peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/_arraytools.py
""" | |
Functions for acting on a axis of an array. | |
""" | |
import numpy as np | |
def axis_slice(a, start=None, stop=None, step=None, axis=-1): | |
"""Take a slice along axis 'axis' from 'a'. | |
Parameters | |
---------- | |
a : numpy.ndarray | |
The array to be sliced. | |
start, stop, step : int or None | |
The slice parameters. | |
axis : int, optional | |
The axis of `a` to be sliced. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.signal._arraytools import axis_slice | |
>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
>>> axis_slice(a, start=0, stop=1, axis=1) | |
array([[1], | |
[4], | |
[7]]) | |
>>> axis_slice(a, start=1, axis=0) | |
array([[4, 5, 6], | |
[7, 8, 9]]) | |
Notes | |
----- | |
The keyword arguments start, stop and step are used by calling | |
slice(start, stop, step). This implies axis_slice() does not | |
handle its arguments the exactly the same as indexing. To select | |
a single index k, for example, use | |
axis_slice(a, start=k, stop=k+1) | |
In this case, the length of the axis 'axis' in the result will | |
be 1; the trivial dimension is not removed. (Use numpy.squeeze() | |
to remove trivial axes.) | |
""" | |
a_slice = [slice(None)] * a.ndim | |
a_slice[axis] = slice(start, stop, step) | |
b = a[tuple(a_slice)] | |
return b | |
def axis_reverse(a, axis=-1): | |
"""Reverse the 1-D slices of `a` along axis `axis`. | |
Returns axis_slice(a, step=-1, axis=axis). | |
""" | |
return axis_slice(a, step=-1, axis=axis) | |
def odd_ext(x, n, axis=-1): | |
""" | |
Odd extension at the boundaries of an array | |
Generate a new ndarray by making an odd extension of `x` along an axis. | |
Parameters | |
---------- | |
x : ndarray | |
The array to be extended. | |
n : int | |
The number of elements by which to extend `x` at each end of the axis. | |
axis : int, optional | |
The axis along which to extend `x`. Default is -1. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.signal._arraytools import odd_ext | |
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) | |
>>> odd_ext(a, 2) | |
array([[-1, 0, 1, 2, 3, 4, 5, 6, 7], | |
[-4, -1, 0, 1, 4, 9, 16, 23, 28]]) | |
Odd extension is a "180 degree rotation" at the endpoints of the original | |
array: | |
>>> t = np.linspace(0, 1.5, 100) | |
>>> a = 0.9 * np.sin(2 * np.pi * t**2) | |
>>> b = odd_ext(a, 40) | |
>>> import matplotlib.pyplot as plt | |
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='odd extension') | |
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
if n < 1: | |
return x | |
if n > x.shape[axis] - 1: | |
raise ValueError(("The extension length n (%d) is too big. " + | |
"It must not exceed x.shape[axis]-1, which is %d.") | |
% (n, x.shape[axis] - 1)) | |
left_end = axis_slice(x, start=0, stop=1, axis=axis) | |
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis) | |
right_end = axis_slice(x, start=-1, axis=axis) | |
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis) | |
ext = np.concatenate((2 * left_end - left_ext, | |
x, | |
2 * right_end - right_ext), | |
axis=axis) | |
return ext | |
def even_ext(x, n, axis=-1): | |
""" | |
Even extension at the boundaries of an array | |
Generate a new ndarray by making an even extension of `x` along an axis. | |
Parameters | |
---------- | |
x : ndarray | |
The array to be extended. | |
n : int | |
The number of elements by which to extend `x` at each end of the axis. | |
axis : int, optional | |
The axis along which to extend `x`. Default is -1. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.signal._arraytools import even_ext | |
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) | |
>>> even_ext(a, 2) | |
array([[ 3, 2, 1, 2, 3, 4, 5, 4, 3], | |
[ 4, 1, 0, 1, 4, 9, 16, 9, 4]]) | |
Even extension is a "mirror image" at the boundaries of the original array: | |
>>> t = np.linspace(0, 1.5, 100) | |
>>> a = 0.9 * np.sin(2 * np.pi * t**2) | |
>>> b = even_ext(a, 40) | |
>>> import matplotlib.pyplot as plt | |
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='even extension') | |
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
if n < 1: | |
return x | |
if n > x.shape[axis] - 1: | |
raise ValueError(("The extension length n (%d) is too big. " + | |
"It must not exceed x.shape[axis]-1, which is %d.") | |
% (n, x.shape[axis] - 1)) | |
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis) | |
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis) | |
ext = np.concatenate((left_ext, | |
x, | |
right_ext), | |
axis=axis) | |
return ext | |
def const_ext(x, n, axis=-1): | |
""" | |
Constant extension at the boundaries of an array | |
Generate a new ndarray that is a constant extension of `x` along an axis. | |
The extension repeats the values at the first and last element of | |
the axis. | |
Parameters | |
---------- | |
x : ndarray | |
The array to be extended. | |
n : int | |
The number of elements by which to extend `x` at each end of the axis. | |
axis : int, optional | |
The axis along which to extend `x`. Default is -1. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.signal._arraytools import const_ext | |
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) | |
>>> const_ext(a, 2) | |
array([[ 1, 1, 1, 2, 3, 4, 5, 5, 5], | |
[ 0, 0, 0, 1, 4, 9, 16, 16, 16]]) | |
Constant extension continues with the same values as the endpoints of the | |
array: | |
>>> t = np.linspace(0, 1.5, 100) | |
>>> a = 0.9 * np.sin(2 * np.pi * t**2) | |
>>> b = const_ext(a, 40) | |
>>> import matplotlib.pyplot as plt | |
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='constant extension') | |
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original') | |
>>> plt.legend(loc='best') | |
>>> plt.show() | |
""" | |
if n < 1: | |
return x | |
left_end = axis_slice(x, start=0, stop=1, axis=axis) | |
ones_shape = [1] * x.ndim | |
ones_shape[axis] = n | |
ones = np.ones(ones_shape, dtype=x.dtype) | |
left_ext = ones * left_end | |
right_end = axis_slice(x, start=-1, axis=axis) | |
right_ext = ones * right_end | |
ext = np.concatenate((left_ext, | |
x, | |
right_ext), | |
axis=axis) | |
return ext | |
def zero_ext(x, n, axis=-1): | |
""" | |
Zero padding at the boundaries of an array | |
Generate a new ndarray that is a zero-padded extension of `x` along | |
an axis. | |
Parameters | |
---------- | |
x : ndarray | |
The array to be extended. | |
n : int | |
The number of elements by which to extend `x` at each end of the | |
axis. | |
axis : int, optional | |
The axis along which to extend `x`. Default is -1. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.signal._arraytools import zero_ext | |
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) | |
>>> zero_ext(a, 2) | |
array([[ 0, 0, 1, 2, 3, 4, 5, 0, 0], | |
[ 0, 0, 0, 1, 4, 9, 16, 0, 0]]) | |
""" | |
if n < 1: | |
return x | |
zeros_shape = list(x.shape) | |
zeros_shape[axis] = n | |
zeros = np.zeros(zeros_shape, dtype=x.dtype) | |
ext = np.concatenate((zeros, x, zeros), axis=axis) | |
return ext | |
def _validate_fs(fs, allow_none=True): | |
""" | |
Check if the given sampling frequency is a scalar and raises an exception | |
otherwise. If allow_none is False, also raises an exception for none | |
sampling rates. Returns the sampling frequency as float or none if the | |
input is none. | |
""" | |
if fs is None: | |
if not allow_none: | |
raise ValueError("Sampling frequency can not be none.") | |
else: # should be float | |
if not np.isscalar(fs): | |
raise ValueError("Sampling frequency fs must be a single scalar.") | |
fs = float(fs) | |
return fs | |