
first_dec = sym.node.original_decorators[0] | |
if ( | |
isinstance(first_dec, CallExpr) | |
and isinstance(first_dec.callee, NameExpr) | |
and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator' | |
): | |
sym.node.func.is_class = True | |
def collect_config(self) -> 'ModelConfigData': | |
""" | |
Collects the values of the config attributes that are used by the plugin, accounting for parent classes. | |
""" | |
ctx = self._ctx | |
cls = ctx.cls | |
config = ModelConfigData() | |
for stmt in cls.defs.body: | |
if not isinstance(stmt, ClassDef): | |
continue | |
if stmt.name == 'Config': | |
for substmt in stmt.defs.body: | |
if not isinstance(substmt, AssignmentStmt): | |
continue | |
config.update(self.get_config_update(substmt)) | |
if ( | |
config.has_alias_generator | |
and not config.allow_population_by_field_name | |
and self.plugin_config.warn_required_dynamic_aliases | |
): | |
error_required_dynamic_aliases(ctx.api, stmt) | |
for info in cls.info.mro[1:]: # 0 is the current class | |
if METADATA_KEY not in info.metadata: | |
continue | |
# Each class depends on the set of fields in its ancestors | |
ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) | |
for name, value in info.metadata[METADATA_KEY]['config'].items(): | |
config.setdefault(name, value) | |
return config | |
def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']: | |
""" | |
Collects the fields for the model, accounting for parent classes | |
""" | |
# First, collect fields belonging to the current class. | |
ctx = self._ctx | |
cls = self._ctx.cls | |
fields = [] # type: List[PydanticModelField] | |
known_fields = set() # type: Set[str] | |
for stmt in cls.defs.body: | |
if not isinstance(stmt, AssignmentStmt): # `and stmt.new_syntax` to require annotation | |
continue | |
lhs = stmt.lvalues[0] | |
if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name): | |
continue | |
if not stmt.new_syntax and self.plugin_config.warn_untyped_fields: | |
error_untyped_fields(ctx.api, stmt) | |
# if lhs.name == '__config__': # BaseConfig not well handled; I'm not sure why yet | |
# continue | |
sym = cls.info.names.get(lhs.name) | |
if sym is None: # pragma: no cover | |
# This is likely due to a star import (see the dataclasses plugin for a more detailed explanation) | |
# This is the same logic used in the dataclasses plugin | |
continue | |
node = sym.node | |
if isinstance(node, PlaceholderNode): # pragma: no cover | |
# See the PlaceholderNode docstring for more detail about how this can occur | |
# Basically, it is an edge case when dealing with complex import logic | |
# This is the same logic used in the dataclasses plugin | |
continue | |
if not isinstance(node, Var): # pragma: no cover | |
# Don't know if this edge case still happens with the `is_valid_field` check above | |
# but better safe than sorry | |
continue | |
# x: ClassVar[int] is ignored by dataclasses. | |
if node.is_classvar: | |
continue | |
is_required = self.get_is_required(cls, stmt, lhs) | |
alias, has_dynamic_alias = self.get_alias_info(stmt) | |
if ( | |
has_dynamic_alias | |
and not model_config.allow_population_by_field_name | |
and self.plugin_config.warn_required_dynamic_aliases | |
): | |
error_required_dynamic_aliases(ctx.api, stmt) | |
fields.append( | |
PydanticModelField( | |
name=lhs.name, | |
is_required=is_required, | |
alias=alias, | |
has_dynamic_alias=has_dynamic_alias, | |
line=stmt.line, | |
column=stmt.column, | |
) | |
) | |
known_fields.add(lhs.name) | |
all_fields = fields.copy() | |
for info in cls.info.mro[1:]: # 0 is the current class, -2 is BaseModel, -1 is object | |
if METADATA_KEY not in info.metadata: | |
continue | |
superclass_fields = [] | |
# Each class depends on the set of fields in its ancestors | |
ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) | |
for name, data in info.metadata[METADATA_KEY]['fields'].items(): | |
if name not in known_fields: | |
field = PydanticModelField.deserialize(info, data) | |
known_fields.add(name) | |
superclass_fields.append(field) | |
else: | |
(field,) = (a for a in all_fields if a.name == name) | |
all_fields.remove(field) | |
superclass_fields.append(field) | |
all_fields = superclass_fields + all_fields | |
return all_fields | |
def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None: | |
""" | |
Adds a fields-aware `__init__` method to the class. | |
The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings. | |
""" | |
ctx = self._ctx | |
typed = self.plugin_config.init_typed | |
use_alias = config.allow_population_by_field_name is not True | |
force_all_optional = is_settings or bool( | |
config.has_alias_generator and not config.allow_population_by_field_name | |
) | |
init_arguments = self.get_field_arguments( | |
fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias | |
) | |
if not self.should_init_forbid_extra(fields, config): | |
var = Var('kwargs') | |
init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2)) | |
if '__init__' not in ctx.cls.info.names: | |
add_method(ctx, '__init__', init_arguments, NoneType()) | |
def add_construct_method(self, fields: List['PydanticModelField']) -> None: | |
""" | |
Adds a fully typed `construct` classmethod to the class. | |
Similar to the fields-aware __init__ method, but always uses the field names (not aliases), | |
and does not treat settings fields as optional. | |
""" | |
ctx = self._ctx | |
set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')]) | |
optional_set_str = UnionType([set_str, NoneType()]) | |
fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT) | |
construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False) | |
construct_arguments = [fields_set_argument] + construct_arguments | |
obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object') | |
self_tvar_name = '_PydanticBaseModel' # Make sure it does not conflict with other names in the class | |
tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name | |
if MYPY_VERSION_TUPLE >= (1, 4): | |
tvd = TypeVarType( | |
self_tvar_name, | |
tvar_fullname, | |
-1, | |
[], | |
obj_type, | |
AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] | |
) | |
self_tvar_expr = TypeVarExpr( | |
self_tvar_name, | |
tvar_fullname, | |
[], | |
obj_type, | |
AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] | |
) | |
else: | |
tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type) | |
self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type) | |
ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr) | |
# Backward-compatible with TypeVarDef from Mypy 0.910. | |
if isinstance(tvd, TypeVarType): | |
self_type = tvd | |
else: | |
self_type = TypeVarType(tvd) | |
add_method( | |
ctx, | |
'construct', | |
construct_arguments, | |
return_type=self_type, | |
self_type=self_type, | |
tvar_def=tvd, | |
is_classmethod=True, | |
) | |
def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None: | |
""" | |
Marks all fields as properties so that attempts to set them trigger mypy errors. | |
This is the same approach used by the attrs and dataclasses plugins. | |
""" | |
ctx = self._ctx | |
info = ctx.cls.info | |
for field in fields: | |
sym_node = info.names.get(field.name) | |
if sym_node is not None: | |
var = sym_node.node | |
if isinstance(var, Var): | |
var.is_property = frozen | |
elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration: | |
# See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage | |
ctx.api.defer() | |
else: # pragma: no cover | |
# I don't know whether it's possible to hit this branch, but I've added it for safety | |
try: | |
var_str = str(var) | |
except TypeError: | |
# This happens for PlaceholderNode; perhaps it will happen for other types in the future.. | |
var_str = repr(var) | |
detail = f'sym_node.node: {var_str} (of type {var.__class__})' | |
error_unexpected_behavior(detail, ctx.api, ctx.cls) | |
else: | |
var = field.to_var(info, use_alias=False) | |
var.info = info | |
var.is_property = frozen | |
var._fullname = get_fullname(info) + '.' + get_name(var) | |
info.names[get_name(var)] = SymbolTableNode(MDEF, var) | |
def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']: | |
""" | |
Determines the config update due to a single statement in the Config class definition. | |
Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int) | |
""" | |
lhs = substmt.lvalues[0] | |
if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields): | |
return None | |
if lhs.name == 'extra': | |
if isinstance(substmt.rvalue, StrExpr): | |
forbid_extra = substmt.rvalue.value == 'forbid' | |
elif isinstance(substmt.rvalue, MemberExpr): | |
forbid_extra = substmt.rvalue.name == 'forbid' | |
else: | |
error_invalid_config_value(lhs.name, self._ctx.api, substmt) | |
return None | |
return ModelConfigData(forbid_extra=forbid_extra) | |
if lhs.name == 'alias_generator': | |
has_alias_generator = True | |
if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None': | |
has_alias_generator = False | |
return ModelConfigData(has_alias_generator=has_alias_generator) | |
if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'): | |
return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'}) | |
error_invalid_config_value(lhs.name, self._ctx.api, substmt) | |
return None | |
def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool: | |
""" | |
Returns a boolean indicating whether the field defined in `stmt` is a required field. | |
""" | |
expr = stmt.rvalue | |
if isinstance(expr, TempNode): | |
# TempNode means annotation-only, so only non-required if Optional | |
value_type = get_proper_type(cls.info[lhs.name].type) | |
return not PydanticModelTransformer.type_has_implicit_default(value_type) | |
if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME: | |
# The "default value" is a call to `Field`; at this point, the field is | |
# only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory | |
# is specified. | |
for arg, name in zip(expr.args, expr.arg_names): | |
# If name is None, then this arg is the default because it is the only positional argument. | |
if name is None or name == 'default': | |
return arg.__class__ is EllipsisExpr | |
if name == 'default_factory': | |
return False | |
# In this case, default and default_factory are not specified, so we need to look at the annotation | |
value_type = get_proper_type(cls.info[lhs.name].type) | |
return not PydanticModelTransformer.type_has_implicit_default(value_type) | |
# Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`) | |
return isinstance(expr, EllipsisExpr) | |
def type_has_implicit_default(type_: Optional[ProperType]) -> bool: | |
""" | |
Returns True if the passed type will be given an implicit default value. | |
In pydantic v1, this is the case for Optional types and Any (with default value None). | |
""" | |
if isinstance(type_, AnyType): | |
# Annotated as Any | |
return True | |
if isinstance(type_, UnionType) and any( | |
isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items | |
): | |
# Annotated as Optional, or otherwise having NoneType or AnyType in the union | |
return True | |
return False | |
def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]: | |
""" | |
Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`. | |
`has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal. | |
If `has_dynamic_alias` is True, `alias` will be None. | |
""" | |
expr = stmt.rvalue | |
if isinstance(expr, TempNode): | |
# TempNode means annotation-only | |
return None, False | |
if not ( | |
isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME | |
): | |
# Assigned value is not a call to pydantic.fields.Field | |
return None, False | |
for i, arg_name in enumerate(expr.arg_names): | |
if arg_name != 'alias': | |
continue | |
arg = expr.args[i] | |
if isinstance(arg, StrExpr): | |
return arg.value, False | |
else: | |
return None, True | |
return None, False | |
def get_field_arguments( | |
self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool | |
) -> List[Argument]: | |
""" | |
Helper function used during the construction of the `__init__` and `construct` method signatures. | |
Returns a list of mypy Argument instances for use in the generated signatures. | |
""" | |
info = self._ctx.cls.info | |
arguments = [ | |
field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias) | |
for field in fields | |
if not (use_alias and field.has_dynamic_alias) | |
] | |
return arguments | |
def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool: | |
""" | |
Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature | |
We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to, | |
*unless* a required dynamic alias is present (since then we can't determine a valid signature). | |
""" | |
if not config.allow_population_by_field_name: | |
if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)): | |
return False | |
if config.forbid_extra: | |
return True | |
return self.plugin_config.init_forbid_extra | |
def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool: | |
""" | |
Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be | |
determined during static analysis. | |
""" | |
for field in fields: | |
if field.has_dynamic_alias: | |
return True | |
if has_alias_generator: | |
for field in fields: | |
if field.alias is None: | |
return True | |
return False | |
class PydanticModelField: | |
def __init__( | |
self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int | |
): | |
self.name = name | |
self.is_required = is_required | |
self.alias = alias | |
self.has_dynamic_alias = has_dynamic_alias | |
self.line = line | |
self.column = column | |
def to_var(self, info: TypeInfo, use_alias: bool) -> Var: | |
name = self.name | |
if use_alias and self.alias is not None: | |
name = self.alias | |
return Var(name, info[self.name].type) | |
def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument: | |
if typed and info[self.name].type is not None: | |
type_annotation = info[self.name].type | |
else: | |
type_annotation = AnyType(TypeOfAny.explicit) | |
return Argument( | |
variable=self.to_var(info, use_alias), | |
type_annotation=type_annotation, | |
initializer=None, | |
kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED, | |
) | |
def serialize(self) -> JsonDict: | |
return self.__dict__ | |
def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField': | |
return cls(**data) | |
class ModelConfigData: | |
def __init__( | |
self, | |
forbid_extra: Optional[bool] = None, | |
allow_mutation: Optional[bool] = None, | |
frozen: Optional[bool] = None, | |
orm_mode: Optional[bool] = None, | |
allow_population_by_field_name: Optional[bool] = None, | |
has_alias_generator: Optional[bool] = None, | |
): | |
self.forbid_extra = forbid_extra | |
self.allow_mutation = allow_mutation | |
self.frozen = frozen | |
self.orm_mode = orm_mode | |
self.allow_population_by_field_name = allow_population_by_field_name | |
self.has_alias_generator = has_alias_generator | |
def set_values_dict(self) -> Dict[str, Any]: | |
return {k: v for k, v in self.__dict__.items() if v is not None} | |
def update(self, config: Optional['ModelConfigData']) -> None: | |
if config is None: | |
return | |
for k, v in config.set_values_dict().items(): | |
setattr(self, k, v) | |
def setdefault(self, key: str, value: Any) -> None: | |
if getattr(self, key) is None: | |
setattr(self, key, value) | |
ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic') | |
ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic') | |
ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic') | |
ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic') | |
ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic') | |
ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic') | |
def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None: | |
api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM) | |
def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None: | |
api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG) | |
def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None: | |
api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS) | |
def error_unexpected_behavior( | |
detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context | |
) -> None: # pragma: no cover | |
# Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path | |
link = 'https://github.com/pydantic/pydantic/issues/new/choose' | |
full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n' | |
full_message += f'Please consider reporting this bug at {link} so we can try to fix it!' | |
api.fail(full_message, context, code=ERROR_UNEXPECTED) | |
def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None: | |
api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED) | |
def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None: | |
api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS) | |
def add_method( | |
ctx: ClassDefContext, | |
name: str, | |
args: List[Argument], | |
return_type: Type, | |
self_type: Optional[Type] = None, | |
tvar_def: Optional[TypeVarDef] = None, | |
is_classmethod: bool = False, | |
is_new: bool = False, | |
# is_staticmethod: bool = False, | |
) -> None: | |
""" | |
Adds a new method to a class. | |
This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged | |
""" | |
info = ctx.cls.info | |
# First remove any previously generated methods with the same name | |
# to avoid clashes and problems in the semantic analyzer. | |
if name in info.names: | |
sym = info.names[name] | |
if sym.plugin_generated and isinstance(sym.node, FuncDef): | |
ctx.cls.defs.body.remove(sym.node) # pragma: no cover | |
self_type = self_type or fill_typevars(info) | |
if is_classmethod or is_new: | |
first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)] | |
# elif is_staticmethod: | |
# first = [] | |
else: | |
self_type = self_type or fill_typevars(info) | |
first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)] | |
args = first + args | |
arg_types, arg_names, arg_kinds = [], [], [] | |
for arg in args: | |
assert arg.type_annotation, 'All arguments must be fully typed.' | |
arg_types.append(arg.type_annotation) | |
arg_names.append(get_name(arg.variable)) | |
arg_kinds.append(arg.kind) | |
function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function') | |
signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type) | |
if tvar_def: | |
signature.variables = [tvar_def] | |
func = FuncDef(name, args, Block([PassStmt()])) | |
func.info = info | |
func.type = set_callable_name(signature, func) | |
func.is_class = is_classmethod | |
# func.is_static = is_staticmethod | |
func._fullname = get_fullname(info) + '.' + name | |
func.line = info.line | |
# NOTE: we would like the plugin generated node to dominate, but we still | |
# need to keep any existing definitions so they get semantically analyzed. | |
if name in info.names: | |
# Get a nice unique name instead. | |
r_name = get_unique_redefinition_name(name, info.names) | |
info.names[r_name] = info.names[name] | |
if is_classmethod: # or is_staticmethod: | |
func.is_decorated = True | |
v = Var(name, func.type) | |
v.info = info | |
v._fullname = func._fullname | |
# if is_classmethod: | |
v.is_classmethod = True | |
dec = Decorator(func, [NameExpr('classmethod')], v) | |
# else: | |
# v.is_staticmethod = True | |
# dec = Decorator(func, [NameExpr('staticmethod')], v) | |
dec.line = info.line | |
sym = SymbolTableNode(MDEF, dec) | |
else: | |
sym = SymbolTableNode(MDEF, func) | |
sym.plugin_generated = True | |
info.names[name] = sym | |
info.defn.defs.body.append(func) | |
def get_fullname(x: Union[FuncBase, SymbolNode]) -> str: | |
""" | |
Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. | |
""" | |
fn = x.fullname | |
if callable(fn): # pragma: no cover | |
return fn() | |
return fn | |
def get_name(x: Union[FuncBase, SymbolNode]) -> str: | |
""" | |
Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. | |
""" | |
fn = x.name | |
if callable(fn): # pragma: no cover | |
return fn() | |
return fn | |
def parse_toml(config_file: str) -> Optional[Dict[str, Any]]: | |
if not config_file.endswith('.toml'): | |
return None | |
read_mode = 'rb' | |
if sys.version_info >= (3, 11): | |
import tomllib as toml_ | |
else: | |
try: | |
import tomli as toml_ | |
except ImportError: | |
# older versions of mypy have toml as a dependency, not tomli | |
read_mode = 'r' | |
try: | |
import toml as toml_ # type: ignore[no-redef] | |
except ImportError: # pragma: no cover | |
import warnings | |
warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.') | |
return None | |
with open(config_file, read_mode) as rf: | |
return toml_.load(rf) # type: ignore[arg-type] | |