peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_qmvnt.py
# Integration of multivariate normal and t distributions. | |
# Adapted from the MATLAB original implementations by Dr. Alan Genz. | |
# http://www.math.wsu.edu/faculty/genz/software/software.html | |
# Copyright (C) 2013, Alan Genz, All rights reserved. | |
# Python implementation is copyright (C) 2022, Robert Kern, All rights | |
# reserved. | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided the following conditions are met: | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# 2. Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in | |
# the documentation and/or other materials provided with the | |
# distribution. | |
# 3. The contributor name(s) may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS | |
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR | |
# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import numpy as np | |
from scipy.fft import fft, ifft | |
from scipy.special import gammaincinv, ndtr, ndtri | |
from scipy.stats._qmc import primes_from_2_to | |
phi = ndtr | |
phinv = ndtri | |
def _factorize_int(n): | |
"""Return a sorted list of the unique prime factors of a positive integer. | |
""" | |
# NOTE: There are lots faster ways to do this, but this isn't terrible. | |
factors = set() | |
for p in primes_from_2_to(int(np.sqrt(n)) + 1): | |
while not (n % p): | |
factors.add(p) | |
n //= p | |
if n == 1: | |
break | |
if n != 1: | |
factors.add(n) | |
return sorted(factors) | |
def _primitive_root(p): | |
"""Compute a primitive root of the prime number `p`. | |
Used in the CBC lattice construction. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Primitive_root_modulo_n | |
""" | |
# p is prime | |
pm = p - 1 | |
factors = _factorize_int(pm) | |
n = len(factors) | |
r = 2 | |
k = 0 | |
while k < n: | |
d = pm // factors[k] | |
# pow() doesn't like numpy scalar types. | |
rd = pow(int(r), int(d), int(p)) | |
if rd == 1: | |
r += 1 | |
k = 0 | |
else: | |
k += 1 | |
return r | |
def _cbc_lattice(n_dim, n_qmc_samples): | |
"""Compute a QMC lattice generator using a Fast CBC construction. | |
Parameters | |
---------- | |
n_dim : int > 0 | |
The number of dimensions for the lattice. | |
n_qmc_samples : int > 0 | |
The desired number of QMC samples. This will be rounded down to the | |
nearest prime to enable the CBC construction. | |
Returns | |
------- | |
q : float array : shape=(n_dim,) | |
The lattice generator vector. All values are in the open interval | |
`(0, 1)`. | |
actual_n_qmc_samples : int | |
The prime number of QMC samples that must be used with this lattice, | |
no more, no less. | |
References | |
---------- | |
.. [1] Nuyens, D. and Cools, R. "Fast Component-by-Component Construction, | |
a Reprise for Different Kernels", In H. Niederreiter and D. Talay, | |
editors, Monte-Carlo and Quasi-Monte Carlo Methods 2004, | |
Springer-Verlag, 2006, 371-385. | |
""" | |
# Round down to the nearest prime number. | |
primes = primes_from_2_to(n_qmc_samples + 1) | |
n_qmc_samples = primes[-1] | |
bt = np.ones(n_dim) | |
gm = np.hstack([1.0, 0.8 ** np.arange(n_dim - 1)]) | |
q = 1 | |
w = 0 | |
z = np.arange(1, n_dim + 1) | |
m = (n_qmc_samples - 1) // 2 | |
g = _primitive_root(n_qmc_samples) | |
# Slightly faster way to compute perm[j] = pow(g, j, n_qmc_samples) | |
# Shame that we don't have modulo pow() implemented as a ufunc. | |
perm = np.ones(m, dtype=int) | |
for j in range(m - 1): | |
perm[j + 1] = (g * perm[j]) % n_qmc_samples | |
perm = np.minimum(n_qmc_samples - perm, perm) | |
pn = perm / n_qmc_samples | |
c = pn * pn - pn + 1.0 / 6 | |
fc = fft(c) | |
for s in range(1, n_dim): | |
reordered = np.hstack([ | |
c[:w+1][::-1], | |
c[w+1:m][::-1], | |
]) | |
q = q * (bt[s-1] + gm[s-1] * reordered) | |
w = ifft(fc * fft(q)).real.argmin() | |
z[s] = perm[w] | |
q = z / n_qmc_samples | |
return q, n_qmc_samples | |
# Note: this function is not currently used or tested by any SciPy code. It is | |
# included in this file to facilitate the development of a parameter for users | |
# to set the desired CDF accuracy, but must be reviewed and tested before use. | |
def _qauto(func, covar, low, high, rng, error=1e-3, limit=10_000, **kwds): | |
"""Automatically rerun the integration to get the required error bound. | |
Parameters | |
---------- | |
func : callable | |
Either :func:`_qmvn` or :func:`_qmvt`. | |
covar, low, high : array | |
As specified in :func:`_qmvn` and :func:`_qmvt`. | |
rng : Generator, optional | |
default_rng(), yada, yada | |
error : float > 0 | |
The desired error bound. | |
limit : int > 0: | |
The rough limit of the number of integration points to consider. The | |
integration will stop looping once this limit has been *exceeded*. | |
**kwds : | |
Other keyword arguments to pass to `func`. When using :func:`_qmvt`, be | |
sure to include ``nu=`` as one of these. | |
Returns | |
------- | |
prob : float | |
The estimated probability mass within the bounds. | |
est_error : float | |
3 times the standard error of the batch estimates. | |
n_samples : int | |
The number of integration points actually used. | |
""" | |
n = len(covar) | |
n_samples = 0 | |
if n == 1: | |
prob = phi(high) - phi(low) | |
# More or less | |
est_error = 1e-15 | |
else: | |
mi = min(limit, n * 1000) | |
prob = 0.0 | |
est_error = 1.0 | |
ei = 0.0 | |
while est_error > error and n_samples < limit: | |
mi = round(np.sqrt(2) * mi) | |
pi, ei, ni = func(mi, covar, low, high, rng=rng, **kwds) | |
n_samples += ni | |
wt = 1.0 / (1 + (ei / est_error)**2) | |
prob += wt * (pi - prob) | |
est_error = np.sqrt(wt) * ei | |
return prob, est_error, n_samples | |
# Note: this function is not currently used or tested by any SciPy code. It is | |
# included in this file to facilitate the resolution of gh-8367, gh-16142, and | |
# possibly gh-14286, but must be reviewed and tested before use. | |
def _qmvn(m, covar, low, high, rng, lattice='cbc', n_batches=10): | |
"""Multivariate normal integration over box bounds. | |
Parameters | |
---------- | |
m : int > n_batches | |
The number of points to sample. This number will be divided into | |
`n_batches` batches that apply random offsets of the sampling lattice | |
for each batch in order to estimate the error. | |
covar : (n, n) float array | |
Possibly singular, positive semidefinite symmetric covariance matrix. | |
low, high : (n,) float array | |
The low and high integration bounds. | |
rng : Generator, optional | |
default_rng(), yada, yada | |
lattice : 'cbc' or callable | |
The type of lattice rule to use to construct the integration points. | |
n_batches : int > 0, optional | |
The number of QMC batches to apply. | |
Returns | |
------- | |
prob : float | |
The estimated probability mass within the bounds. | |
est_error : float | |
3 times the standard error of the batch estimates. | |
""" | |
cho, lo, hi = _permuted_cholesky(covar, low, high) | |
n = cho.shape[0] | |
ct = cho[0, 0] | |
c = phi(lo[0] / ct) | |
d = phi(hi[0] / ct) | |
ci = c | |
dci = d - ci | |
prob = 0.0 | |
error_var = 0.0 | |
q, n_qmc_samples = _cbc_lattice(n - 1, max(m // n_batches, 1)) | |
y = np.zeros((n - 1, n_qmc_samples)) | |
i_samples = np.arange(n_qmc_samples) + 1 | |
for j in range(n_batches): | |
c = np.full(n_qmc_samples, ci) | |
dc = np.full(n_qmc_samples, dci) | |
pv = dc.copy() | |
for i in range(1, n): | |
# Pseudorandomly-shifted lattice coordinate. | |
z = q[i - 1] * i_samples + rng.random() | |
# Fast remainder(z, 1.0) | |
z -= z.astype(int) | |
# Tent periodization transform. | |
x = abs(2 * z - 1) | |
y[i - 1, :] = phinv(c + x * dc) | |
s = cho[i, :i] @ y[:i, :] | |
ct = cho[i, i] | |
c = phi((lo[i] - s) / ct) | |
d = phi((hi[i] - s) / ct) | |
dc = d - c | |
pv = pv * dc | |
# Accumulate the mean and error variances with online formulations. | |
d = (pv.mean() - prob) / (j + 1) | |
prob += d | |
error_var = (j - 1) * error_var / (j + 1) + d * d | |
# Error bounds are 3 times the standard error of the estimates. | |
est_error = 3 * np.sqrt(error_var) | |
n_samples = n_qmc_samples * n_batches | |
return prob, est_error, n_samples | |
# Note: this function is not currently used or tested by any SciPy code. It is | |
# included in this file to facilitate the resolution of gh-8367, gh-16142, and | |
# possibly gh-14286, but must be reviewed and tested before use. | |
def _mvn_qmc_integrand(covar, low, high, use_tent=False): | |
"""Transform the multivariate normal integration into a QMC integrand over | |
a unit hypercube. | |
The dimensionality of the resulting hypercube integration domain is one | |
less than the dimensionality of the original integrand. Note that this | |
transformation subsumes the integration bounds in order to account for | |
infinite bounds. The QMC integration one does with the returned integrand | |
should be on the unit hypercube. | |
Parameters | |
---------- | |
covar : (n, n) float array | |
Possibly singular, positive semidefinite symmetric covariance matrix. | |
low, high : (n,) float array | |
The low and high integration bounds. | |
use_tent : bool, optional | |
If True, then use tent periodization. Only helpful for lattice rules. | |
Returns | |
------- | |
integrand : Callable[[NDArray], NDArray] | |
The QMC-integrable integrand. It takes an | |
``(n_qmc_samples, ndim_integrand)`` array of QMC samples in the unit | |
hypercube and returns the ``(n_qmc_samples,)`` evaluations of at these | |
QMC points. | |
ndim_integrand : int | |
The dimensionality of the integrand. Equal to ``n-1``. | |
""" | |
cho, lo, hi = _permuted_cholesky(covar, low, high) | |
n = cho.shape[0] | |
ndim_integrand = n - 1 | |
ct = cho[0, 0] | |
c = phi(lo[0] / ct) | |
d = phi(hi[0] / ct) | |
ci = c | |
dci = d - ci | |
def integrand(*zs): | |
ndim_qmc = len(zs) | |
n_qmc_samples = len(np.atleast_1d(zs[0])) | |
assert ndim_qmc == ndim_integrand | |
y = np.zeros((ndim_qmc, n_qmc_samples)) | |
c = np.full(n_qmc_samples, ci) | |
dc = np.full(n_qmc_samples, dci) | |
pv = dc.copy() | |
for i in range(1, n): | |
if use_tent: | |
# Tent periodization transform. | |
x = abs(2 * zs[i-1] - 1) | |
else: | |
x = zs[i-1] | |
y[i - 1, :] = phinv(c + x * dc) | |
s = cho[i, :i] @ y[:i, :] | |
ct = cho[i, i] | |
c = phi((lo[i] - s) / ct) | |
d = phi((hi[i] - s) / ct) | |
dc = d - c | |
pv = pv * dc | |
return pv | |
return integrand, ndim_integrand | |
def _qmvt(m, nu, covar, low, high, rng, lattice='cbc', n_batches=10): | |
"""Multivariate t integration over box bounds. | |
Parameters | |
---------- | |
m : int > n_batches | |
The number of points to sample. This number will be divided into | |
`n_batches` batches that apply random offsets of the sampling lattice | |
for each batch in order to estimate the error. | |
nu : float >= 0 | |
The shape parameter of the multivariate t distribution. | |
covar : (n, n) float array | |
Possibly singular, positive semidefinite symmetric covariance matrix. | |
low, high : (n,) float array | |
The low and high integration bounds. | |
rng : Generator, optional | |
default_rng(), yada, yada | |
lattice : 'cbc' or callable | |
The type of lattice rule to use to construct the integration points. | |
n_batches : int > 0, optional | |
The number of QMC batches to apply. | |
Returns | |
------- | |
prob : float | |
The estimated probability mass within the bounds. | |
est_error : float | |
3 times the standard error of the batch estimates. | |
n_samples : int | |
The number of samples actually used. | |
""" | |
sn = max(1.0, np.sqrt(nu)) | |
low = np.asarray(low, dtype=np.float64) | |
high = np.asarray(high, dtype=np.float64) | |
cho, lo, hi = _permuted_cholesky(covar, low / sn, high / sn) | |
n = cho.shape[0] | |
prob = 0.0 | |
error_var = 0.0 | |
q, n_qmc_samples = _cbc_lattice(n, max(m // n_batches, 1)) | |
i_samples = np.arange(n_qmc_samples) + 1 | |
for j in range(n_batches): | |
pv = np.ones(n_qmc_samples) | |
s = np.zeros((n, n_qmc_samples)) | |
for i in range(n): | |
# Pseudorandomly-shifted lattice coordinate. | |
z = q[i] * i_samples + rng.random() | |
# Fast remainder(z, 1.0) | |
z -= z.astype(int) | |
# Tent periodization transform. | |
x = abs(2 * z - 1) | |
# FIXME: Lift the i==0 case out of the loop to make the logic | |
# easier to follow. | |
if i == 0: | |
# We'll use one of the QR variates to pull out the | |
# t-distribution scaling. | |
if nu > 0: | |
r = np.sqrt(2 * gammaincinv(nu / 2, x)) | |
else: | |
r = np.ones_like(x) | |
else: | |
y = phinv(c + x * dc) # noqa: F821 | |
with np.errstate(invalid='ignore'): | |
s[i:, :] += cho[i:, i - 1][:, np.newaxis] * y | |
si = s[i, :] | |
c = np.ones(n_qmc_samples) | |
d = np.ones(n_qmc_samples) | |
with np.errstate(invalid='ignore'): | |
lois = lo[i] * r - si | |
hiis = hi[i] * r - si | |
c[lois < -9] = 0.0 | |
d[hiis < -9] = 0.0 | |
lo_mask = abs(lois) < 9 | |
hi_mask = abs(hiis) < 9 | |
c[lo_mask] = phi(lois[lo_mask]) | |
d[hi_mask] = phi(hiis[hi_mask]) | |
dc = d - c | |
pv *= dc | |
# Accumulate the mean and error variances with online formulations. | |
d = (pv.mean() - prob) / (j + 1) | |
prob += d | |
error_var = (j - 1) * error_var / (j + 1) + d * d | |
# Error bounds are 3 times the standard error of the estimates. | |
est_error = 3 * np.sqrt(error_var) | |
n_samples = n_qmc_samples * n_batches | |
return prob, est_error, n_samples | |
def _permuted_cholesky(covar, low, high, tol=1e-10): | |
"""Compute a scaled, permuted Cholesky factor, with integration bounds. | |
The scaling and permuting of the dimensions accomplishes part of the | |
transformation of the original integration problem into a more numerically | |
tractable form. The lower-triangular Cholesky factor will then be used in | |
the subsequent integration. The integration bounds will be scaled and | |
permuted as well. | |
Parameters | |
---------- | |
covar : (n, n) float array | |
Possibly singular, positive semidefinite symmetric covariance matrix. | |
low, high : (n,) float array | |
The low and high integration bounds. | |
tol : float, optional | |
The singularity tolerance. | |
Returns | |
------- | |
cho : (n, n) float array | |
Lower Cholesky factor, scaled and permuted. | |
new_low, new_high : (n,) float array | |
The scaled and permuted low and high integration bounds. | |
""" | |
# Make copies for outputting. | |
cho = np.array(covar, dtype=np.float64) | |
new_lo = np.array(low, dtype=np.float64) | |
new_hi = np.array(high, dtype=np.float64) | |
n = cho.shape[0] | |
if cho.shape != (n, n): | |
raise ValueError("expected a square symmetric array") | |
if new_lo.shape != (n,) or new_hi.shape != (n,): | |
raise ValueError( | |
"expected integration boundaries the same dimensions " | |
"as the covariance matrix" | |
) | |
# Scale by the sqrt of the diagonal. | |
dc = np.sqrt(np.maximum(np.diag(cho), 0.0)) | |
# But don't divide by 0. | |
dc[dc == 0.0] = 1.0 | |
new_lo /= dc | |
new_hi /= dc | |
cho /= dc | |
cho /= dc[:, np.newaxis] | |
y = np.zeros(n) | |
sqtp = np.sqrt(2 * np.pi) | |
for k in range(n): | |
epk = (k + 1) * tol | |
im = k | |
ck = 0.0 | |
dem = 1.0 | |
s = 0.0 | |
lo_m = 0.0 | |
hi_m = 0.0 | |
for i in range(k, n): | |
if cho[i, i] > tol: | |
ci = np.sqrt(cho[i, i]) | |
if i > 0: | |
s = cho[i, :k] @ y[:k] | |
lo_i = (new_lo[i] - s) / ci | |
hi_i = (new_hi[i] - s) / ci | |
de = phi(hi_i) - phi(lo_i) | |
if de <= dem: | |
ck = ci | |
dem = de | |
lo_m = lo_i | |
hi_m = hi_i | |
im = i | |
if im > k: | |
# Swap im and k | |
cho[im, im] = cho[k, k] | |
_swap_slices(cho, np.s_[im, :k], np.s_[k, :k]) | |
_swap_slices(cho, np.s_[im + 1:, im], np.s_[im + 1:, k]) | |
_swap_slices(cho, np.s_[k + 1:im, k], np.s_[im, k + 1:im]) | |
_swap_slices(new_lo, k, im) | |
_swap_slices(new_hi, k, im) | |
if ck > epk: | |
cho[k, k] = ck | |
cho[k, k + 1:] = 0.0 | |
for i in range(k + 1, n): | |
cho[i, k] /= ck | |
cho[i, k + 1:i + 1] -= cho[i, k] * cho[k + 1:i + 1, k] | |
if abs(dem) > tol: | |
y[k] = ((np.exp(-lo_m * lo_m / 2) - np.exp(-hi_m * hi_m / 2)) / | |
(sqtp * dem)) | |
else: | |
y[k] = (lo_m + hi_m) / 2 | |
if lo_m < -10: | |
y[k] = hi_m | |
elif hi_m > 10: | |
y[k] = lo_m | |
cho[k, :k + 1] /= ck | |
new_lo[k] /= ck | |
new_hi[k] /= ck | |
else: | |
cho[k:, k] = 0.0 | |
y[k] = (new_lo[k] + new_hi[k]) / 2 | |
return cho, new_lo, new_hi | |
def _swap_slices(x, slc1, slc2): | |
t = x[slc1].copy() | |
x[slc1] = x[slc2].copy() | |
x[slc2] = t | |