peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_compressed.py
"""Base class for sparse matrix formats using compressed storage.""" | |
__all__ = [] | |
from warnings import warn | |
import operator | |
import numpy as np | |
from scipy._lib._util import _prune_array, copy_if_needed | |
from ._base import _spbase, issparse, SparseEfficiencyWarning | |
from ._data import _data_matrix, _minmax_mixin | |
from . import _sparsetools | |
from ._sparsetools import (get_csr_submatrix, csr_sample_offsets, csr_todense, | |
csr_sample_values, csr_row_index, csr_row_slice, | |
csr_column_index1, csr_column_index2) | |
from ._index import IndexMixin | |
from ._sputils import (upcast, upcast_char, to_native, isdense, isshape, | |
getdtype, isscalarlike, isintlike, downcast_intp_index, | |
get_sum_dtype, check_shape, is_pydata_spmatrix) | |
class _cs_matrix(_data_matrix, _minmax_mixin, IndexMixin): | |
""" | |
base array/matrix class for compressed row- and column-oriented arrays/matrices | |
""" | |
def __init__(self, arg1, shape=None, dtype=None, copy=False): | |
_data_matrix.__init__(self) | |
if issparse(arg1): | |
if arg1.format == self.format and copy: | |
arg1 = arg1.copy() | |
else: | |
arg1 = arg1.asformat(self.format) | |
self.indptr, self.indices, self.data, self._shape = ( | |
arg1.indptr, arg1.indices, arg1.data, arg1._shape | |
) | |
elif isinstance(arg1, tuple): | |
if isshape(arg1): | |
# It's a tuple of matrix dimensions (M, N) | |
# create empty matrix | |
self._shape = check_shape(arg1) | |
M, N = self.shape | |
# Select index dtype large enough to pass array and | |
# scalar parameters to sparsetools | |
idx_dtype = self._get_index_dtype(maxval=max(M, N)) | |
self.data = np.zeros(0, getdtype(dtype, default=float)) | |
self.indices = np.zeros(0, idx_dtype) | |
self.indptr = np.zeros(self._swap((M, N))[0] + 1, | |
dtype=idx_dtype) | |
else: | |
if len(arg1) == 2: | |
# (data, ij) format | |
coo = self._coo_container(arg1, shape=shape, dtype=dtype) | |
arrays = coo._coo_to_compressed(self._swap) | |
self.indptr, self.indices, self.data, self._shape = arrays | |
elif len(arg1) == 3: | |
# (data, indices, indptr) format | |
(data, indices, indptr) = arg1 | |
# Select index dtype large enough to pass array and | |
# scalar parameters to sparsetools | |
maxval = None | |
if shape is not None: | |
maxval = max(shape) | |
idx_dtype = self._get_index_dtype((indices, indptr), | |
maxval=maxval, | |
check_contents=True) | |
if not copy: | |
copy = copy_if_needed | |
self.indices = np.array(indices, copy=copy, dtype=idx_dtype) | |
self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype) | |
self.data = np.array(data, copy=copy, dtype=dtype) | |
else: | |
raise ValueError(f"unrecognized {self.format}_matrix " | |
"constructor usage") | |
else: | |
# must be dense | |
try: | |
arg1 = np.asarray(arg1) | |
except Exception as e: | |
msg = f"unrecognized {self.format}_matrix constructor usage" | |
raise ValueError(msg) from e | |
coo = self._coo_container(arg1, dtype=dtype) | |
arrays = coo._coo_to_compressed(self._swap) | |
self.indptr, self.indices, self.data, self._shape = arrays | |
# Read matrix dimensions given, if any | |
if shape is not None: | |
self._shape = check_shape(shape) | |
else: | |
if self.shape is None: | |
# shape not already set, try to infer dimensions | |
try: | |
major_dim = len(self.indptr) - 1 | |
minor_dim = self.indices.max() + 1 | |
except Exception as e: | |
raise ValueError('unable to infer matrix dimensions') from e | |
else: | |
self._shape = check_shape(self._swap((major_dim, minor_dim))) | |
if dtype is not None: | |
self.data = self.data.astype(dtype, copy=False) | |
self.check_format(full_check=False) | |
def _getnnz(self, axis=None): | |
if axis is None: | |
return int(self.indptr[-1]) | |
else: | |
if axis < 0: | |
axis += 2 | |
axis, _ = self._swap((axis, 1 - axis)) | |
_, N = self._swap(self.shape) | |
if axis == 0: | |
return np.bincount(downcast_intp_index(self.indices), | |
minlength=N) | |
elif axis == 1: | |
return np.diff(self.indptr) | |
raise ValueError('axis out of bounds') | |
_getnnz.__doc__ = _spbase._getnnz.__doc__ | |
def check_format(self, full_check=True): | |
"""Check whether the array/matrix respects the CSR or CSC format. | |
Parameters | |
---------- | |
full_check : bool, optional | |
If `True`, run rigorous check, scanning arrays for valid values. | |
Note that activating those check might copy arrays for casting, | |
modifying indices and index pointers' inplace. | |
If `False`, run basic checks on attributes. O(1) operations. | |
Default is `True`. | |
""" | |
# use _swap to determine proper bounds | |
major_name, minor_name = self._swap(('row', 'column')) | |
major_dim, minor_dim = self._swap(self.shape) | |
# index arrays should have integer data types | |
if self.indptr.dtype.kind != 'i': | |
warn(f"indptr array has non-integer dtype ({self.indptr.dtype.name})", | |
stacklevel=3) | |
if self.indices.dtype.kind != 'i': | |
warn(f"indices array has non-integer dtype ({self.indices.dtype.name})", | |
stacklevel=3) | |
# check array shapes | |
for x in [self.data.ndim, self.indices.ndim, self.indptr.ndim]: | |
if x != 1: | |
raise ValueError('data, indices, and indptr should be 1-D') | |
# check index pointer | |
if (len(self.indptr) != major_dim + 1): | |
raise ValueError("index pointer size ({}) should be ({})" | |
"".format(len(self.indptr), major_dim + 1)) | |
if (self.indptr[0] != 0): | |
raise ValueError("index pointer should start with 0") | |
# check index and data arrays | |
if (len(self.indices) != len(self.data)): | |
raise ValueError("indices and data should have the same size") | |
if (self.indptr[-1] > len(self.indices)): | |
raise ValueError("Last value of index pointer should be less than " | |
"the size of index and data arrays") | |
self.prune() | |
if full_check: | |
# check format validity (more expensive) | |
if self.nnz > 0: | |
if self.indices.max() >= minor_dim: | |
raise ValueError(f"{minor_name} index values must be < {minor_dim}") | |
if self.indices.min() < 0: | |
raise ValueError(f"{minor_name} index values must be >= 0") | |
if np.diff(self.indptr).min() < 0: | |
raise ValueError("index pointer values must form a " | |
"non-decreasing sequence") | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices)) | |
self.indptr = np.asarray(self.indptr, dtype=idx_dtype) | |
self.indices = np.asarray(self.indices, dtype=idx_dtype) | |
self.data = to_native(self.data) | |
# if not self.has_sorted_indices(): | |
# warn('Indices were not in sorted order. Sorting indices.') | |
# self.sort_indices() | |
# assert(self.has_sorted_indices()) | |
# TODO check for duplicates? | |
####################### | |
# Boolean comparisons # | |
####################### | |
def _scalar_binopt(self, other, op): | |
"""Scalar version of self._binopt, for cases in which no new nonzeros | |
are added. Produces a new sparse array in canonical form. | |
""" | |
self.sum_duplicates() | |
res = self._with_data(op(self.data, other), copy=True) | |
res.eliminate_zeros() | |
return res | |
def __eq__(self, other): | |
# Scalar other. | |
if isscalarlike(other): | |
if np.isnan(other): | |
return self.__class__(self.shape, dtype=np.bool_) | |
if other == 0: | |
warn("Comparing a sparse matrix with 0 using == is inefficient" | |
", try using != instead.", SparseEfficiencyWarning, | |
stacklevel=3) | |
all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) | |
inv = self._scalar_binopt(other, operator.ne) | |
return all_true - inv | |
else: | |
return self._scalar_binopt(other, operator.eq) | |
# Dense other. | |
elif isdense(other): | |
return self.todense() == other | |
# Pydata sparse other. | |
elif is_pydata_spmatrix(other): | |
return NotImplemented | |
# Sparse other. | |
elif issparse(other): | |
warn("Comparing sparse matrices using == is inefficient, try using" | |
" != instead.", SparseEfficiencyWarning, stacklevel=3) | |
# TODO sparse broadcasting | |
if self.shape != other.shape: | |
return False | |
elif self.format != other.format: | |
other = other.asformat(self.format) | |
res = self._binopt(other, '_ne_') | |
all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) | |
return all_true - res | |
else: | |
return NotImplemented | |
def __ne__(self, other): | |
# Scalar other. | |
if isscalarlike(other): | |
if np.isnan(other): | |
warn("Comparing a sparse matrix with nan using != is" | |
" inefficient", SparseEfficiencyWarning, stacklevel=3) | |
all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) | |
return all_true | |
elif other != 0: | |
warn("Comparing a sparse matrix with a nonzero scalar using !=" | |
" is inefficient, try using == instead.", | |
SparseEfficiencyWarning, stacklevel=3) | |
all_true = self.__class__(np.ones(self.shape), dtype=np.bool_) | |
inv = self._scalar_binopt(other, operator.eq) | |
return all_true - inv | |
else: | |
return self._scalar_binopt(other, operator.ne) | |
# Dense other. | |
elif isdense(other): | |
return self.todense() != other | |
# Pydata sparse other. | |
elif is_pydata_spmatrix(other): | |
return NotImplemented | |
# Sparse other. | |
elif issparse(other): | |
# TODO sparse broadcasting | |
if self.shape != other.shape: | |
return True | |
elif self.format != other.format: | |
other = other.asformat(self.format) | |
return self._binopt(other, '_ne_') | |
else: | |
return NotImplemented | |
def _inequality(self, other, op, op_name, bad_scalar_msg): | |
# Scalar other. | |
if isscalarlike(other): | |
if 0 == other and op_name in ('_le_', '_ge_'): | |
raise NotImplementedError(" >= and <= don't work with 0.") | |
elif op(0, other): | |
warn(bad_scalar_msg, SparseEfficiencyWarning, stacklevel=3) | |
other_arr = np.empty(self.shape, dtype=np.result_type(other)) | |
other_arr.fill(other) | |
other_arr = self.__class__(other_arr) | |
return self._binopt(other_arr, op_name) | |
else: | |
return self._scalar_binopt(other, op) | |
# Dense other. | |
elif isdense(other): | |
return op(self.todense(), other) | |
# Sparse other. | |
elif issparse(other): | |
# TODO sparse broadcasting | |
if self.shape != other.shape: | |
raise ValueError("inconsistent shapes") | |
elif self.format != other.format: | |
other = other.asformat(self.format) | |
if op_name not in ('_ge_', '_le_'): | |
return self._binopt(other, op_name) | |
warn("Comparing sparse matrices using >= and <= is inefficient, " | |
"using <, >, or !=, instead.", | |
SparseEfficiencyWarning, stacklevel=3) | |
all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) | |
res = self._binopt(other, '_gt_' if op_name == '_le_' else '_lt_') | |
return all_true - res | |
else: | |
return NotImplemented | |
def __lt__(self, other): | |
return self._inequality(other, operator.lt, '_lt_', | |
"Comparing a sparse matrix with a scalar " | |
"greater than zero using < is inefficient, " | |
"try using >= instead.") | |
def __gt__(self, other): | |
return self._inequality(other, operator.gt, '_gt_', | |
"Comparing a sparse matrix with a scalar " | |
"less than zero using > is inefficient, " | |
"try using <= instead.") | |
def __le__(self, other): | |
return self._inequality(other, operator.le, '_le_', | |
"Comparing a sparse matrix with a scalar " | |
"greater than zero using <= is inefficient, " | |
"try using > instead.") | |
def __ge__(self, other): | |
return self._inequality(other, operator.ge, '_ge_', | |
"Comparing a sparse matrix with a scalar " | |
"less than zero using >= is inefficient, " | |
"try using < instead.") | |
################################# | |
# Arithmetic operator overrides # | |
################################# | |
def _add_dense(self, other): | |
if other.shape != self.shape: | |
raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})') | |
dtype = upcast_char(self.dtype.char, other.dtype.char) | |
order = self._swap('CF')[0] | |
result = np.array(other, dtype=dtype, order=order, copy=True) | |
M, N = self._swap(self.shape) | |
y = result if result.flags.c_contiguous else result.T | |
csr_todense(M, N, self.indptr, self.indices, self.data, y) | |
return self._container(result, copy=False) | |
def _add_sparse(self, other): | |
return self._binopt(other, '_plus_') | |
def _sub_sparse(self, other): | |
return self._binopt(other, '_minus_') | |
def multiply(self, other): | |
"""Point-wise multiplication by another array/matrix, vector, or | |
scalar. | |
""" | |
# Scalar multiplication. | |
if isscalarlike(other): | |
return self._mul_scalar(other) | |
# Sparse matrix or vector. | |
if issparse(other): | |
if self.shape == other.shape: | |
other = self.__class__(other) | |
return self._binopt(other, '_elmul_') | |
if other.ndim == 1: | |
raise TypeError("broadcast from a 1d array not yet supported") | |
# Single element. | |
elif other.shape == (1, 1): | |
return self._mul_scalar(other.toarray()[0, 0]) | |
elif self.shape == (1, 1): | |
return other._mul_scalar(self.toarray()[0, 0]) | |
# A row times a column. | |
elif self.shape[1] == 1 and other.shape[0] == 1: | |
return self._matmul_sparse(other.tocsc()) | |
elif self.shape[0] == 1 and other.shape[1] == 1: | |
return other._matmul_sparse(self.tocsc()) | |
# Row vector times matrix. other is a row. | |
elif other.shape[0] == 1 and self.shape[1] == other.shape[1]: | |
other = self._dia_container( | |
(other.toarray().ravel(), [0]), | |
shape=(other.shape[1], other.shape[1]) | |
) | |
return self._matmul_sparse(other) | |
# self is a row. | |
elif self.shape[0] == 1 and self.shape[1] == other.shape[1]: | |
copy = self._dia_container( | |
(self.toarray().ravel(), [0]), | |
shape=(self.shape[1], self.shape[1]) | |
) | |
return other._matmul_sparse(copy) | |
# Column vector times matrix. other is a column. | |
elif other.shape[1] == 1 and self.shape[0] == other.shape[0]: | |
other = self._dia_container( | |
(other.toarray().ravel(), [0]), | |
shape=(other.shape[0], other.shape[0]) | |
) | |
return other._matmul_sparse(self) | |
# self is a column. | |
elif self.shape[1] == 1 and self.shape[0] == other.shape[0]: | |
copy = self._dia_container( | |
(self.toarray().ravel(), [0]), | |
shape=(self.shape[0], self.shape[0]) | |
) | |
return copy._matmul_sparse(other) | |
else: | |
raise ValueError("inconsistent shapes") | |
# Assume other is a dense matrix/array, which produces a single-item | |
# object array if other isn't convertible to ndarray. | |
other = np.atleast_2d(other) | |
if other.ndim != 2: | |
return np.multiply(self.toarray(), other) | |
# Single element / wrapped object. | |
if other.size == 1: | |
if other.dtype == np.object_: | |
# 'other' not convertible to ndarray. | |
return NotImplemented | |
return self._mul_scalar(other.flat[0]) | |
# Fast case for trivial sparse matrix. | |
elif self.shape == (1, 1): | |
return np.multiply(self.toarray()[0, 0], other) | |
ret = self.tocoo() | |
# Matching shapes. | |
if self.shape == other.shape: | |
data = np.multiply(ret.data, other[ret.row, ret.col]) | |
# Sparse row vector times... | |
elif self.shape[0] == 1: | |
if other.shape[1] == 1: # Dense column vector. | |
data = np.multiply(ret.data, other) | |
elif other.shape[1] == self.shape[1]: # Dense matrix. | |
data = np.multiply(ret.data, other[:, ret.col]) | |
else: | |
raise ValueError("inconsistent shapes") | |
row = np.repeat(np.arange(other.shape[0]), len(ret.row)) | |
col = np.tile(ret.col, other.shape[0]) | |
return self._coo_container( | |
(data.view(np.ndarray).ravel(), (row, col)), | |
shape=(other.shape[0], self.shape[1]), | |
copy=False | |
) | |
# Sparse column vector times... | |
elif self.shape[1] == 1: | |
if other.shape[0] == 1: # Dense row vector. | |
data = np.multiply(ret.data[:, None], other) | |
elif other.shape[0] == self.shape[0]: # Dense matrix. | |
data = np.multiply(ret.data[:, None], other[ret.row]) | |
else: | |
raise ValueError("inconsistent shapes") | |
row = np.repeat(ret.row, other.shape[1]) | |
col = np.tile(np.arange(other.shape[1]), len(ret.col)) | |
return self._coo_container( | |
(data.view(np.ndarray).ravel(), (row, col)), | |
shape=(self.shape[0], other.shape[1]), | |
copy=False | |
) | |
# Sparse matrix times dense row vector. | |
elif other.shape[0] == 1 and self.shape[1] == other.shape[1]: | |
data = np.multiply(ret.data, other[:, ret.col].ravel()) | |
# Sparse matrix times dense column vector. | |
elif other.shape[1] == 1 and self.shape[0] == other.shape[0]: | |
data = np.multiply(ret.data, other[ret.row].ravel()) | |
else: | |
raise ValueError("inconsistent shapes") | |
ret.data = data.view(np.ndarray).ravel() | |
return ret | |
########################### | |
# Multiplication handlers # | |
########################### | |
def _matmul_vector(self, other): | |
M, N = self.shape | |
# output array | |
result = np.zeros(M, dtype=upcast_char(self.dtype.char, | |
other.dtype.char)) | |
# csr_matvec or csc_matvec | |
fn = getattr(_sparsetools, self.format + '_matvec') | |
fn(M, N, self.indptr, self.indices, self.data, other, result) | |
return result | |
def _matmul_multivector(self, other): | |
M, N = self.shape | |
n_vecs = other.shape[1] # number of column vectors | |
result = np.zeros((M, n_vecs), | |
dtype=upcast_char(self.dtype.char, other.dtype.char)) | |
# csr_matvecs or csc_matvecs | |
fn = getattr(_sparsetools, self.format + '_matvecs') | |
fn(M, N, n_vecs, self.indptr, self.indices, self.data, | |
other.ravel(), result.ravel()) | |
return result | |
def _matmul_sparse(self, other): | |
M, K1 = self.shape | |
K2, N = other.shape | |
major_axis = self._swap((M, N))[0] | |
other = self.__class__(other) # convert to this format | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices, | |
other.indptr, other.indices)) | |
fn = getattr(_sparsetools, self.format + '_matmat_maxnnz') | |
nnz = fn(M, N, | |
np.asarray(self.indptr, dtype=idx_dtype), | |
np.asarray(self.indices, dtype=idx_dtype), | |
np.asarray(other.indptr, dtype=idx_dtype), | |
np.asarray(other.indices, dtype=idx_dtype)) | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices, | |
other.indptr, other.indices), | |
maxval=nnz) | |
indptr = np.empty(major_axis + 1, dtype=idx_dtype) | |
indices = np.empty(nnz, dtype=idx_dtype) | |
data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype)) | |
fn = getattr(_sparsetools, self.format + '_matmat') | |
fn(M, N, np.asarray(self.indptr, dtype=idx_dtype), | |
np.asarray(self.indices, dtype=idx_dtype), | |
self.data, | |
np.asarray(other.indptr, dtype=idx_dtype), | |
np.asarray(other.indices, dtype=idx_dtype), | |
other.data, | |
indptr, indices, data) | |
return self.__class__((data, indices, indptr), shape=(M, N)) | |
def diagonal(self, k=0): | |
rows, cols = self.shape | |
if k <= -rows or k >= cols: | |
return np.empty(0, dtype=self.data.dtype) | |
fn = getattr(_sparsetools, self.format + "_diagonal") | |
y = np.empty(min(rows + min(k, 0), cols - max(k, 0)), | |
dtype=upcast(self.dtype)) | |
fn(k, self.shape[0], self.shape[1], self.indptr, self.indices, | |
self.data, y) | |
return y | |
diagonal.__doc__ = _spbase.diagonal.__doc__ | |
##################### | |
# Other binary ops # | |
##################### | |
def _maximum_minimum(self, other, npop, op_name, dense_check): | |
if isscalarlike(other): | |
if dense_check(other): | |
warn("Taking maximum (minimum) with > 0 (< 0) number results" | |
" to a dense matrix.", SparseEfficiencyWarning, | |
stacklevel=3) | |
other_arr = np.empty(self.shape, dtype=np.asarray(other).dtype) | |
other_arr.fill(other) | |
other_arr = self.__class__(other_arr) | |
return self._binopt(other_arr, op_name) | |
else: | |
self.sum_duplicates() | |
new_data = npop(self.data, np.asarray(other)) | |
mat = self.__class__((new_data, self.indices, self.indptr), | |
dtype=new_data.dtype, shape=self.shape) | |
return mat | |
elif isdense(other): | |
return npop(self.todense(), other) | |
elif issparse(other): | |
return self._binopt(other, op_name) | |
else: | |
raise ValueError("Operands not compatible.") | |
def maximum(self, other): | |
return self._maximum_minimum(other, np.maximum, | |
'_maximum_', lambda x: np.asarray(x) > 0) | |
maximum.__doc__ = _spbase.maximum.__doc__ | |
def minimum(self, other): | |
return self._maximum_minimum(other, np.minimum, | |
'_minimum_', lambda x: np.asarray(x) < 0) | |
minimum.__doc__ = _spbase.minimum.__doc__ | |
##################### | |
# Reduce operations # | |
##################### | |
def sum(self, axis=None, dtype=None, out=None): | |
"""Sum the array/matrix over the given axis. If the axis is None, sum | |
over both rows and columns, returning a scalar. | |
""" | |
# The _spbase base class already does axis=0 and axis=1 efficiently | |
# so we only do the case axis=None here | |
if (not hasattr(self, 'blocksize') and | |
axis in self._swap(((1, -1), (0, 2)))[0]): | |
# faster than multiplication for large minor axis in CSC/CSR | |
res_dtype = get_sum_dtype(self.dtype) | |
ret = np.zeros(len(self.indptr) - 1, dtype=res_dtype) | |
major_index, value = self._minor_reduce(np.add) | |
ret[major_index] = value | |
ret = self._ascontainer(ret) | |
if axis % 2 == 1: | |
ret = ret.T | |
if out is not None and out.shape != ret.shape: | |
raise ValueError('dimensions do not match') | |
return ret.sum(axis=(), dtype=dtype, out=out) | |
# _spbase will handle the remaining situations when axis | |
# is in {None, -1, 0, 1} | |
else: | |
return _spbase.sum(self, axis=axis, dtype=dtype, out=out) | |
sum.__doc__ = _spbase.sum.__doc__ | |
def _minor_reduce(self, ufunc, data=None): | |
"""Reduce nonzeros with a ufunc over the minor axis when non-empty | |
Can be applied to a function of self.data by supplying data parameter. | |
Warning: this does not call sum_duplicates() | |
Returns | |
------- | |
major_index : array of ints | |
Major indices where nonzero | |
value : array of self.dtype | |
Reduce result for nonzeros in each major_index | |
""" | |
if data is None: | |
data = self.data | |
major_index = np.flatnonzero(np.diff(self.indptr)) | |
value = ufunc.reduceat(data, | |
downcast_intp_index(self.indptr[major_index])) | |
return major_index, value | |
####################### | |
# Getting and Setting # | |
####################### | |
def _get_intXint(self, row, col): | |
M, N = self._swap(self.shape) | |
major, minor = self._swap((row, col)) | |
indptr, indices, data = get_csr_submatrix( | |
M, N, self.indptr, self.indices, self.data, | |
major, major + 1, minor, minor + 1) | |
return data.sum(dtype=self.dtype) | |
def _get_sliceXslice(self, row, col): | |
major, minor = self._swap((row, col)) | |
if major.step in (1, None) and minor.step in (1, None): | |
return self._get_submatrix(major, minor, copy=True) | |
return self._major_slice(major)._minor_slice(minor) | |
def _get_arrayXarray(self, row, col): | |
# inner indexing | |
idx_dtype = self.indices.dtype | |
M, N = self._swap(self.shape) | |
major, minor = self._swap((row, col)) | |
major = np.asarray(major, dtype=idx_dtype) | |
minor = np.asarray(minor, dtype=idx_dtype) | |
val = np.empty(major.size, dtype=self.dtype) | |
csr_sample_values(M, N, self.indptr, self.indices, self.data, | |
major.size, major.ravel(), minor.ravel(), val) | |
if major.ndim == 1: | |
return self._ascontainer(val) | |
return self.__class__(val.reshape(major.shape)) | |
def _get_columnXarray(self, row, col): | |
# outer indexing | |
major, minor = self._swap((row, col)) | |
return self._major_index_fancy(major)._minor_index_fancy(minor) | |
def _major_index_fancy(self, idx): | |
"""Index along the major axis where idx is an array of ints. | |
""" | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices)) | |
indices = np.asarray(idx, dtype=idx_dtype).ravel() | |
_, N = self._swap(self.shape) | |
M = len(indices) | |
new_shape = self._swap((M, N)) | |
if M == 0: | |
return self.__class__(new_shape, dtype=self.dtype) | |
row_nnz = (self.indptr[indices + 1] - self.indptr[indices]).astype(idx_dtype) | |
res_indptr = np.zeros(M+1, dtype=idx_dtype) | |
np.cumsum(row_nnz, out=res_indptr[1:]) | |
nnz = res_indptr[-1] | |
res_indices = np.empty(nnz, dtype=idx_dtype) | |
res_data = np.empty(nnz, dtype=self.dtype) | |
csr_row_index( | |
M, | |
indices, | |
self.indptr.astype(idx_dtype, copy=False), | |
self.indices.astype(idx_dtype, copy=False), | |
self.data, | |
res_indices, | |
res_data | |
) | |
return self.__class__((res_data, res_indices, res_indptr), | |
shape=new_shape, copy=False) | |
def _major_slice(self, idx, copy=False): | |
"""Index along the major axis where idx is a slice object. | |
""" | |
if idx == slice(None): | |
return self.copy() if copy else self | |
M, N = self._swap(self.shape) | |
start, stop, step = idx.indices(M) | |
M = len(range(start, stop, step)) | |
new_shape = self._swap((M, N)) | |
if M == 0: | |
return self.__class__(new_shape, dtype=self.dtype) | |
# Work out what slices are needed for `row_nnz` | |
# start,stop can be -1, only if step is negative | |
start0, stop0 = start, stop | |
if stop == -1 and start >= 0: | |
stop0 = None | |
start1, stop1 = start + 1, stop + 1 | |
row_nnz = self.indptr[start1:stop1:step] - \ | |
self.indptr[start0:stop0:step] | |
idx_dtype = self.indices.dtype | |
res_indptr = np.zeros(M+1, dtype=idx_dtype) | |
np.cumsum(row_nnz, out=res_indptr[1:]) | |
if step == 1: | |
all_idx = slice(self.indptr[start], self.indptr[stop]) | |
res_indices = np.array(self.indices[all_idx], copy=copy) | |
res_data = np.array(self.data[all_idx], copy=copy) | |
else: | |
nnz = res_indptr[-1] | |
res_indices = np.empty(nnz, dtype=idx_dtype) | |
res_data = np.empty(nnz, dtype=self.dtype) | |
csr_row_slice(start, stop, step, self.indptr, self.indices, | |
self.data, res_indices, res_data) | |
return self.__class__((res_data, res_indices, res_indptr), | |
shape=new_shape, copy=False) | |
def _minor_index_fancy(self, idx): | |
"""Index along the minor axis where idx is an array of ints. | |
""" | |
idx_dtype = self._get_index_dtype((self.indices, self.indptr)) | |
indices = self.indices.astype(idx_dtype, copy=False) | |
indptr = self.indptr.astype(idx_dtype, copy=False) | |
idx = np.asarray(idx, dtype=idx_dtype).ravel() | |
M, N = self._swap(self.shape) | |
k = len(idx) | |
new_shape = self._swap((M, k)) | |
if k == 0: | |
return self.__class__(new_shape, dtype=self.dtype) | |
# pass 1: count idx entries and compute new indptr | |
col_offsets = np.zeros(N, dtype=idx_dtype) | |
res_indptr = np.empty_like(self.indptr, dtype=idx_dtype) | |
csr_column_index1( | |
k, | |
idx, | |
M, | |
N, | |
indptr, | |
indices, | |
col_offsets, | |
res_indptr, | |
) | |
# pass 2: copy indices/data for selected idxs | |
col_order = np.argsort(idx).astype(idx_dtype, copy=False) | |
nnz = res_indptr[-1] | |
res_indices = np.empty(nnz, dtype=idx_dtype) | |
res_data = np.empty(nnz, dtype=self.dtype) | |
csr_column_index2(col_order, col_offsets, len(self.indices), | |
indices, self.data, res_indices, res_data) | |
return self.__class__((res_data, res_indices, res_indptr), | |
shape=new_shape, copy=False) | |
def _minor_slice(self, idx, copy=False): | |
"""Index along the minor axis where idx is a slice object. | |
""" | |
if idx == slice(None): | |
return self.copy() if copy else self | |
M, N = self._swap(self.shape) | |
start, stop, step = idx.indices(N) | |
N = len(range(start, stop, step)) | |
if N == 0: | |
return self.__class__(self._swap((M, N)), dtype=self.dtype) | |
if step == 1: | |
return self._get_submatrix(minor=idx, copy=copy) | |
# TODO: don't fall back to fancy indexing here | |
return self._minor_index_fancy(np.arange(start, stop, step)) | |
def _get_submatrix(self, major=None, minor=None, copy=False): | |
"""Return a submatrix of this matrix. | |
major, minor: None, int, or slice with step 1 | |
""" | |
M, N = self._swap(self.shape) | |
i0, i1 = _process_slice(major, M) | |
j0, j1 = _process_slice(minor, N) | |
if i0 == 0 and j0 == 0 and i1 == M and j1 == N: | |
return self.copy() if copy else self | |
indptr, indices, data = get_csr_submatrix( | |
M, N, self.indptr, self.indices, self.data, i0, i1, j0, j1) | |
shape = self._swap((i1 - i0, j1 - j0)) | |
return self.__class__((data, indices, indptr), shape=shape, | |
dtype=self.dtype, copy=False) | |
def _set_intXint(self, row, col, x): | |
i, j = self._swap((row, col)) | |
self._set_many(i, j, x) | |
def _set_arrayXarray(self, row, col, x): | |
i, j = self._swap((row, col)) | |
self._set_many(i, j, x) | |
def _set_arrayXarray_sparse(self, row, col, x): | |
# clear entries that will be overwritten | |
self._zero_many(*self._swap((row, col))) | |
M, N = row.shape # matches col.shape | |
broadcast_row = M != 1 and x.shape[0] == 1 | |
broadcast_col = N != 1 and x.shape[1] == 1 | |
r, c = x.row, x.col | |
x = np.asarray(x.data, dtype=self.dtype) | |
if x.size == 0: | |
return | |
if broadcast_row: | |
r = np.repeat(np.arange(M), len(r)) | |
c = np.tile(c, M) | |
x = np.tile(x, M) | |
if broadcast_col: | |
r = np.repeat(r, N) | |
c = np.tile(np.arange(N), len(c)) | |
x = np.repeat(x, N) | |
# only assign entries in the new sparsity structure | |
i, j = self._swap((row[r, c], col[r, c])) | |
self._set_many(i, j, x) | |
def _setdiag(self, values, k): | |
if 0 in self.shape: | |
return | |
M, N = self.shape | |
broadcast = (values.ndim == 0) | |
if k < 0: | |
if broadcast: | |
max_index = min(M + k, N) | |
else: | |
max_index = min(M + k, N, len(values)) | |
i = np.arange(-k, max_index - k, dtype=self.indices.dtype) | |
j = np.arange(max_index, dtype=self.indices.dtype) | |
else: | |
if broadcast: | |
max_index = min(M, N - k) | |
else: | |
max_index = min(M, N - k, len(values)) | |
i = np.arange(max_index, dtype=self.indices.dtype) | |
j = np.arange(k, k + max_index, dtype=self.indices.dtype) | |
if not broadcast: | |
values = values[:len(i)] | |
x = np.atleast_1d(np.asarray(values, dtype=self.dtype)).ravel() | |
if x.squeeze().shape != i.squeeze().shape: | |
x = np.broadcast_to(x, i.shape) | |
if x.size == 0: | |
return | |
M, N = self._swap((M, N)) | |
i, j = self._swap((i, j)) | |
n_samples = x.size | |
offsets = np.empty(n_samples, dtype=self.indices.dtype) | |
ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, | |
i, j, offsets) | |
if ret == 1: | |
# rinse and repeat | |
self.sum_duplicates() | |
csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, | |
i, j, offsets) | |
if -1 not in offsets: | |
# only affects existing non-zero cells | |
self.data[offsets] = x | |
return | |
mask = (offsets <= -1) | |
# Boundary between csc and convert to coo | |
# The value 0.001 is justified in gh-19962#issuecomment-1920499678 | |
if mask.sum() < self.nnz * 0.001: | |
# create new entries | |
i = i[mask] | |
j = j[mask] | |
self._insert_many(i, j, x[mask]) | |
# replace existing entries | |
mask = ~mask | |
self.data[offsets[mask]] = x[mask] | |
else: | |
# convert to coo for _set_diag | |
coo = self.tocoo() | |
coo._setdiag(values, k) | |
arrays = coo._coo_to_compressed(self._swap) | |
self.indptr, self.indices, self.data, _ = arrays | |
def _prepare_indices(self, i, j): | |
M, N = self._swap(self.shape) | |
def check_bounds(indices, bound): | |
idx = indices.max() | |
if idx >= bound: | |
raise IndexError('index (%d) out of range (>= %d)' % | |
(idx, bound)) | |
idx = indices.min() | |
if idx < -bound: | |
raise IndexError('index (%d) out of range (< -%d)' % | |
(idx, bound)) | |
i = np.atleast_1d(np.asarray(i, dtype=self.indices.dtype)).ravel() | |
j = np.atleast_1d(np.asarray(j, dtype=self.indices.dtype)).ravel() | |
check_bounds(i, M) | |
check_bounds(j, N) | |
return i, j, M, N | |
def _set_many(self, i, j, x): | |
"""Sets value at each (i, j) to x | |
Here (i,j) index major and minor respectively, and must not contain | |
duplicate entries. | |
""" | |
i, j, M, N = self._prepare_indices(i, j) | |
x = np.atleast_1d(np.asarray(x, dtype=self.dtype)).ravel() | |
n_samples = x.size | |
offsets = np.empty(n_samples, dtype=self.indices.dtype) | |
ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, | |
i, j, offsets) | |
if ret == 1: | |
# rinse and repeat | |
self.sum_duplicates() | |
csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, | |
i, j, offsets) | |
if -1 not in offsets: | |
# only affects existing non-zero cells | |
self.data[offsets] = x | |
return | |
else: | |
warn("Changing the sparsity structure of a {}_matrix is expensive." | |
" lil_matrix is more efficient.".format(self.format), | |
SparseEfficiencyWarning, stacklevel=3) | |
# replace where possible | |
mask = offsets > -1 | |
self.data[offsets[mask]] = x[mask] | |
# only insertions remain | |
mask = ~mask | |
i = i[mask] | |
i[i < 0] += M | |
j = j[mask] | |
j[j < 0] += N | |
self._insert_many(i, j, x[mask]) | |
def _zero_many(self, i, j): | |
"""Sets value at each (i, j) to zero, preserving sparsity structure. | |
Here (i,j) index major and minor respectively. | |
""" | |
i, j, M, N = self._prepare_indices(i, j) | |
n_samples = len(i) | |
offsets = np.empty(n_samples, dtype=self.indices.dtype) | |
ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, | |
i, j, offsets) | |
if ret == 1: | |
# rinse and repeat | |
self.sum_duplicates() | |
csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, | |
i, j, offsets) | |
# only assign zeros to the existing sparsity structure | |
self.data[offsets[offsets > -1]] = 0 | |
def _insert_many(self, i, j, x): | |
"""Inserts new nonzero at each (i, j) with value x | |
Here (i,j) index major and minor respectively. | |
i, j and x must be non-empty, 1d arrays. | |
Inserts each major group (e.g. all entries per row) at a time. | |
Maintains has_sorted_indices property. | |
Modifies i, j, x in place. | |
""" | |
order = np.argsort(i, kind='mergesort') # stable for duplicates | |
i = i.take(order, mode='clip') | |
j = j.take(order, mode='clip') | |
x = x.take(order, mode='clip') | |
do_sort = self.has_sorted_indices | |
# Update index data type | |
idx_dtype = self._get_index_dtype((self.indices, self.indptr), | |
maxval=(self.indptr[-1] + x.size)) | |
self.indptr = np.asarray(self.indptr, dtype=idx_dtype) | |
self.indices = np.asarray(self.indices, dtype=idx_dtype) | |
i = np.asarray(i, dtype=idx_dtype) | |
j = np.asarray(j, dtype=idx_dtype) | |
# Collate old and new in chunks by major index | |
indices_parts = [] | |
data_parts = [] | |
ui, ui_indptr = np.unique(i, return_index=True) | |
ui_indptr = np.append(ui_indptr, len(j)) | |
new_nnzs = np.diff(ui_indptr) | |
prev = 0 | |
for c, (ii, js, je) in enumerate(zip(ui, ui_indptr, ui_indptr[1:])): | |
# old entries | |
start = self.indptr[prev] | |
stop = self.indptr[ii] | |
indices_parts.append(self.indices[start:stop]) | |
data_parts.append(self.data[start:stop]) | |
# handle duplicate j: keep last setting | |
uj, uj_indptr = np.unique(j[js:je][::-1], return_index=True) | |
if len(uj) == je - js: | |
indices_parts.append(j[js:je]) | |
data_parts.append(x[js:je]) | |
else: | |
indices_parts.append(j[js:je][::-1][uj_indptr]) | |
data_parts.append(x[js:je][::-1][uj_indptr]) | |
new_nnzs[c] = len(uj) | |
prev = ii | |
# remaining old entries | |
start = self.indptr[ii] | |
indices_parts.append(self.indices[start:]) | |
data_parts.append(self.data[start:]) | |
# update attributes | |
self.indices = np.concatenate(indices_parts) | |
self.data = np.concatenate(data_parts) | |
nnzs = np.empty(self.indptr.shape, dtype=idx_dtype) | |
nnzs[0] = idx_dtype(0) | |
indptr_diff = np.diff(self.indptr) | |
indptr_diff[ui] += new_nnzs | |
nnzs[1:] = indptr_diff | |
self.indptr = np.cumsum(nnzs, out=nnzs) | |
if do_sort: | |
# TODO: only sort where necessary | |
self.has_sorted_indices = False | |
self.sort_indices() | |
self.check_format(full_check=False) | |
###################### | |
# Conversion methods # | |
###################### | |
def tocoo(self, copy=True): | |
major_dim, minor_dim = self._swap(self.shape) | |
minor_indices = self.indices | |
major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype) | |
_sparsetools.expandptr(major_dim, self.indptr, major_indices) | |
coords = self._swap((major_indices, minor_indices)) | |
return self._coo_container( | |
(self.data, coords), self.shape, copy=copy, dtype=self.dtype | |
) | |
tocoo.__doc__ = _spbase.tocoo.__doc__ | |
def toarray(self, order=None, out=None): | |
if out is None and order is None: | |
order = self._swap('cf')[0] | |
out = self._process_toarray_args(order, out) | |
if not (out.flags.c_contiguous or out.flags.f_contiguous): | |
raise ValueError('Output array must be C or F contiguous') | |
# align ideal order with output array order | |
if out.flags.c_contiguous: | |
x = self.tocsr() | |
y = out | |
else: | |
x = self.tocsc() | |
y = out.T | |
M, N = x._swap(x.shape) | |
csr_todense(M, N, x.indptr, x.indices, x.data, y) | |
return out | |
toarray.__doc__ = _spbase.toarray.__doc__ | |
############################################################## | |
# methods that examine or modify the internal data structure # | |
############################################################## | |
def eliminate_zeros(self): | |
"""Remove zero entries from the array/matrix | |
This is an *in place* operation. | |
""" | |
M, N = self._swap(self.shape) | |
_sparsetools.csr_eliminate_zeros(M, N, self.indptr, self.indices, | |
self.data) | |
self.prune() # nnz may have changed | |
def has_canonical_format(self) -> bool: | |
"""Whether the array/matrix has sorted indices and no duplicates | |
Returns | |
- True: if the above applies | |
- False: otherwise | |
has_canonical_format implies has_sorted_indices, so if the latter flag | |
is False, so will the former be; if the former is found True, the | |
latter flag is also set. | |
""" | |
# first check to see if result was cached | |
if not getattr(self, '_has_sorted_indices', True): | |
# not sorted => not canonical | |
self._has_canonical_format = False | |
elif not hasattr(self, '_has_canonical_format'): | |
self.has_canonical_format = bool( | |
_sparsetools.csr_has_canonical_format( | |
len(self.indptr) - 1, self.indptr, self.indices) | |
) | |
return self._has_canonical_format | |
def has_canonical_format(self, val: bool): | |
self._has_canonical_format = bool(val) | |
if val: | |
self.has_sorted_indices = True | |
def sum_duplicates(self): | |
"""Eliminate duplicate entries by adding them together | |
This is an *in place* operation. | |
""" | |
if self.has_canonical_format: | |
return | |
self.sort_indices() | |
M, N = self._swap(self.shape) | |
_sparsetools.csr_sum_duplicates(M, N, self.indptr, self.indices, | |
self.data) | |
self.prune() # nnz may have changed | |
self.has_canonical_format = True | |
def has_sorted_indices(self) -> bool: | |
"""Whether the indices are sorted | |
Returns | |
- True: if the indices of the array/matrix are in sorted order | |
- False: otherwise | |
""" | |
# first check to see if result was cached | |
if not hasattr(self, '_has_sorted_indices'): | |
self._has_sorted_indices = bool( | |
_sparsetools.csr_has_sorted_indices( | |
len(self.indptr) - 1, self.indptr, self.indices) | |
) | |
return self._has_sorted_indices | |
def has_sorted_indices(self, val: bool): | |
self._has_sorted_indices = bool(val) | |
def sorted_indices(self): | |
"""Return a copy of this array/matrix with sorted indices | |
""" | |
A = self.copy() | |
A.sort_indices() | |
return A | |
# an alternative that has linear complexity is the following | |
# although the previous option is typically faster | |
# return self.toother().toother() | |
def sort_indices(self): | |
"""Sort the indices of this array/matrix *in place* | |
""" | |
if not self.has_sorted_indices: | |
_sparsetools.csr_sort_indices(len(self.indptr) - 1, self.indptr, | |
self.indices, self.data) | |
self.has_sorted_indices = True | |
def prune(self): | |
"""Remove empty space after all non-zero elements. | |
""" | |
major_dim = self._swap(self.shape)[0] | |
if len(self.indptr) != major_dim + 1: | |
raise ValueError('index pointer has invalid length') | |
if len(self.indices) < self.nnz: | |
raise ValueError('indices array has fewer than nnz elements') | |
if len(self.data) < self.nnz: | |
raise ValueError('data array has fewer than nnz elements') | |
self.indices = _prune_array(self.indices[:self.nnz]) | |
self.data = _prune_array(self.data[:self.nnz]) | |
def resize(self, *shape): | |
shape = check_shape(shape) | |
if hasattr(self, 'blocksize'): | |
bm, bn = self.blocksize | |
new_M, rm = divmod(shape[0], bm) | |
new_N, rn = divmod(shape[1], bn) | |
if rm or rn: | |
raise ValueError("shape must be divisible into {} blocks. " | |
"Got {}".format(self.blocksize, shape)) | |
M, N = self.shape[0] // bm, self.shape[1] // bn | |
else: | |
new_M, new_N = self._swap(shape) | |
M, N = self._swap(self.shape) | |
if new_M < M: | |
self.indices = self.indices[:self.indptr[new_M]] | |
self.data = self.data[:self.indptr[new_M]] | |
self.indptr = self.indptr[:new_M + 1] | |
elif new_M > M: | |
self.indptr = np.resize(self.indptr, new_M + 1) | |
self.indptr[M + 1:].fill(self.indptr[M]) | |
if new_N < N: | |
mask = self.indices < new_N | |
if not np.all(mask): | |
self.indices = self.indices[mask] | |
self.data = self.data[mask] | |
major_index, val = self._minor_reduce(np.add, mask) | |
self.indptr.fill(0) | |
self.indptr[1:][major_index] = val | |
np.cumsum(self.indptr, out=self.indptr) | |
self._shape = shape | |
resize.__doc__ = _spbase.resize.__doc__ | |
################### | |
# utility methods # | |
################### | |
# needed by _data_matrix | |
def _with_data(self, data, copy=True): | |
"""Returns a matrix with the same sparsity structure as self, | |
but with different data. By default the structure arrays | |
(i.e. .indptr and .indices) are copied. | |
""" | |
if copy: | |
return self.__class__((data, self.indices.copy(), | |
self.indptr.copy()), | |
shape=self.shape, | |
dtype=data.dtype) | |
else: | |
return self.__class__((data, self.indices, self.indptr), | |
shape=self.shape, dtype=data.dtype) | |
def _binopt(self, other, op): | |
"""apply the binary operation fn to two sparse matrices.""" | |
other = self.__class__(other) | |
# e.g. csr_plus_csr, csr_minus_csr, etc. | |
fn = getattr(_sparsetools, self.format + op + self.format) | |
maxnnz = self.nnz + other.nnz | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices, | |
other.indptr, other.indices), | |
maxval=maxnnz) | |
indptr = np.empty(self.indptr.shape, dtype=idx_dtype) | |
indices = np.empty(maxnnz, dtype=idx_dtype) | |
bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_'] | |
if op in bool_ops: | |
data = np.empty(maxnnz, dtype=np.bool_) | |
else: | |
data = np.empty(maxnnz, dtype=upcast(self.dtype, other.dtype)) | |
fn(self.shape[0], self.shape[1], | |
np.asarray(self.indptr, dtype=idx_dtype), | |
np.asarray(self.indices, dtype=idx_dtype), | |
self.data, | |
np.asarray(other.indptr, dtype=idx_dtype), | |
np.asarray(other.indices, dtype=idx_dtype), | |
other.data, | |
indptr, indices, data) | |
A = self.__class__((data, indices, indptr), shape=self.shape) | |
A.prune() | |
return A | |
def _divide_sparse(self, other): | |
""" | |
Divide this matrix by a second sparse matrix. | |
""" | |
if other.shape != self.shape: | |
raise ValueError('inconsistent shapes') | |
r = self._binopt(other, '_eldiv_') | |
if np.issubdtype(r.dtype, np.inexact): | |
# Eldiv leaves entries outside the combined sparsity | |
# pattern empty, so they must be filled manually. | |
# Everything outside of other's sparsity is NaN, and everything | |
# inside it is either zero or defined by eldiv. | |
out = np.empty(self.shape, dtype=self.dtype) | |
out.fill(np.nan) | |
row, col = other.nonzero() | |
out[row, col] = 0 | |
r = r.tocoo() | |
out[r.row, r.col] = r.data | |
out = self._container(out) | |
else: | |
# integers types go with nan <-> 0 | |
out = r | |
return out | |
def _process_slice(sl, num): | |
if sl is None: | |
i0, i1 = 0, num | |
elif isinstance(sl, slice): | |
i0, i1, stride = sl.indices(num) | |
if stride != 1: | |
raise ValueError('slicing with step != 1 not supported') | |
i0 = min(i0, i1) # give an empty slice when i0 > i1 | |
elif isintlike(sl): | |
if sl < 0: | |
sl += num | |
i0, i1 = sl, sl + 1 | |
if i0 < 0 or i1 > num: | |
raise IndexError('index out of bounds: 0 <= %d < %d <= %d' % | |
(i0, i1, num)) | |
else: | |
raise TypeError('expected slice or scalar') | |
return i0, i1 | |