peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_naive_bayes.py
import re | |
import warnings | |
import numpy as np | |
import pytest | |
from scipy.special import logsumexp | |
from sklearn.datasets import load_digits, load_iris | |
from sklearn.model_selection import cross_val_score, train_test_split | |
from sklearn.naive_bayes import ( | |
BernoulliNB, | |
CategoricalNB, | |
ComplementNB, | |
GaussianNB, | |
MultinomialNB, | |
) | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
DISCRETE_NAIVE_BAYES_CLASSES = [BernoulliNB, CategoricalNB, ComplementNB, MultinomialNB] | |
ALL_NAIVE_BAYES_CLASSES = DISCRETE_NAIVE_BAYES_CLASSES + [GaussianNB] | |
msg = "The default value for `force_alpha` will change" | |
pytestmark = pytest.mark.filterwarnings(f"ignore:{msg}:FutureWarning") | |
# Data is just 6 separable points in the plane | |
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) | |
y = np.array([1, 1, 1, 2, 2, 2]) | |
def get_random_normal_x_binary_y(global_random_seed): | |
# A bit more random tests | |
rng = np.random.RandomState(global_random_seed) | |
X1 = rng.normal(size=(10, 3)) | |
y1 = (rng.normal(size=10) > 0).astype(int) | |
return X1, y1 | |
def get_random_integer_x_three_classes_y(global_random_seed): | |
# Data is 6 random integer points in a 100 dimensional space classified to | |
# three classes. | |
rng = np.random.RandomState(global_random_seed) | |
X2 = rng.randint(5, size=(6, 100)) | |
y2 = np.array([1, 1, 2, 2, 3, 3]) | |
return X2, y2 | |
def test_gnb(): | |
# Gaussian Naive Bayes classification. | |
# This checks that GaussianNB implements fit and predict and returns | |
# correct values for a simple toy dataset. | |
clf = GaussianNB() | |
y_pred = clf.fit(X, y).predict(X) | |
assert_array_equal(y_pred, y) | |
y_pred_proba = clf.predict_proba(X) | |
y_pred_log_proba = clf.predict_log_proba(X) | |
assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) | |
# Test whether label mismatch between target y and classes raises | |
# an Error | |
# FIXME Remove this test once the more general partial_fit tests are merged | |
with pytest.raises( | |
ValueError, match="The target label.* in y do not exist in the initial classes" | |
): | |
GaussianNB().partial_fit(X, y, classes=[0, 1]) | |
def test_gnb_prior(global_random_seed): | |
# Test whether class priors are properly set. | |
clf = GaussianNB().fit(X, y) | |
assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) | |
X1, y1 = get_random_normal_x_binary_y(global_random_seed) | |
clf = GaussianNB().fit(X1, y1) | |
# Check that the class priors sum to 1 | |
assert_array_almost_equal(clf.class_prior_.sum(), 1) | |
def test_gnb_sample_weight(global_random_seed): | |
"""Test whether sample weights are properly used in GNB.""" | |
# Sample weights all being 1 should not change results | |
sw = np.ones(6) | |
clf = GaussianNB().fit(X, y) | |
clf_sw = GaussianNB().fit(X, y, sw) | |
assert_array_almost_equal(clf.theta_, clf_sw.theta_) | |
assert_array_almost_equal(clf.var_, clf_sw.var_) | |
# Fitting twice with half sample-weights should result | |
# in same result as fitting once with full weights | |
rng = np.random.RandomState(global_random_seed) | |
sw = rng.rand(y.shape[0]) | |
clf1 = GaussianNB().fit(X, y, sample_weight=sw) | |
clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) | |
clf2.partial_fit(X, y, sample_weight=sw / 2) | |
assert_array_almost_equal(clf1.theta_, clf2.theta_) | |
assert_array_almost_equal(clf1.var_, clf2.var_) | |
# Check that duplicate entries and correspondingly increased sample | |
# weights yield the same result | |
ind = rng.randint(0, X.shape[0], 20) | |
sample_weight = np.bincount(ind, minlength=X.shape[0]) | |
clf_dupl = GaussianNB().fit(X[ind], y[ind]) | |
clf_sw = GaussianNB().fit(X, y, sample_weight) | |
assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) | |
assert_array_almost_equal(clf_dupl.var_, clf_sw.var_) | |
# non-regression test for gh-24140 where a division by zero was | |
# occurring when a single class was present | |
sample_weight = (y == 1).astype(np.float64) | |
clf = GaussianNB().fit(X, y, sample_weight=sample_weight) | |
def test_gnb_neg_priors(): | |
"""Test whether an error is raised in case of negative priors""" | |
clf = GaussianNB(priors=np.array([-1.0, 2.0])) | |
msg = "Priors must be non-negative" | |
with pytest.raises(ValueError, match=msg): | |
clf.fit(X, y) | |
def test_gnb_priors(): | |
"""Test whether the class prior override is properly used""" | |
clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y) | |
assert_array_almost_equal( | |
clf.predict_proba([[-0.1, -0.1]]), | |
np.array([[0.825303662161683, 0.174696337838317]]), | |
8, | |
) | |
assert_array_almost_equal(clf.class_prior_, np.array([0.3, 0.7])) | |
def test_gnb_priors_sum_isclose(): | |
# test whether the class prior sum is properly tested""" | |
X = np.array( | |
[ | |
[-1, -1], | |
[-2, -1], | |
[-3, -2], | |
[-4, -5], | |
[-5, -4], | |
[1, 1], | |
[2, 1], | |
[3, 2], | |
[4, 4], | |
[5, 5], | |
] | |
) | |
priors = np.array([0.08, 0.14, 0.03, 0.16, 0.11, 0.16, 0.07, 0.14, 0.11, 0.0]) | |
Y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) | |
clf = GaussianNB(priors=priors) | |
# smoke test for issue #9633 | |
clf.fit(X, Y) | |
def test_gnb_wrong_nb_priors(): | |
"""Test whether an error is raised if the number of prior is different | |
from the number of class""" | |
clf = GaussianNB(priors=np.array([0.25, 0.25, 0.25, 0.25])) | |
msg = "Number of priors must match number of classes" | |
with pytest.raises(ValueError, match=msg): | |
clf.fit(X, y) | |
def test_gnb_prior_greater_one(): | |
"""Test if an error is raised if the sum of prior greater than one""" | |
clf = GaussianNB(priors=np.array([2.0, 1.0])) | |
msg = "The sum of the priors should be 1" | |
with pytest.raises(ValueError, match=msg): | |
clf.fit(X, y) | |
def test_gnb_prior_large_bias(): | |
"""Test if good prediction when class prior favor largely one class""" | |
clf = GaussianNB(priors=np.array([0.01, 0.99])) | |
clf.fit(X, y) | |
assert clf.predict([[-0.1, -0.1]]) == np.array([2]) | |
def test_gnb_check_update_with_no_data(): | |
"""Test when the partial fit is called without any data""" | |
# Create an empty array | |
prev_points = 100 | |
mean = 0.0 | |
var = 1.0 | |
x_empty = np.empty((0, X.shape[1])) | |
tmean, tvar = GaussianNB._update_mean_variance(prev_points, mean, var, x_empty) | |
assert tmean == mean | |
assert tvar == var | |
def test_gnb_partial_fit(): | |
clf = GaussianNB().fit(X, y) | |
clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) | |
assert_array_almost_equal(clf.theta_, clf_pf.theta_) | |
assert_array_almost_equal(clf.var_, clf_pf.var_) | |
assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) | |
clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) | |
clf_pf2.partial_fit(X[1::2], y[1::2]) | |
assert_array_almost_equal(clf.theta_, clf_pf2.theta_) | |
assert_array_almost_equal(clf.var_, clf_pf2.var_) | |
assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) | |
def test_gnb_naive_bayes_scale_invariance(): | |
# Scaling the data should not change the prediction results | |
iris = load_iris() | |
X, y = iris.data, iris.target | |
labels = [GaussianNB().fit(f * X, y).predict(f * X) for f in [1e-10, 1, 1e10]] | |
assert_array_equal(labels[0], labels[1]) | |
assert_array_equal(labels[1], labels[2]) | |
def test_discretenb_prior(DiscreteNaiveBayes, global_random_seed): | |
# Test whether class priors are properly set. | |
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed) | |
clf = DiscreteNaiveBayes().fit(X2, y2) | |
assert_array_almost_equal( | |
np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8 | |
) | |
def test_discretenb_partial_fit(DiscreteNaiveBayes): | |
clf1 = DiscreteNaiveBayes() | |
clf1.fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1]) | |
clf2 = DiscreteNaiveBayes() | |
clf2.partial_fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1], classes=[0, 1]) | |
assert_array_equal(clf1.class_count_, clf2.class_count_) | |
if DiscreteNaiveBayes is CategoricalNB: | |
for i in range(len(clf1.category_count_)): | |
assert_array_equal(clf1.category_count_[i], clf2.category_count_[i]) | |
else: | |
assert_array_equal(clf1.feature_count_, clf2.feature_count_) | |
clf3 = DiscreteNaiveBayes() | |
# all categories have to appear in the first partial fit | |
clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) | |
clf3.partial_fit([[1, 0]], [1]) | |
clf3.partial_fit([[1, 1]], [1]) | |
assert_array_equal(clf1.class_count_, clf3.class_count_) | |
if DiscreteNaiveBayes is CategoricalNB: | |
# the categories for each feature of CategoricalNB are mapped to an | |
# index chronologically with each call of partial fit and therefore | |
# the category_count matrices cannot be compared for equality | |
for i in range(len(clf1.category_count_)): | |
assert_array_equal( | |
clf1.category_count_[i].shape, clf3.category_count_[i].shape | |
) | |
assert_array_equal( | |
np.sum(clf1.category_count_[i], axis=1), | |
np.sum(clf3.category_count_[i], axis=1), | |
) | |
# assert category 0 occurs 1x in the first class and 0x in the 2nd | |
# class | |
assert_array_equal(clf1.category_count_[0][0], np.array([1, 0])) | |
# assert category 1 occurs 0x in the first class and 2x in the 2nd | |
# class | |
assert_array_equal(clf1.category_count_[0][1], np.array([0, 2])) | |
# assert category 0 occurs 0x in the first class and 1x in the 2nd | |
# class | |
assert_array_equal(clf1.category_count_[1][0], np.array([0, 1])) | |
# assert category 1 occurs 1x in the first class and 1x in the 2nd | |
# class | |
assert_array_equal(clf1.category_count_[1][1], np.array([1, 1])) | |
else: | |
assert_array_equal(clf1.feature_count_, clf3.feature_count_) | |
def test_NB_partial_fit_no_first_classes(NaiveBayes, global_random_seed): | |
# classes is required for first call to partial fit | |
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed) | |
with pytest.raises( | |
ValueError, match="classes must be passed on the first call to partial_fit." | |
): | |
NaiveBayes().partial_fit(X2, y2) | |
# check consistency of consecutive classes values | |
clf = NaiveBayes() | |
clf.partial_fit(X2, y2, classes=np.unique(y2)) | |
with pytest.raises( | |
ValueError, match="is not the same as on last call to partial_fit" | |
): | |
clf.partial_fit(X2, y2, classes=np.arange(42)) | |
def test_discretenb_predict_proba(): | |
# Test discrete NB classes' probability scores | |
# The 100s below distinguish Bernoulli from multinomial. | |
# FIXME: write a test to show this. | |
X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] | |
X_multinomial = [[0, 1], [1, 3], [4, 0]] | |
# test binary case (1-d output) | |
y = [0, 0, 2] # 2 is regression test for binary case, 02e673 | |
for DiscreteNaiveBayes, X in zip( | |
[BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial] | |
): | |
clf = DiscreteNaiveBayes().fit(X, y) | |
assert clf.predict(X[-1:]) == 2 | |
assert clf.predict_proba([X[0]]).shape == (1, 2) | |
assert_array_almost_equal( | |
clf.predict_proba(X[:2]).sum(axis=1), np.array([1.0, 1.0]), 6 | |
) | |
# test multiclass case (2-d output, must sum to one) | |
y = [0, 1, 2] | |
for DiscreteNaiveBayes, X in zip( | |
[BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial] | |
): | |
clf = DiscreteNaiveBayes().fit(X, y) | |
assert clf.predict_proba(X[0:1]).shape == (1, 3) | |
assert clf.predict_proba(X[:2]).shape == (2, 3) | |
assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1) | |
assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1) | |
assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) | |
def test_discretenb_uniform_prior(DiscreteNaiveBayes): | |
# Test whether discrete NB classes fit a uniform prior | |
# when fit_prior=False and class_prior=None | |
clf = DiscreteNaiveBayes() | |
clf.set_params(fit_prior=False) | |
clf.fit([[0], [0], [1]], [0, 0, 1]) | |
prior = np.exp(clf.class_log_prior_) | |
assert_array_almost_equal(prior, np.array([0.5, 0.5])) | |
def test_discretenb_provide_prior(DiscreteNaiveBayes): | |
# Test whether discrete NB classes use provided prior | |
clf = DiscreteNaiveBayes(class_prior=[0.5, 0.5]) | |
clf.fit([[0], [0], [1]], [0, 0, 1]) | |
prior = np.exp(clf.class_log_prior_) | |
assert_array_almost_equal(prior, np.array([0.5, 0.5])) | |
# Inconsistent number of classes with prior | |
msg = "Number of priors must match number of classes" | |
with pytest.raises(ValueError, match=msg): | |
clf.fit([[0], [1], [2]], [0, 1, 2]) | |
msg = "is not the same as on last call to partial_fit" | |
with pytest.raises(ValueError, match=msg): | |
clf.partial_fit([[0], [1]], [0, 1], classes=[0, 1, 1]) | |
def test_discretenb_provide_prior_with_partial_fit(DiscreteNaiveBayes): | |
# Test whether discrete NB classes use provided prior | |
# when using partial_fit | |
iris = load_iris() | |
iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( | |
iris.data, iris.target, test_size=0.4, random_state=415 | |
) | |
for prior in [None, [0.3, 0.3, 0.4]]: | |
clf_full = DiscreteNaiveBayes(class_prior=prior) | |
clf_full.fit(iris.data, iris.target) | |
clf_partial = DiscreteNaiveBayes(class_prior=prior) | |
clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) | |
clf_partial.partial_fit(iris_data2, iris_target2) | |
assert_array_almost_equal( | |
clf_full.class_log_prior_, clf_partial.class_log_prior_ | |
) | |
def test_discretenb_sample_weight_multiclass(DiscreteNaiveBayes): | |
# check shape consistency for number of samples at fit time | |
X = [ | |
[0, 0, 1], | |
[0, 1, 1], | |
[0, 1, 1], | |
[1, 0, 0], | |
] | |
y = [0, 0, 1, 2] | |
sample_weight = np.array([1, 1, 2, 2], dtype=np.float64) | |
sample_weight /= sample_weight.sum() | |
clf = DiscreteNaiveBayes().fit(X, y, sample_weight=sample_weight) | |
assert_array_equal(clf.predict(X), [0, 1, 1, 2]) | |
# Check sample weight using the partial_fit method | |
clf = DiscreteNaiveBayes() | |
clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) | |
clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) | |
clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) | |
assert_array_equal(clf.predict(X), [0, 1, 1, 2]) | |
def test_discretenb_degenerate_one_class_case( | |
DiscreteNaiveBayes, | |
use_partial_fit, | |
train_on_single_class_y, | |
): | |
# Most array attributes of a discrete naive Bayes classifier should have a | |
# first-axis length equal to the number of classes. Exceptions include: | |
# ComplementNB.feature_all_, CategoricalNB.n_categories_. | |
# Confirm that this is the case for binary problems and the degenerate | |
# case of a single class in the training set, when fitting with `fit` or | |
# `partial_fit`. | |
# Non-regression test for handling degenerate one-class case: | |
# https://github.com/scikit-learn/scikit-learn/issues/18974 | |
X = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] | |
y = [1, 1, 2] | |
if train_on_single_class_y: | |
X = X[:-1] | |
y = y[:-1] | |
classes = sorted(list(set(y))) | |
num_classes = len(classes) | |
clf = DiscreteNaiveBayes() | |
if use_partial_fit: | |
clf.partial_fit(X, y, classes=classes) | |
else: | |
clf.fit(X, y) | |
assert clf.predict(X[:1]) == y[0] | |
# Check that attributes have expected first-axis lengths | |
attribute_names = [ | |
"classes_", | |
"class_count_", | |
"class_log_prior_", | |
"feature_count_", | |
"feature_log_prob_", | |
] | |
for attribute_name in attribute_names: | |
attribute = getattr(clf, attribute_name, None) | |
if attribute is None: | |
# CategoricalNB has no feature_count_ attribute | |
continue | |
if isinstance(attribute, np.ndarray): | |
assert attribute.shape[0] == num_classes | |
else: | |
# CategoricalNB.feature_log_prob_ is a list of arrays | |
for element in attribute: | |
assert element.shape[0] == num_classes | |
def test_mnnb(kind, global_random_seed, csr_container): | |
# Test Multinomial Naive Bayes classification. | |
# This checks that MultinomialNB implements fit and predict and returns | |
# correct values for a simple toy dataset. | |
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed) | |
if kind == "dense": | |
X = X2 | |
elif kind == "sparse": | |
X = csr_container(X2) | |
# Check the ability to predict the learning set. | |
clf = MultinomialNB() | |
msg = "Negative values in data passed to" | |
with pytest.raises(ValueError, match=msg): | |
clf.fit(-X, y2) | |
y_pred = clf.fit(X, y2).predict(X) | |
assert_array_equal(y_pred, y2) | |
# Verify that np.log(clf.predict_proba(X)) gives the same results as | |
# clf.predict_log_proba(X) | |
y_pred_proba = clf.predict_proba(X) | |
y_pred_log_proba = clf.predict_log_proba(X) | |
assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) | |
# Check that incremental fitting yields the same results | |
clf2 = MultinomialNB() | |
clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) | |
clf2.partial_fit(X[2:5], y2[2:5]) | |
clf2.partial_fit(X[5:], y2[5:]) | |
y_pred2 = clf2.predict(X) | |
assert_array_equal(y_pred2, y2) | |
y_pred_proba2 = clf2.predict_proba(X) | |
y_pred_log_proba2 = clf2.predict_log_proba(X) | |
assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) | |
assert_array_almost_equal(y_pred_proba2, y_pred_proba) | |
assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) | |
# Partial fit on the whole data at once should be the same as fit too | |
clf3 = MultinomialNB() | |
clf3.partial_fit(X, y2, classes=np.unique(y2)) | |
y_pred3 = clf3.predict(X) | |
assert_array_equal(y_pred3, y2) | |
y_pred_proba3 = clf3.predict_proba(X) | |
y_pred_log_proba3 = clf3.predict_log_proba(X) | |
assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) | |
assert_array_almost_equal(y_pred_proba3, y_pred_proba) | |
assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) | |
def test_mnb_prior_unobserved_targets(): | |
# test smoothing of prior for yet unobserved targets | |
# Create toy training data | |
X = np.array([[0, 1], [1, 0]]) | |
y = np.array([0, 1]) | |
clf = MultinomialNB() | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", RuntimeWarning) | |
clf.partial_fit(X, y, classes=[0, 1, 2]) | |
assert clf.predict([[0, 1]]) == 0 | |
assert clf.predict([[1, 0]]) == 1 | |
assert clf.predict([[1, 1]]) == 0 | |
# add a training example with previously unobserved class | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", RuntimeWarning) | |
clf.partial_fit([[1, 1]], [2]) | |
assert clf.predict([[0, 1]]) == 0 | |
assert clf.predict([[1, 0]]) == 1 | |
assert clf.predict([[1, 1]]) == 2 | |
def test_bnb(): | |
# Tests that BernoulliNB when alpha=1.0 gives the same values as | |
# those given for the toy example in Manning, Raghavan, and | |
# Schuetze's "Introduction to Information Retrieval" book: | |
# https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html | |
# Training data points are: | |
# Chinese Beijing Chinese (class: China) | |
# Chinese Chinese Shanghai (class: China) | |
# Chinese Macao (class: China) | |
# Tokyo Japan Chinese (class: Japan) | |
# Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo | |
X = np.array( | |
[[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]] | |
) | |
# Classes are China (0), Japan (1) | |
Y = np.array([0, 0, 0, 1]) | |
# Fit BernoulliBN w/ alpha = 1.0 | |
clf = BernoulliNB(alpha=1.0) | |
clf.fit(X, Y) | |
# Check the class prior is correct | |
class_prior = np.array([0.75, 0.25]) | |
assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) | |
# Check the feature probabilities are correct | |
feature_prob = np.array( | |
[ | |
[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], | |
[1 / 3.0, 2 / 3.0, 2 / 3.0, 1 / 3.0, 1 / 3.0, 2 / 3.0], | |
] | |
) | |
assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) | |
# Testing data point is: | |
# Chinese Chinese Chinese Tokyo Japan | |
X_test = np.array([[0, 1, 1, 0, 0, 1]]) | |
# Check the predictive probabilities are correct | |
unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) | |
predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) | |
assert_array_almost_equal(clf.predict_proba(X_test), predict_proba) | |
def test_bnb_feature_log_prob(): | |
# Test for issue #4268. | |
# Tests that the feature log prob value computed by BernoulliNB when | |
# alpha=1.0 is equal to the expression given in Manning, Raghavan, | |
# and Schuetze's "Introduction to Information Retrieval" book: | |
# http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html | |
X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) | |
Y = np.array([0, 0, 1, 2, 2]) | |
# Fit Bernoulli NB w/ alpha = 1.0 | |
clf = BernoulliNB(alpha=1.0) | |
clf.fit(X, Y) | |
# Manually form the (log) numerator and denominator that | |
# constitute P(feature presence | class) | |
num = np.log(clf.feature_count_ + 1.0) | |
denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T | |
# Check manual estimate matches | |
assert_array_almost_equal(clf.feature_log_prob_, (num - denom)) | |
def test_cnb(): | |
# Tests ComplementNB when alpha=1.0 for the toy example in Manning, | |
# Raghavan, and Schuetze's "Introduction to Information Retrieval" book: | |
# https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html | |
# Training data points are: | |
# Chinese Beijing Chinese (class: China) | |
# Chinese Chinese Shanghai (class: China) | |
# Chinese Macao (class: China) | |
# Tokyo Japan Chinese (class: Japan) | |
# Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo. | |
X = np.array( | |
[[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]] | |
) | |
# Classes are China (0), Japan (1). | |
Y = np.array([0, 0, 0, 1]) | |
# Check that weights are correct. See steps 4-6 in Table 4 of | |
# Rennie et al. (2003). | |
theta = np.array( | |
[ | |
[ | |
(0 + 1) / (3 + 6), | |
(1 + 1) / (3 + 6), | |
(1 + 1) / (3 + 6), | |
(0 + 1) / (3 + 6), | |
(0 + 1) / (3 + 6), | |
(1 + 1) / (3 + 6), | |
], | |
[ | |
(1 + 1) / (6 + 6), | |
(3 + 1) / (6 + 6), | |
(0 + 1) / (6 + 6), | |
(1 + 1) / (6 + 6), | |
(1 + 1) / (6 + 6), | |
(0 + 1) / (6 + 6), | |
], | |
] | |
) | |
weights = np.zeros(theta.shape) | |
normed_weights = np.zeros(theta.shape) | |
for i in range(2): | |
weights[i] = -np.log(theta[i]) | |
normed_weights[i] = weights[i] / weights[i].sum() | |
# Verify inputs are nonnegative. | |
clf = ComplementNB(alpha=1.0) | |
msg = re.escape("Negative values in data passed to ComplementNB (input X)") | |
with pytest.raises(ValueError, match=msg): | |
clf.fit(-X, Y) | |
clf.fit(X, Y) | |
# Check that counts/weights are correct. | |
feature_count = np.array([[1, 3, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]]) | |
assert_array_equal(clf.feature_count_, feature_count) | |
class_count = np.array([3, 1]) | |
assert_array_equal(clf.class_count_, class_count) | |
feature_all = np.array([1, 4, 1, 1, 1, 1]) | |
assert_array_equal(clf.feature_all_, feature_all) | |
assert_array_almost_equal(clf.feature_log_prob_, weights) | |
clf = ComplementNB(alpha=1.0, norm=True) | |
clf.fit(X, Y) | |
assert_array_almost_equal(clf.feature_log_prob_, normed_weights) | |
def test_categoricalnb(global_random_seed): | |
# Check the ability to predict the training set. | |
clf = CategoricalNB() | |
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed) | |
y_pred = clf.fit(X2, y2).predict(X2) | |
assert_array_equal(y_pred, y2) | |
X3 = np.array([[1, 4], [2, 5]]) | |
y3 = np.array([1, 2]) | |
clf = CategoricalNB(alpha=1, fit_prior=False) | |
clf.fit(X3, y3) | |
assert_array_equal(clf.n_categories_, np.array([3, 6])) | |
# Check error is raised for X with negative entries | |
X = np.array([[0, -1]]) | |
y = np.array([1]) | |
error_msg = re.escape("Negative values in data passed to CategoricalNB (input X)") | |
with pytest.raises(ValueError, match=error_msg): | |
clf.predict(X) | |
with pytest.raises(ValueError, match=error_msg): | |
clf.fit(X, y) | |
# Test alpha | |
X3_test = np.array([[2, 5]]) | |
# alpha=1 increases the count of all categories by one so the final | |
# probability for each category is not 50/50 but 1/3 to 2/3 | |
bayes_numerator = np.array([[1 / 3 * 1 / 3, 2 / 3 * 2 / 3]]) | |
bayes_denominator = bayes_numerator.sum() | |
assert_array_almost_equal( | |
clf.predict_proba(X3_test), bayes_numerator / bayes_denominator | |
) | |
# Assert category_count has counted all features | |
assert len(clf.category_count_) == X3.shape[1] | |
# Check sample_weight | |
X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) | |
y = np.array([1, 1, 2, 2]) | |
clf = CategoricalNB(alpha=1, fit_prior=False) | |
clf.fit(X, y) | |
assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([1])) | |
assert_array_equal(clf.n_categories_, np.array([2, 2])) | |
for factor in [1.0, 0.3, 5, 0.0001]: | |
X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) | |
y = np.array([1, 1, 2, 2]) | |
sample_weight = np.array([1, 1, 10, 0.1]) * factor | |
clf = CategoricalNB(alpha=1, fit_prior=False) | |
clf.fit(X, y, sample_weight=sample_weight) | |
assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([2])) | |
assert_array_equal(clf.n_categories_, np.array([2, 2])) | |
def test_categoricalnb_with_min_categories( | |
min_categories, exp_X1_count, exp_X2_count, new_X, exp_n_categories_ | |
): | |
X_n_categories = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) | |
y_n_categories = np.array([1, 1, 2, 2]) | |
expected_prediction = np.array([1]) | |
clf = CategoricalNB(alpha=1, fit_prior=False, min_categories=min_categories) | |
clf.fit(X_n_categories, y_n_categories) | |
X1_count, X2_count = clf.category_count_ | |
assert_array_equal(X1_count, exp_X1_count) | |
assert_array_equal(X2_count, exp_X2_count) | |
predictions = clf.predict(new_X) | |
assert_array_equal(predictions, expected_prediction) | |
assert_array_equal(clf.n_categories_, exp_n_categories_) | |
def test_categoricalnb_min_categories_errors(min_categories, error_msg): | |
X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) | |
y = np.array([1, 1, 2, 2]) | |
clf = CategoricalNB(alpha=1, fit_prior=False, min_categories=min_categories) | |
with pytest.raises(ValueError, match=error_msg): | |
clf.fit(X, y) | |
def test_alpha(csr_container): | |
# Setting alpha=0 should not output nan results when p(x_i|y_j)=0 is a case | |
X = np.array([[1, 0], [1, 1]]) | |
y = np.array([0, 1]) | |
nb = BernoulliNB(alpha=0.0, force_alpha=False) | |
msg = "alpha too small will result in numeric errors, setting alpha = 1.0e-10" | |
with pytest.warns(UserWarning, match=msg): | |
nb.partial_fit(X, y, classes=[0, 1]) | |
with pytest.warns(UserWarning, match=msg): | |
nb.fit(X, y) | |
prob = np.array([[1, 0], [0, 1]]) | |
assert_array_almost_equal(nb.predict_proba(X), prob) | |
nb = MultinomialNB(alpha=0.0, force_alpha=False) | |
with pytest.warns(UserWarning, match=msg): | |
nb.partial_fit(X, y, classes=[0, 1]) | |
with pytest.warns(UserWarning, match=msg): | |
nb.fit(X, y) | |
prob = np.array([[2.0 / 3, 1.0 / 3], [0, 1]]) | |
assert_array_almost_equal(nb.predict_proba(X), prob) | |
nb = CategoricalNB(alpha=0.0, force_alpha=False) | |
with pytest.warns(UserWarning, match=msg): | |
nb.fit(X, y) | |
prob = np.array([[1.0, 0.0], [0.0, 1.0]]) | |
assert_array_almost_equal(nb.predict_proba(X), prob) | |
# Test sparse X | |
X = csr_container(X) | |
nb = BernoulliNB(alpha=0.0, force_alpha=False) | |
with pytest.warns(UserWarning, match=msg): | |
nb.fit(X, y) | |
prob = np.array([[1, 0], [0, 1]]) | |
assert_array_almost_equal(nb.predict_proba(X), prob) | |
nb = MultinomialNB(alpha=0.0, force_alpha=False) | |
with pytest.warns(UserWarning, match=msg): | |
nb.fit(X, y) | |
prob = np.array([[2.0 / 3, 1.0 / 3], [0, 1]]) | |
assert_array_almost_equal(nb.predict_proba(X), prob) | |
def test_alpha_vector(): | |
X = np.array([[1, 0], [1, 1]]) | |
y = np.array([0, 1]) | |
# Setting alpha=np.array with same length | |
# as number of features should be fine | |
alpha = np.array([1, 2]) | |
nb = MultinomialNB(alpha=alpha, force_alpha=False) | |
nb.partial_fit(X, y, classes=[0, 1]) | |
# Test feature probabilities uses pseudo-counts (alpha) | |
feature_prob = np.array([[1 / 2, 1 / 2], [2 / 5, 3 / 5]]) | |
assert_array_almost_equal(nb.feature_log_prob_, np.log(feature_prob)) | |
# Test predictions | |
prob = np.array([[5 / 9, 4 / 9], [25 / 49, 24 / 49]]) | |
assert_array_almost_equal(nb.predict_proba(X), prob) | |
# Test alpha non-negative | |
alpha = np.array([1.0, -0.1]) | |
m_nb = MultinomialNB(alpha=alpha, force_alpha=False) | |
expected_msg = "All values in alpha must be greater than 0." | |
with pytest.raises(ValueError, match=expected_msg): | |
m_nb.fit(X, y) | |
# Test that too small pseudo-counts are replaced | |
ALPHA_MIN = 1e-10 | |
alpha = np.array([ALPHA_MIN / 2, 0.5]) | |
m_nb = MultinomialNB(alpha=alpha, force_alpha=False) | |
m_nb.partial_fit(X, y, classes=[0, 1]) | |
assert_array_almost_equal(m_nb._check_alpha(), [ALPHA_MIN, 0.5], decimal=12) | |
# Test correct dimensions | |
alpha = np.array([1.0, 2.0, 3.0]) | |
m_nb = MultinomialNB(alpha=alpha, force_alpha=False) | |
expected_msg = "When alpha is an array, it should contains `n_features`" | |
with pytest.raises(ValueError, match=expected_msg): | |
m_nb.fit(X, y) | |
def test_check_accuracy_on_digits(): | |
# Non regression test to make sure that any further refactoring / optim | |
# of the NB models do not harm the performance on a slightly non-linearly | |
# separable dataset | |
X, y = load_digits(return_X_y=True) | |
binary_3v8 = np.logical_or(y == 3, y == 8) | |
X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] | |
# Multinomial NB | |
scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) | |
assert scores.mean() > 0.86 | |
scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) | |
assert scores.mean() > 0.94 | |
# Bernoulli NB | |
scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) | |
assert scores.mean() > 0.83 | |
scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) | |
assert scores.mean() > 0.92 | |
# Gaussian NB | |
scores = cross_val_score(GaussianNB(), X, y, cv=10) | |
assert scores.mean() > 0.77 | |
scores = cross_val_score(GaussianNB(var_smoothing=0.1), X, y, cv=10) | |
assert scores.mean() > 0.89 | |
scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) | |
assert scores.mean() > 0.86 | |
def test_check_alpha(): | |
"""The provided value for alpha must only be | |
used if alpha < _ALPHA_MIN and force_alpha is True. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/10772 | |
""" | |
_ALPHA_MIN = 1e-10 | |
b = BernoulliNB(alpha=0, force_alpha=True) | |
assert b._check_alpha() == 0 | |
alphas = np.array([0.0, 1.0]) | |
b = BernoulliNB(alpha=alphas, force_alpha=True) | |
# We manually set `n_features_in_` not to have `_check_alpha` err | |
b.n_features_in_ = alphas.shape[0] | |
assert_array_equal(b._check_alpha(), alphas) | |
msg = ( | |
"alpha too small will result in numeric errors, setting alpha = %.1e" | |
% _ALPHA_MIN | |
) | |
b = BernoulliNB(alpha=0, force_alpha=False) | |
with pytest.warns(UserWarning, match=msg): | |
assert b._check_alpha() == _ALPHA_MIN | |
b = BernoulliNB(alpha=0, force_alpha=False) | |
with pytest.warns(UserWarning, match=msg): | |
assert b._check_alpha() == _ALPHA_MIN | |
b = BernoulliNB(alpha=alphas, force_alpha=False) | |
# We manually set `n_features_in_` not to have `_check_alpha` err | |
b.n_features_in_ = alphas.shape[0] | |
with pytest.warns(UserWarning, match=msg): | |
assert_array_equal(b._check_alpha(), np.array([_ALPHA_MIN, 1.0])) | |
def test_predict_joint_proba(Estimator, global_random_seed): | |
X2, y2 = get_random_integer_x_three_classes_y(global_random_seed) | |
est = Estimator().fit(X2, y2) | |
jll = est.predict_joint_log_proba(X2) | |
log_prob_x = logsumexp(jll, axis=1) | |
log_prob_x_y = jll - np.atleast_2d(log_prob_x).T | |
assert_allclose(est.predict_log_proba(X2), log_prob_x_y) | |