peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_dual_annealing.py
# Dual Annealing implementation. | |
# Copyright (c) 2018 Sylvain Gubian <[email protected]>, | |
# Yang Xiang <[email protected]> | |
# Author: Sylvain Gubian, Yang Xiang, PMP S.A. | |
""" | |
A Dual Annealing global optimization algorithm | |
""" | |
import numpy as np | |
from scipy.optimize import OptimizeResult | |
from scipy.optimize import minimize, Bounds | |
from scipy.special import gammaln | |
from scipy._lib._util import check_random_state | |
from scipy.optimize._constraints import new_bounds_to_old | |
__all__ = ['dual_annealing'] | |
class VisitingDistribution: | |
""" | |
Class used to generate new coordinates based on the distorted | |
Cauchy-Lorentz distribution. Depending on the steps within the strategy | |
chain, the class implements the strategy for generating new location | |
changes. | |
Parameters | |
---------- | |
lb : array_like | |
A 1-D NumPy ndarray containing lower bounds of the generated | |
components. Neither NaN or inf are allowed. | |
ub : array_like | |
A 1-D NumPy ndarray containing upper bounds for the generated | |
components. Neither NaN or inf are allowed. | |
visiting_param : float | |
Parameter for visiting distribution. Default value is 2.62. | |
Higher values give the visiting distribution a heavier tail, this | |
makes the algorithm jump to a more distant region. | |
The value range is (1, 3]. Its value is fixed for the life of the | |
object. | |
rand_gen : {`~numpy.random.RandomState`, `~numpy.random.Generator`} | |
A `~numpy.random.RandomState`, `~numpy.random.Generator` object | |
for using the current state of the created random generator container. | |
""" | |
TAIL_LIMIT = 1.e8 | |
MIN_VISIT_BOUND = 1.e-10 | |
def __init__(self, lb, ub, visiting_param, rand_gen): | |
# if you wish to make _visiting_param adjustable during the life of | |
# the object then _factor2, _factor3, _factor5, _d1, _factor6 will | |
# have to be dynamically calculated in `visit_fn`. They're factored | |
# out here so they don't need to be recalculated all the time. | |
self._visiting_param = visiting_param | |
self.rand_gen = rand_gen | |
self.lower = lb | |
self.upper = ub | |
self.bound_range = ub - lb | |
# these are invariant numbers unless visiting_param changes | |
self._factor2 = np.exp((4.0 - self._visiting_param) * np.log( | |
self._visiting_param - 1.0)) | |
self._factor3 = np.exp((2.0 - self._visiting_param) * np.log(2.0) | |
/ (self._visiting_param - 1.0)) | |
self._factor4_p = np.sqrt(np.pi) * self._factor2 / (self._factor3 * ( | |
3.0 - self._visiting_param)) | |
self._factor5 = 1.0 / (self._visiting_param - 1.0) - 0.5 | |
self._d1 = 2.0 - self._factor5 | |
self._factor6 = np.pi * (1.0 - self._factor5) / np.sin( | |
np.pi * (1.0 - self._factor5)) / np.exp(gammaln(self._d1)) | |
def visiting(self, x, step, temperature): | |
""" Based on the step in the strategy chain, new coordinates are | |
generated by changing all components is the same time or only | |
one of them, the new values are computed with visit_fn method | |
""" | |
dim = x.size | |
if step < dim: | |
# Changing all coordinates with a new visiting value | |
visits = self.visit_fn(temperature, dim) | |
upper_sample, lower_sample = self.rand_gen.uniform(size=2) | |
visits[visits > self.TAIL_LIMIT] = self.TAIL_LIMIT * upper_sample | |
visits[visits < -self.TAIL_LIMIT] = -self.TAIL_LIMIT * lower_sample | |
x_visit = visits + x | |
a = x_visit - self.lower | |
b = np.fmod(a, self.bound_range) + self.bound_range | |
x_visit = np.fmod(b, self.bound_range) + self.lower | |
x_visit[np.fabs( | |
x_visit - self.lower) < self.MIN_VISIT_BOUND] += 1.e-10 | |
else: | |
# Changing only one coordinate at a time based on strategy | |
# chain step | |
x_visit = np.copy(x) | |
visit = self.visit_fn(temperature, 1)[0] | |
if visit > self.TAIL_LIMIT: | |
visit = self.TAIL_LIMIT * self.rand_gen.uniform() | |
elif visit < -self.TAIL_LIMIT: | |
visit = -self.TAIL_LIMIT * self.rand_gen.uniform() | |
index = step - dim | |
x_visit[index] = visit + x[index] | |
a = x_visit[index] - self.lower[index] | |
b = np.fmod(a, self.bound_range[index]) + self.bound_range[index] | |
x_visit[index] = np.fmod(b, self.bound_range[ | |
index]) + self.lower[index] | |
if np.fabs(x_visit[index] - self.lower[ | |
index]) < self.MIN_VISIT_BOUND: | |
x_visit[index] += self.MIN_VISIT_BOUND | |
return x_visit | |
def visit_fn(self, temperature, dim): | |
""" Formula Visita from p. 405 of reference [2] """ | |
x, y = self.rand_gen.normal(size=(dim, 2)).T | |
factor1 = np.exp(np.log(temperature) / (self._visiting_param - 1.0)) | |
factor4 = self._factor4_p * factor1 | |
# sigmax | |
x *= np.exp(-(self._visiting_param - 1.0) * np.log( | |
self._factor6 / factor4) / (3.0 - self._visiting_param)) | |
den = np.exp((self._visiting_param - 1.0) * np.log(np.fabs(y)) / | |
(3.0 - self._visiting_param)) | |
return x / den | |
class EnergyState: | |
""" | |
Class used to record the energy state. At any time, it knows what is the | |
currently used coordinates and the most recent best location. | |
Parameters | |
---------- | |
lower : array_like | |
A 1-D NumPy ndarray containing lower bounds for generating an initial | |
random components in the `reset` method. | |
upper : array_like | |
A 1-D NumPy ndarray containing upper bounds for generating an initial | |
random components in the `reset` method | |
components. Neither NaN or inf are allowed. | |
callback : callable, ``callback(x, f, context)``, optional | |
A callback function which will be called for all minima found. | |
``x`` and ``f`` are the coordinates and function value of the | |
latest minimum found, and `context` has value in [0, 1, 2] | |
""" | |
# Maximum number of trials for generating a valid starting point | |
MAX_REINIT_COUNT = 1000 | |
def __init__(self, lower, upper, callback=None): | |
self.ebest = None | |
self.current_energy = None | |
self.current_location = None | |
self.xbest = None | |
self.lower = lower | |
self.upper = upper | |
self.callback = callback | |
def reset(self, func_wrapper, rand_gen, x0=None): | |
""" | |
Initialize current location is the search domain. If `x0` is not | |
provided, a random location within the bounds is generated. | |
""" | |
if x0 is None: | |
self.current_location = rand_gen.uniform(self.lower, self.upper, | |
size=len(self.lower)) | |
else: | |
self.current_location = np.copy(x0) | |
init_error = True | |
reinit_counter = 0 | |
while init_error: | |
self.current_energy = func_wrapper.fun(self.current_location) | |
if self.current_energy is None: | |
raise ValueError('Objective function is returning None') | |
if (not np.isfinite(self.current_energy) or np.isnan( | |
self.current_energy)): | |
if reinit_counter >= EnergyState.MAX_REINIT_COUNT: | |
init_error = False | |
message = ( | |
'Stopping algorithm because function ' | |
'create NaN or (+/-) infinity values even with ' | |
'trying new random parameters' | |
) | |
raise ValueError(message) | |
self.current_location = rand_gen.uniform(self.lower, | |
self.upper, | |
size=self.lower.size) | |
reinit_counter += 1 | |
else: | |
init_error = False | |
# If first time reset, initialize ebest and xbest | |
if self.ebest is None and self.xbest is None: | |
self.ebest = self.current_energy | |
self.xbest = np.copy(self.current_location) | |
# Otherwise, we keep them in case of reannealing reset | |
def update_best(self, e, x, context): | |
self.ebest = e | |
self.xbest = np.copy(x) | |
if self.callback is not None: | |
val = self.callback(x, e, context) | |
if val is not None: | |
if val: | |
return ('Callback function requested to stop early by ' | |
'returning True') | |
def update_current(self, e, x): | |
self.current_energy = e | |
self.current_location = np.copy(x) | |
class StrategyChain: | |
""" | |
Class that implements within a Markov chain the strategy for location | |
acceptance and local search decision making. | |
Parameters | |
---------- | |
acceptance_param : float | |
Parameter for acceptance distribution. It is used to control the | |
probability of acceptance. The lower the acceptance parameter, the | |
smaller the probability of acceptance. Default value is -5.0 with | |
a range (-1e4, -5]. | |
visit_dist : VisitingDistribution | |
Instance of `VisitingDistribution` class. | |
func_wrapper : ObjectiveFunWrapper | |
Instance of `ObjectiveFunWrapper` class. | |
minimizer_wrapper: LocalSearchWrapper | |
Instance of `LocalSearchWrapper` class. | |
rand_gen : {None, int, `numpy.random.Generator`, | |
`numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
energy_state: EnergyState | |
Instance of `EnergyState` class. | |
""" | |
def __init__(self, acceptance_param, visit_dist, func_wrapper, | |
minimizer_wrapper, rand_gen, energy_state): | |
# Local strategy chain minimum energy and location | |
self.emin = energy_state.current_energy | |
self.xmin = np.array(energy_state.current_location) | |
# Global optimizer state | |
self.energy_state = energy_state | |
# Acceptance parameter | |
self.acceptance_param = acceptance_param | |
# Visiting distribution instance | |
self.visit_dist = visit_dist | |
# Wrapper to objective function | |
self.func_wrapper = func_wrapper | |
# Wrapper to the local minimizer | |
self.minimizer_wrapper = minimizer_wrapper | |
self.not_improved_idx = 0 | |
self.not_improved_max_idx = 1000 | |
self._rand_gen = rand_gen | |
self.temperature_step = 0 | |
self.K = 100 * len(energy_state.current_location) | |
def accept_reject(self, j, e, x_visit): | |
r = self._rand_gen.uniform() | |
pqv_temp = 1.0 - ((1.0 - self.acceptance_param) * | |
(e - self.energy_state.current_energy) / self.temperature_step) | |
if pqv_temp <= 0.: | |
pqv = 0. | |
else: | |
pqv = np.exp(np.log(pqv_temp) / ( | |
1. - self.acceptance_param)) | |
if r <= pqv: | |
# We accept the new location and update state | |
self.energy_state.update_current(e, x_visit) | |
self.xmin = np.copy(self.energy_state.current_location) | |
# No improvement for a long time | |
if self.not_improved_idx >= self.not_improved_max_idx: | |
if j == 0 or self.energy_state.current_energy < self.emin: | |
self.emin = self.energy_state.current_energy | |
self.xmin = np.copy(self.energy_state.current_location) | |
def run(self, step, temperature): | |
self.temperature_step = temperature / float(step + 1) | |
self.not_improved_idx += 1 | |
for j in range(self.energy_state.current_location.size * 2): | |
if j == 0: | |
if step == 0: | |
self.energy_state_improved = True | |
else: | |
self.energy_state_improved = False | |
x_visit = self.visit_dist.visiting( | |
self.energy_state.current_location, j, temperature) | |
# Calling the objective function | |
e = self.func_wrapper.fun(x_visit) | |
if e < self.energy_state.current_energy: | |
# We have got a better energy value | |
self.energy_state.update_current(e, x_visit) | |
if e < self.energy_state.ebest: | |
val = self.energy_state.update_best(e, x_visit, 0) | |
if val is not None: | |
if val: | |
return val | |
self.energy_state_improved = True | |
self.not_improved_idx = 0 | |
else: | |
# We have not improved but do we accept the new location? | |
self.accept_reject(j, e, x_visit) | |
if self.func_wrapper.nfev >= self.func_wrapper.maxfun: | |
return ('Maximum number of function call reached ' | |
'during annealing') | |
# End of StrategyChain loop | |
def local_search(self): | |
# Decision making for performing a local search | |
# based on strategy chain results | |
# If energy has been improved or no improvement since too long, | |
# performing a local search with the best strategy chain location | |
if self.energy_state_improved: | |
# Global energy has improved, let's see if LS improves further | |
e, x = self.minimizer_wrapper.local_search(self.energy_state.xbest, | |
self.energy_state.ebest) | |
if e < self.energy_state.ebest: | |
self.not_improved_idx = 0 | |
val = self.energy_state.update_best(e, x, 1) | |
if val is not None: | |
if val: | |
return val | |
self.energy_state.update_current(e, x) | |
if self.func_wrapper.nfev >= self.func_wrapper.maxfun: | |
return ('Maximum number of function call reached ' | |
'during local search') | |
# Check probability of a need to perform a LS even if no improvement | |
do_ls = False | |
if self.K < 90 * len(self.energy_state.current_location): | |
pls = np.exp(self.K * ( | |
self.energy_state.ebest - self.energy_state.current_energy) / | |
self.temperature_step) | |
if pls >= self._rand_gen.uniform(): | |
do_ls = True | |
# Global energy not improved, let's see what LS gives | |
# on the best strategy chain location | |
if self.not_improved_idx >= self.not_improved_max_idx: | |
do_ls = True | |
if do_ls: | |
e, x = self.minimizer_wrapper.local_search(self.xmin, self.emin) | |
self.xmin = np.copy(x) | |
self.emin = e | |
self.not_improved_idx = 0 | |
self.not_improved_max_idx = self.energy_state.current_location.size | |
if e < self.energy_state.ebest: | |
val = self.energy_state.update_best( | |
self.emin, self.xmin, 2) | |
if val is not None: | |
if val: | |
return val | |
self.energy_state.update_current(e, x) | |
if self.func_wrapper.nfev >= self.func_wrapper.maxfun: | |
return ('Maximum number of function call reached ' | |
'during dual annealing') | |
class ObjectiveFunWrapper: | |
def __init__(self, func, maxfun=1e7, *args): | |
self.func = func | |
self.args = args | |
# Number of objective function evaluations | |
self.nfev = 0 | |
# Number of gradient function evaluation if used | |
self.ngev = 0 | |
# Number of hessian of the objective function if used | |
self.nhev = 0 | |
self.maxfun = maxfun | |
def fun(self, x): | |
self.nfev += 1 | |
return self.func(x, *self.args) | |
class LocalSearchWrapper: | |
""" | |
Class used to wrap around the minimizer used for local search | |
Default local minimizer is SciPy minimizer L-BFGS-B | |
""" | |
LS_MAXITER_RATIO = 6 | |
LS_MAXITER_MIN = 100 | |
LS_MAXITER_MAX = 1000 | |
def __init__(self, search_bounds, func_wrapper, *args, **kwargs): | |
self.func_wrapper = func_wrapper | |
self.kwargs = kwargs | |
self.jac = self.kwargs.get('jac', None) | |
self.minimizer = minimize | |
bounds_list = list(zip(*search_bounds)) | |
self.lower = np.array(bounds_list[0]) | |
self.upper = np.array(bounds_list[1]) | |
# If no minimizer specified, use SciPy minimize with 'L-BFGS-B' method | |
if not self.kwargs: | |
n = len(self.lower) | |
ls_max_iter = min(max(n * self.LS_MAXITER_RATIO, | |
self.LS_MAXITER_MIN), | |
self.LS_MAXITER_MAX) | |
self.kwargs['method'] = 'L-BFGS-B' | |
self.kwargs['options'] = { | |
'maxiter': ls_max_iter, | |
} | |
self.kwargs['bounds'] = list(zip(self.lower, self.upper)) | |
elif callable(self.jac): | |
def wrapped_jac(x): | |
return self.jac(x, *args) | |
self.kwargs['jac'] = wrapped_jac | |
def local_search(self, x, e): | |
# Run local search from the given x location where energy value is e | |
x_tmp = np.copy(x) | |
mres = self.minimizer(self.func_wrapper.fun, x, **self.kwargs) | |
if 'njev' in mres: | |
self.func_wrapper.ngev += mres.njev | |
if 'nhev' in mres: | |
self.func_wrapper.nhev += mres.nhev | |
# Check if is valid value | |
is_finite = np.all(np.isfinite(mres.x)) and np.isfinite(mres.fun) | |
in_bounds = np.all(mres.x >= self.lower) and np.all( | |
mres.x <= self.upper) | |
is_valid = is_finite and in_bounds | |
# Use the new point only if it is valid and return a better results | |
if is_valid and mres.fun < e: | |
return mres.fun, mres.x | |
else: | |
return e, x_tmp | |
def dual_annealing(func, bounds, args=(), maxiter=1000, | |
minimizer_kwargs=None, initial_temp=5230., | |
restart_temp_ratio=2.e-5, visit=2.62, accept=-5.0, | |
maxfun=1e7, seed=None, no_local_search=False, | |
callback=None, x0=None): | |
""" | |
Find the global minimum of a function using Dual Annealing. | |
Parameters | |
---------- | |
func : callable | |
The objective function to be minimized. Must be in the form | |
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array | |
and ``args`` is a tuple of any additional fixed parameters needed to | |
completely specify the function. | |
bounds : sequence or `Bounds` | |
Bounds for variables. There are two ways to specify the bounds: | |
1. Instance of `Bounds` class. | |
2. Sequence of ``(min, max)`` pairs for each element in `x`. | |
args : tuple, optional | |
Any additional fixed parameters needed to completely specify the | |
objective function. | |
maxiter : int, optional | |
The maximum number of global search iterations. Default value is 1000. | |
minimizer_kwargs : dict, optional | |
Extra keyword arguments to be passed to the local minimizer | |
(`minimize`). Some important options could be: | |
``method`` for the minimizer method to use and ``args`` for | |
objective function additional arguments. | |
initial_temp : float, optional | |
The initial temperature, use higher values to facilitates a wider | |
search of the energy landscape, allowing dual_annealing to escape | |
local minima that it is trapped in. Default value is 5230. Range is | |
(0.01, 5.e4]. | |
restart_temp_ratio : float, optional | |
During the annealing process, temperature is decreasing, when it | |
reaches ``initial_temp * restart_temp_ratio``, the reannealing process | |
is triggered. Default value of the ratio is 2e-5. Range is (0, 1). | |
visit : float, optional | |
Parameter for visiting distribution. Default value is 2.62. Higher | |
values give the visiting distribution a heavier tail, this makes | |
the algorithm jump to a more distant region. The value range is (1, 3]. | |
accept : float, optional | |
Parameter for acceptance distribution. It is used to control the | |
probability of acceptance. The lower the acceptance parameter, the | |
smaller the probability of acceptance. Default value is -5.0 with | |
a range (-1e4, -5]. | |
maxfun : int, optional | |
Soft limit for the number of objective function calls. If the | |
algorithm is in the middle of a local search, this number will be | |
exceeded, the algorithm will stop just after the local search is | |
done. Default value is 1e7. | |
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional | |
If `seed` is None (or `np.random`), the `numpy.random.RandomState` | |
singleton is used. | |
If `seed` is an int, a new ``RandomState`` instance is used, | |
seeded with `seed`. | |
If `seed` is already a ``Generator`` or ``RandomState`` instance then | |
that instance is used. | |
Specify `seed` for repeatable minimizations. The random numbers | |
generated with this seed only affect the visiting distribution function | |
and new coordinates generation. | |
no_local_search : bool, optional | |
If `no_local_search` is set to True, a traditional Generalized | |
Simulated Annealing will be performed with no local search | |
strategy applied. | |
callback : callable, optional | |
A callback function with signature ``callback(x, f, context)``, | |
which will be called for all minima found. | |
``x`` and ``f`` are the coordinates and function value of the | |
latest minimum found, and ``context`` has value in [0, 1, 2], with the | |
following meaning: | |
- 0: minimum detected in the annealing process. | |
- 1: detection occurred in the local search process. | |
- 2: detection done in the dual annealing process. | |
If the callback implementation returns True, the algorithm will stop. | |
x0 : ndarray, shape(n,), optional | |
Coordinates of a single N-D starting point. | |
Returns | |
------- | |
res : OptimizeResult | |
The optimization result represented as a `OptimizeResult` object. | |
Important attributes are: ``x`` the solution array, ``fun`` the value | |
of the function at the solution, and ``message`` which describes the | |
cause of the termination. | |
See `OptimizeResult` for a description of other attributes. | |
Notes | |
----- | |
This function implements the Dual Annealing optimization. This stochastic | |
approach derived from [3]_ combines the generalization of CSA (Classical | |
Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled | |
to a strategy for applying a local search on accepted locations [4]_. | |
An alternative implementation of this same algorithm is described in [5]_ | |
and benchmarks are presented in [6]_. This approach introduces an advanced | |
method to refine the solution found by the generalized annealing | |
process. This algorithm uses a distorted Cauchy-Lorentz visiting | |
distribution, with its shape controlled by the parameter :math:`q_{v}` | |
.. math:: | |
g_{q_{v}}(\\Delta x(t)) \\propto \\frac{ \\ | |
\\left[T_{q_{v}}(t) \\right]^{-\\frac{D}{3-q_{v}}}}{ \\ | |
\\left[{1+(q_{v}-1)\\frac{(\\Delta x(t))^{2}} { \\ | |
\\left[T_{q_{v}}(t)\\right]^{\\frac{2}{3-q_{v}}}}}\\right]^{ \\ | |
\\frac{1}{q_{v}-1}+\\frac{D-1}{2}}} | |
Where :math:`t` is the artificial time. This visiting distribution is used | |
to generate a trial jump distance :math:`\\Delta x(t)` of variable | |
:math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`. | |
From the starting point, after calling the visiting distribution | |
function, the acceptance probability is computed as follows: | |
.. math:: | |
p_{q_{a}} = \\min{\\{1,\\left[1-(1-q_{a}) \\beta \\Delta E \\right]^{ \\ | |
\\frac{1}{1-q_{a}}}\\}} | |
Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero | |
acceptance probability is assigned to the cases where | |
.. math:: | |
[1-(1-q_{a}) \\beta \\Delta E] < 0 | |
The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to | |
.. math:: | |
T_{q_{v}}(t) = T_{q_{v}}(1) \\frac{2^{q_{v}-1}-1}{\\left( \\ | |
1 + t\\right)^{q_{v}-1}-1} | |
Where :math:`q_{v}` is the visiting parameter. | |
.. versionadded:: 1.2.0 | |
References | |
---------- | |
.. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs | |
statistics. Journal of Statistical Physics, 52, 479-487 (1998). | |
.. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing. | |
Physica A, 233, 395-406 (1996). | |
.. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated | |
Annealing Algorithm and Its Application to the Thomson Model. | |
Physics Letters A, 233, 216-220 (1997). | |
.. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated | |
Annealing. Physical Review E, 62, 4473 (2000). | |
.. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized | |
Simulated Annealing for Efficient Global Optimization: the GenSA | |
Package for R. The R Journal, Volume 5/1 (2013). | |
.. [6] Mullen, K. Continuous Global Optimization in R. Journal of | |
Statistical Software, 60(6), 1 - 45, (2014). | |
:doi:`10.18637/jss.v060.i06` | |
Examples | |
-------- | |
The following example is a 10-D problem, with many local minima. | |
The function involved is called Rastrigin | |
(https://en.wikipedia.org/wiki/Rastrigin_function) | |
>>> import numpy as np | |
>>> from scipy.optimize import dual_annealing | |
>>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x) | |
>>> lw = [-5.12] * 10 | |
>>> up = [5.12] * 10 | |
>>> ret = dual_annealing(func, bounds=list(zip(lw, up))) | |
>>> ret.x | |
array([-4.26437714e-09, -3.91699361e-09, -1.86149218e-09, -3.97165720e-09, | |
-6.29151648e-09, -6.53145322e-09, -3.93616815e-09, -6.55623025e-09, | |
-6.05775280e-09, -5.00668935e-09]) # random | |
>>> ret.fun | |
0.000000 | |
""" | |
if isinstance(bounds, Bounds): | |
bounds = new_bounds_to_old(bounds.lb, bounds.ub, len(bounds.lb)) | |
if x0 is not None and not len(x0) == len(bounds): | |
raise ValueError('Bounds size does not match x0') | |
lu = list(zip(*bounds)) | |
lower = np.array(lu[0]) | |
upper = np.array(lu[1]) | |
# Check that restart temperature ratio is correct | |
if restart_temp_ratio <= 0. or restart_temp_ratio >= 1.: | |
raise ValueError('Restart temperature ratio has to be in range (0, 1)') | |
# Checking bounds are valid | |
if (np.any(np.isinf(lower)) or np.any(np.isinf(upper)) or np.any( | |
np.isnan(lower)) or np.any(np.isnan(upper))): | |
raise ValueError('Some bounds values are inf values or nan values') | |
# Checking that bounds are consistent | |
if not np.all(lower < upper): | |
raise ValueError('Bounds are not consistent min < max') | |
# Checking that bounds are the same length | |
if not len(lower) == len(upper): | |
raise ValueError('Bounds do not have the same dimensions') | |
# Wrapper for the objective function | |
func_wrapper = ObjectiveFunWrapper(func, maxfun, *args) | |
# minimizer_kwargs has to be a dict, not None | |
minimizer_kwargs = minimizer_kwargs or {} | |
minimizer_wrapper = LocalSearchWrapper( | |
bounds, func_wrapper, *args, **minimizer_kwargs) | |
# Initialization of random Generator for reproducible runs if seed provided | |
rand_state = check_random_state(seed) | |
# Initialization of the energy state | |
energy_state = EnergyState(lower, upper, callback) | |
energy_state.reset(func_wrapper, rand_state, x0) | |
# Minimum value of annealing temperature reached to perform | |
# re-annealing | |
temperature_restart = initial_temp * restart_temp_ratio | |
# VisitingDistribution instance | |
visit_dist = VisitingDistribution(lower, upper, visit, rand_state) | |
# Strategy chain instance | |
strategy_chain = StrategyChain(accept, visit_dist, func_wrapper, | |
minimizer_wrapper, rand_state, energy_state) | |
need_to_stop = False | |
iteration = 0 | |
message = [] | |
# OptimizeResult object to be returned | |
optimize_res = OptimizeResult() | |
optimize_res.success = True | |
optimize_res.status = 0 | |
t1 = np.exp((visit - 1) * np.log(2.0)) - 1.0 | |
# Run the search loop | |
while not need_to_stop: | |
for i in range(maxiter): | |
# Compute temperature for this step | |
s = float(i) + 2.0 | |
t2 = np.exp((visit - 1) * np.log(s)) - 1.0 | |
temperature = initial_temp * t1 / t2 | |
if iteration >= maxiter: | |
message.append("Maximum number of iteration reached") | |
need_to_stop = True | |
break | |
# Need a re-annealing process? | |
if temperature < temperature_restart: | |
energy_state.reset(func_wrapper, rand_state) | |
break | |
# starting strategy chain | |
val = strategy_chain.run(i, temperature) | |
if val is not None: | |
message.append(val) | |
need_to_stop = True | |
optimize_res.success = False | |
break | |
# Possible local search at the end of the strategy chain | |
if not no_local_search: | |
val = strategy_chain.local_search() | |
if val is not None: | |
message.append(val) | |
need_to_stop = True | |
optimize_res.success = False | |
break | |
iteration += 1 | |
# Setting the OptimizeResult values | |
optimize_res.x = energy_state.xbest | |
optimize_res.fun = energy_state.ebest | |
optimize_res.nit = iteration | |
optimize_res.nfev = func_wrapper.nfev | |
optimize_res.njev = func_wrapper.ngev | |
optimize_res.nhev = func_wrapper.nhev | |
optimize_res.message = message | |
return optimize_res | |