peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/_affinity_propagation.py
"""Affinity Propagation clustering algorithm.""" | |
# Author: Alexandre Gramfort [email protected] | |
# Gael Varoquaux [email protected] | |
# License: BSD 3 clause | |
import warnings | |
from numbers import Integral, Real | |
import numpy as np | |
from .._config import config_context | |
from ..base import BaseEstimator, ClusterMixin, _fit_context | |
from ..exceptions import ConvergenceWarning | |
from ..metrics import euclidean_distances, pairwise_distances_argmin | |
from ..utils import check_random_state | |
from ..utils._param_validation import Interval, StrOptions, validate_params | |
from ..utils.validation import check_is_fitted | |
def _equal_similarities_and_preferences(S, preference): | |
def all_equal_preferences(): | |
return np.all(preference == preference.flat[0]) | |
def all_equal_similarities(): | |
# Create mask to ignore diagonal of S | |
mask = np.ones(S.shape, dtype=bool) | |
np.fill_diagonal(mask, 0) | |
return np.all(S[mask].flat == S[mask].flat[0]) | |
return all_equal_preferences() and all_equal_similarities() | |
def _affinity_propagation( | |
S, | |
*, | |
preference, | |
convergence_iter, | |
max_iter, | |
damping, | |
verbose, | |
return_n_iter, | |
random_state, | |
): | |
"""Main affinity propagation algorithm.""" | |
n_samples = S.shape[0] | |
if n_samples == 1 or _equal_similarities_and_preferences(S, preference): | |
# It makes no sense to run the algorithm in this case, so return 1 or | |
# n_samples clusters, depending on preferences | |
warnings.warn( | |
"All samples have mutually equal similarities. " | |
"Returning arbitrary cluster center(s)." | |
) | |
if preference.flat[0] > S.flat[n_samples - 1]: | |
return ( | |
(np.arange(n_samples), np.arange(n_samples), 0) | |
if return_n_iter | |
else (np.arange(n_samples), np.arange(n_samples)) | |
) | |
else: | |
return ( | |
(np.array([0]), np.array([0] * n_samples), 0) | |
if return_n_iter | |
else (np.array([0]), np.array([0] * n_samples)) | |
) | |
# Place preference on the diagonal of S | |
S.flat[:: (n_samples + 1)] = preference | |
A = np.zeros((n_samples, n_samples)) | |
R = np.zeros((n_samples, n_samples)) # Initialize messages | |
# Intermediate results | |
tmp = np.zeros((n_samples, n_samples)) | |
# Remove degeneracies | |
S += ( | |
np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100 | |
) * random_state.standard_normal(size=(n_samples, n_samples)) | |
# Execute parallel affinity propagation updates | |
e = np.zeros((n_samples, convergence_iter)) | |
ind = np.arange(n_samples) | |
for it in range(max_iter): | |
# tmp = A + S; compute responsibilities | |
np.add(A, S, tmp) | |
I = np.argmax(tmp, axis=1) | |
Y = tmp[ind, I] # np.max(A + S, axis=1) | |
tmp[ind, I] = -np.inf | |
Y2 = np.max(tmp, axis=1) | |
# tmp = Rnew | |
np.subtract(S, Y[:, None], tmp) | |
tmp[ind, I] = S[ind, I] - Y2 | |
# Damping | |
tmp *= 1 - damping | |
R *= damping | |
R += tmp | |
# tmp = Rp; compute availabilities | |
np.maximum(R, 0, tmp) | |
tmp.flat[:: n_samples + 1] = R.flat[:: n_samples + 1] | |
# tmp = -Anew | |
tmp -= np.sum(tmp, axis=0) | |
dA = np.diag(tmp).copy() | |
tmp.clip(0, np.inf, tmp) | |
tmp.flat[:: n_samples + 1] = dA | |
# Damping | |
tmp *= 1 - damping | |
A *= damping | |
A -= tmp | |
# Check for convergence | |
E = (np.diag(A) + np.diag(R)) > 0 | |
e[:, it % convergence_iter] = E | |
K = np.sum(E, axis=0) | |
if it >= convergence_iter: | |
se = np.sum(e, axis=1) | |
unconverged = np.sum((se == convergence_iter) + (se == 0)) != n_samples | |
if (not unconverged and (K > 0)) or (it == max_iter): | |
never_converged = False | |
if verbose: | |
print("Converged after %d iterations." % it) | |
break | |
else: | |
never_converged = True | |
if verbose: | |
print("Did not converge") | |
I = np.flatnonzero(E) | |
K = I.size # Identify exemplars | |
if K > 0: | |
if never_converged: | |
warnings.warn( | |
( | |
"Affinity propagation did not converge, this model " | |
"may return degenerate cluster centers and labels." | |
), | |
ConvergenceWarning, | |
) | |
c = np.argmax(S[:, I], axis=1) | |
c[I] = np.arange(K) # Identify clusters | |
# Refine the final set of exemplars and clusters and return results | |
for k in range(K): | |
ii = np.where(c == k)[0] | |
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0)) | |
I[k] = ii[j] | |
c = np.argmax(S[:, I], axis=1) | |
c[I] = np.arange(K) | |
labels = I[c] | |
# Reduce labels to a sorted, gapless, list | |
cluster_centers_indices = np.unique(labels) | |
labels = np.searchsorted(cluster_centers_indices, labels) | |
else: | |
warnings.warn( | |
( | |
"Affinity propagation did not converge and this model " | |
"will not have any cluster centers." | |
), | |
ConvergenceWarning, | |
) | |
labels = np.array([-1] * n_samples) | |
cluster_centers_indices = [] | |
if return_n_iter: | |
return cluster_centers_indices, labels, it + 1 | |
else: | |
return cluster_centers_indices, labels | |
############################################################################### | |
# Public API | |
def affinity_propagation( | |
S, | |
*, | |
preference=None, | |
convergence_iter=15, | |
max_iter=200, | |
damping=0.5, | |
copy=True, | |
verbose=False, | |
return_n_iter=False, | |
random_state=None, | |
): | |
"""Perform Affinity Propagation Clustering of data. | |
Read more in the :ref:`User Guide <affinity_propagation>`. | |
Parameters | |
---------- | |
S : array-like of shape (n_samples, n_samples) | |
Matrix of similarities between points. | |
preference : array-like of shape (n_samples,) or float, default=None | |
Preferences for each point - points with larger values of | |
preferences are more likely to be chosen as exemplars. The number of | |
exemplars, i.e. of clusters, is influenced by the input preferences | |
value. If the preferences are not passed as arguments, they will be | |
set to the median of the input similarities (resulting in a moderate | |
number of clusters). For a smaller amount of clusters, this can be set | |
to the minimum value of the similarities. | |
convergence_iter : int, default=15 | |
Number of iterations with no change in the number | |
of estimated clusters that stops the convergence. | |
max_iter : int, default=200 | |
Maximum number of iterations. | |
damping : float, default=0.5 | |
Damping factor between 0.5 and 1. | |
copy : bool, default=True | |
If copy is False, the affinity matrix is modified inplace by the | |
algorithm, for memory efficiency. | |
verbose : bool, default=False | |
The verbosity level. | |
return_n_iter : bool, default=False | |
Whether or not to return the number of iterations. | |
random_state : int, RandomState instance or None, default=None | |
Pseudo-random number generator to control the starting state. | |
Use an int for reproducible results across function calls. | |
See the :term:`Glossary <random_state>`. | |
.. versionadded:: 0.23 | |
this parameter was previously hardcoded as 0. | |
Returns | |
------- | |
cluster_centers_indices : ndarray of shape (n_clusters,) | |
Index of clusters centers. | |
labels : ndarray of shape (n_samples,) | |
Cluster labels for each point. | |
n_iter : int | |
Number of iterations run. Returned only if `return_n_iter` is | |
set to True. | |
Notes | |
----- | |
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py | |
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`. | |
When the algorithm does not converge, it will still return a arrays of | |
``cluster_center_indices`` and labels if there are any exemplars/clusters, | |
however they may be degenerate and should be used with caution. | |
When all training samples have equal similarities and equal preferences, | |
the assignment of cluster centers and labels depends on the preference. | |
If the preference is smaller than the similarities, a single cluster center | |
and label ``0`` for every sample will be returned. Otherwise, every | |
training sample becomes its own cluster center and is assigned a unique | |
label. | |
References | |
---------- | |
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages | |
Between Data Points", Science Feb. 2007 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.cluster import affinity_propagation | |
>>> from sklearn.metrics.pairwise import euclidean_distances | |
>>> X = np.array([[1, 2], [1, 4], [1, 0], | |
... [4, 2], [4, 4], [4, 0]]) | |
>>> S = -euclidean_distances(X, squared=True) | |
>>> cluster_centers_indices, labels = affinity_propagation(S, random_state=0) | |
>>> cluster_centers_indices | |
array([0, 3]) | |
>>> labels | |
array([0, 0, 0, 1, 1, 1]) | |
""" | |
estimator = AffinityPropagation( | |
damping=damping, | |
max_iter=max_iter, | |
convergence_iter=convergence_iter, | |
copy=copy, | |
preference=preference, | |
affinity="precomputed", | |
verbose=verbose, | |
random_state=random_state, | |
).fit(S) | |
if return_n_iter: | |
return estimator.cluster_centers_indices_, estimator.labels_, estimator.n_iter_ | |
return estimator.cluster_centers_indices_, estimator.labels_ | |
class AffinityPropagation(ClusterMixin, BaseEstimator): | |
"""Perform Affinity Propagation Clustering of data. | |
Read more in the :ref:`User Guide <affinity_propagation>`. | |
Parameters | |
---------- | |
damping : float, default=0.5 | |
Damping factor in the range `[0.5, 1.0)` is the extent to | |
which the current value is maintained relative to | |
incoming values (weighted 1 - damping). This in order | |
to avoid numerical oscillations when updating these | |
values (messages). | |
max_iter : int, default=200 | |
Maximum number of iterations. | |
convergence_iter : int, default=15 | |
Number of iterations with no change in the number | |
of estimated clusters that stops the convergence. | |
copy : bool, default=True | |
Make a copy of input data. | |
preference : array-like of shape (n_samples,) or float, default=None | |
Preferences for each point - points with larger values of | |
preferences are more likely to be chosen as exemplars. The number | |
of exemplars, ie of clusters, is influenced by the input | |
preferences value. If the preferences are not passed as arguments, | |
they will be set to the median of the input similarities. | |
affinity : {'euclidean', 'precomputed'}, default='euclidean' | |
Which affinity to use. At the moment 'precomputed' and | |
``euclidean`` are supported. 'euclidean' uses the | |
negative squared euclidean distance between points. | |
verbose : bool, default=False | |
Whether to be verbose. | |
random_state : int, RandomState instance or None, default=None | |
Pseudo-random number generator to control the starting state. | |
Use an int for reproducible results across function calls. | |
See the :term:`Glossary <random_state>`. | |
.. versionadded:: 0.23 | |
this parameter was previously hardcoded as 0. | |
Attributes | |
---------- | |
cluster_centers_indices_ : ndarray of shape (n_clusters,) | |
Indices of cluster centers. | |
cluster_centers_ : ndarray of shape (n_clusters, n_features) | |
Cluster centers (if affinity != ``precomputed``). | |
labels_ : ndarray of shape (n_samples,) | |
Labels of each point. | |
affinity_matrix_ : ndarray of shape (n_samples, n_samples) | |
Stores the affinity matrix used in ``fit``. | |
n_iter_ : int | |
Number of iterations taken to converge. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AgglomerativeClustering : Recursively merges the pair of | |
clusters that minimally increases a given linkage distance. | |
FeatureAgglomeration : Similar to AgglomerativeClustering, | |
but recursively merges features instead of samples. | |
KMeans : K-Means clustering. | |
MiniBatchKMeans : Mini-Batch K-Means clustering. | |
MeanShift : Mean shift clustering using a flat kernel. | |
SpectralClustering : Apply clustering to a projection | |
of the normalized Laplacian. | |
Notes | |
----- | |
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py | |
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`. | |
The algorithmic complexity of affinity propagation is quadratic | |
in the number of points. | |
When the algorithm does not converge, it will still return a arrays of | |
``cluster_center_indices`` and labels if there are any exemplars/clusters, | |
however they may be degenerate and should be used with caution. | |
When ``fit`` does not converge, ``cluster_centers_`` is still populated | |
however it may be degenerate. In such a case, proceed with caution. | |
If ``fit`` does not converge and fails to produce any ``cluster_centers_`` | |
then ``predict`` will label every sample as ``-1``. | |
When all training samples have equal similarities and equal preferences, | |
the assignment of cluster centers and labels depends on the preference. | |
If the preference is smaller than the similarities, ``fit`` will result in | |
a single cluster center and label ``0`` for every sample. Otherwise, every | |
training sample becomes its own cluster center and is assigned a unique | |
label. | |
References | |
---------- | |
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages | |
Between Data Points", Science Feb. 2007 | |
Examples | |
-------- | |
>>> from sklearn.cluster import AffinityPropagation | |
>>> import numpy as np | |
>>> X = np.array([[1, 2], [1, 4], [1, 0], | |
... [4, 2], [4, 4], [4, 0]]) | |
>>> clustering = AffinityPropagation(random_state=5).fit(X) | |
>>> clustering | |
AffinityPropagation(random_state=5) | |
>>> clustering.labels_ | |
array([0, 0, 0, 1, 1, 1]) | |
>>> clustering.predict([[0, 0], [4, 4]]) | |
array([0, 1]) | |
>>> clustering.cluster_centers_ | |
array([[1, 2], | |
[4, 2]]) | |
""" | |
_parameter_constraints: dict = { | |
"damping": [Interval(Real, 0.5, 1.0, closed="left")], | |
"max_iter": [Interval(Integral, 1, None, closed="left")], | |
"convergence_iter": [Interval(Integral, 1, None, closed="left")], | |
"copy": ["boolean"], | |
"preference": [ | |
"array-like", | |
Interval(Real, None, None, closed="neither"), | |
None, | |
], | |
"affinity": [StrOptions({"euclidean", "precomputed"})], | |
"verbose": ["verbose"], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, | |
*, | |
damping=0.5, | |
max_iter=200, | |
convergence_iter=15, | |
copy=True, | |
preference=None, | |
affinity="euclidean", | |
verbose=False, | |
random_state=None, | |
): | |
self.damping = damping | |
self.max_iter = max_iter | |
self.convergence_iter = convergence_iter | |
self.copy = copy | |
self.verbose = verbose | |
self.preference = preference | |
self.affinity = affinity | |
self.random_state = random_state | |
def _more_tags(self): | |
return {"pairwise": self.affinity == "precomputed"} | |
def fit(self, X, y=None): | |
"""Fit the clustering from features, or affinity matrix. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \ | |
array-like of shape (n_samples, n_samples) | |
Training instances to cluster, or similarities / affinities between | |
instances if ``affinity='precomputed'``. If a sparse feature matrix | |
is provided, it will be converted into a sparse ``csr_matrix``. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
self | |
Returns the instance itself. | |
""" | |
if self.affinity == "precomputed": | |
accept_sparse = False | |
else: | |
accept_sparse = "csr" | |
X = self._validate_data(X, accept_sparse=accept_sparse) | |
if self.affinity == "precomputed": | |
self.affinity_matrix_ = X.copy() if self.copy else X | |
else: # self.affinity == "euclidean" | |
self.affinity_matrix_ = -euclidean_distances(X, squared=True) | |
if self.affinity_matrix_.shape[0] != self.affinity_matrix_.shape[1]: | |
raise ValueError( | |
"The matrix of similarities must be a square array. " | |
f"Got {self.affinity_matrix_.shape} instead." | |
) | |
if self.preference is None: | |
preference = np.median(self.affinity_matrix_) | |
else: | |
preference = self.preference | |
preference = np.asarray(preference) | |
random_state = check_random_state(self.random_state) | |
( | |
self.cluster_centers_indices_, | |
self.labels_, | |
self.n_iter_, | |
) = _affinity_propagation( | |
self.affinity_matrix_, | |
max_iter=self.max_iter, | |
convergence_iter=self.convergence_iter, | |
preference=preference, | |
damping=self.damping, | |
verbose=self.verbose, | |
return_n_iter=True, | |
random_state=random_state, | |
) | |
if self.affinity != "precomputed": | |
self.cluster_centers_ = X[self.cluster_centers_indices_].copy() | |
return self | |
def predict(self, X): | |
"""Predict the closest cluster each sample in X belongs to. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
New data to predict. If a sparse matrix is provided, it will be | |
converted into a sparse ``csr_matrix``. | |
Returns | |
------- | |
labels : ndarray of shape (n_samples,) | |
Cluster labels. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False, accept_sparse="csr") | |
if not hasattr(self, "cluster_centers_"): | |
raise ValueError( | |
"Predict method is not supported when affinity='precomputed'." | |
) | |
if self.cluster_centers_.shape[0] > 0: | |
with config_context(assume_finite=True): | |
return pairwise_distances_argmin(X, self.cluster_centers_) | |
else: | |
warnings.warn( | |
( | |
"This model does not have any cluster centers " | |
"because affinity propagation did not converge. " | |
"Labeling every sample as '-1'." | |
), | |
ConvergenceWarning, | |
) | |
return np.array([-1] * X.shape[0]) | |
def fit_predict(self, X, y=None): | |
"""Fit clustering from features/affinity matrix; return cluster labels. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \ | |
array-like of shape (n_samples, n_samples) | |
Training instances to cluster, or similarities / affinities between | |
instances if ``affinity='precomputed'``. If a sparse feature matrix | |
is provided, it will be converted into a sparse ``csr_matrix``. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
labels : ndarray of shape (n_samples,) | |
Cluster labels. | |
""" | |
return super().fit_predict(X, y) | |