peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_kernel_ridge.py
import numpy as np | |
import pytest | |
from sklearn.datasets import make_regression | |
from sklearn.kernel_ridge import KernelRidge | |
from sklearn.linear_model import Ridge | |
from sklearn.metrics.pairwise import pairwise_kernels | |
from sklearn.utils._testing import assert_array_almost_equal, ignore_warnings | |
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS | |
X, y = make_regression(n_features=10, random_state=0) | |
Y = np.array([y, y]).T | |
def test_kernel_ridge(): | |
pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) | |
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) | |
assert_array_almost_equal(pred, pred2) | |
def test_kernel_ridge_sparse(sparse_container): | |
X_sparse = sparse_container(X) | |
pred = ( | |
Ridge(alpha=1, fit_intercept=False, solver="cholesky") | |
.fit(X_sparse, y) | |
.predict(X_sparse) | |
) | |
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X_sparse, y).predict(X_sparse) | |
assert_array_almost_equal(pred, pred2) | |
def test_kernel_ridge_singular_kernel(): | |
# alpha=0 causes a LinAlgError in computing the dual coefficients, | |
# which causes a fallback to a lstsq solver. This is tested here. | |
pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) | |
kr = KernelRidge(kernel="linear", alpha=0) | |
ignore_warnings(kr.fit)(X, y) | |
pred2 = kr.predict(X) | |
assert_array_almost_equal(pred, pred2) | |
def test_kernel_ridge_precomputed(): | |
for kernel in ["linear", "rbf", "poly", "cosine"]: | |
K = pairwise_kernels(X, X, metric=kernel) | |
pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) | |
pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) | |
assert_array_almost_equal(pred, pred2) | |
def test_kernel_ridge_precomputed_kernel_unchanged(): | |
K = np.dot(X, X.T) | |
K2 = K.copy() | |
KernelRidge(kernel="precomputed").fit(K, y) | |
assert_array_almost_equal(K, K2) | |
def test_kernel_ridge_sample_weights(): | |
K = np.dot(X, X.T) # precomputed kernel | |
sw = np.random.RandomState(0).rand(X.shape[0]) | |
pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) | |
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) | |
pred3 = ( | |
KernelRidge(kernel="precomputed", alpha=1) | |
.fit(K, y, sample_weight=sw) | |
.predict(K) | |
) | |
assert_array_almost_equal(pred, pred2) | |
assert_array_almost_equal(pred, pred3) | |
def test_kernel_ridge_multi_output(): | |
pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) | |
pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) | |
assert_array_almost_equal(pred, pred2) | |
pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) | |
pred3 = np.array([pred3, pred3]).T | |
assert_array_almost_equal(pred2, pred3) | |