peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/discovery.py
""" | |
The :mod:`sklearn.utils.discovery` module includes utilities to discover | |
objects (i.e. estimators, displays, functions) from the `sklearn` package. | |
""" | |
import inspect | |
import pkgutil | |
from importlib import import_module | |
from operator import itemgetter | |
from pathlib import Path | |
_MODULE_TO_IGNORE = { | |
"tests", | |
"externals", | |
"setup", | |
"conftest", | |
"experimental", | |
"estimator_checks", | |
} | |
def all_estimators(type_filter=None): | |
"""Get a list of all estimators from `sklearn`. | |
This function crawls the module and gets all classes that inherit | |
from BaseEstimator. Classes that are defined in test-modules are not | |
included. | |
Parameters | |
---------- | |
type_filter : {"classifier", "regressor", "cluster", "transformer"} \ | |
or list of such str, default=None | |
Which kind of estimators should be returned. If None, no filter is | |
applied and all estimators are returned. Possible values are | |
'classifier', 'regressor', 'cluster' and 'transformer' to get | |
estimators only of these specific types, or a list of these to | |
get the estimators that fit at least one of the types. | |
Returns | |
------- | |
estimators : list of tuples | |
List of (name, class), where ``name`` is the class name as string | |
and ``class`` is the actual type of the class. | |
Examples | |
-------- | |
>>> from sklearn.utils.discovery import all_estimators | |
>>> estimators = all_estimators() | |
>>> type(estimators) | |
<class 'list'> | |
>>> type(estimators[0]) | |
<class 'tuple'> | |
>>> estimators[:2] | |
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), | |
('AdaBoostClassifier', | |
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)] | |
>>> classifiers = all_estimators(type_filter="classifier") | |
>>> classifiers[:2] | |
[('AdaBoostClassifier', | |
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>), | |
('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)] | |
>>> regressors = all_estimators(type_filter="regressor") | |
>>> regressors[:2] | |
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), | |
('AdaBoostRegressor', | |
<class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)] | |
>>> both = all_estimators(type_filter=["classifier", "regressor"]) | |
>>> both[:2] | |
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), | |
('AdaBoostClassifier', | |
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)] | |
""" | |
# lazy import to avoid circular imports from sklearn.base | |
from ..base import ( | |
BaseEstimator, | |
ClassifierMixin, | |
ClusterMixin, | |
RegressorMixin, | |
TransformerMixin, | |
) | |
from . import IS_PYPY | |
from ._testing import ignore_warnings | |
def is_abstract(c): | |
if not (hasattr(c, "__abstractmethods__")): | |
return False | |
if not len(c.__abstractmethods__): | |
return False | |
return True | |
all_classes = [] | |
root = str(Path(__file__).parent.parent) # sklearn package | |
# Ignore deprecation warnings triggered at import time and from walking | |
# packages | |
with ignore_warnings(category=FutureWarning): | |
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."): | |
module_parts = module_name.split(".") | |
if ( | |
any(part in _MODULE_TO_IGNORE for part in module_parts) | |
or "._" in module_name | |
): | |
continue | |
module = import_module(module_name) | |
classes = inspect.getmembers(module, inspect.isclass) | |
classes = [ | |
(name, est_cls) for name, est_cls in classes if not name.startswith("_") | |
] | |
# TODO: Remove when FeatureHasher is implemented in PYPY | |
# Skips FeatureHasher for PYPY | |
if IS_PYPY and "feature_extraction" in module_name: | |
classes = [ | |
(name, est_cls) | |
for name, est_cls in classes | |
if name == "FeatureHasher" | |
] | |
all_classes.extend(classes) | |
all_classes = set(all_classes) | |
estimators = [ | |
c | |
for c in all_classes | |
if (issubclass(c[1], BaseEstimator) and c[0] != "BaseEstimator") | |
] | |
# get rid of abstract base classes | |
estimators = [c for c in estimators if not is_abstract(c[1])] | |
if type_filter is not None: | |
if not isinstance(type_filter, list): | |
type_filter = [type_filter] | |
else: | |
type_filter = list(type_filter) # copy | |
filtered_estimators = [] | |
filters = { | |
"classifier": ClassifierMixin, | |
"regressor": RegressorMixin, | |
"transformer": TransformerMixin, | |
"cluster": ClusterMixin, | |
} | |
for name, mixin in filters.items(): | |
if name in type_filter: | |
type_filter.remove(name) | |
filtered_estimators.extend( | |
[est for est in estimators if issubclass(est[1], mixin)] | |
) | |
estimators = filtered_estimators | |
if type_filter: | |
raise ValueError( | |
"Parameter type_filter must be 'classifier', " | |
"'regressor', 'transformer', 'cluster' or " | |
"None, got" | |
f" {repr(type_filter)}." | |
) | |
# drop duplicates, sort for reproducibility | |
# itemgetter is used to ensure the sort does not extend to the 2nd item of | |
# the tuple | |
return sorted(set(estimators), key=itemgetter(0)) | |
def all_displays(): | |
"""Get a list of all displays from `sklearn`. | |
Returns | |
------- | |
displays : list of tuples | |
List of (name, class), where ``name`` is the display class name as | |
string and ``class`` is the actual type of the class. | |
Examples | |
-------- | |
>>> from sklearn.utils.discovery import all_displays | |
>>> displays = all_displays() | |
>>> displays[0] | |
('CalibrationDisplay', <class 'sklearn.calibration.CalibrationDisplay'>) | |
""" | |
# lazy import to avoid circular imports from sklearn.base | |
from ._testing import ignore_warnings | |
all_classes = [] | |
root = str(Path(__file__).parent.parent) # sklearn package | |
# Ignore deprecation warnings triggered at import time and from walking | |
# packages | |
with ignore_warnings(category=FutureWarning): | |
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."): | |
module_parts = module_name.split(".") | |
if ( | |
any(part in _MODULE_TO_IGNORE for part in module_parts) | |
or "._" in module_name | |
): | |
continue | |
module = import_module(module_name) | |
classes = inspect.getmembers(module, inspect.isclass) | |
classes = [ | |
(name, display_class) | |
for name, display_class in classes | |
if not name.startswith("_") and name.endswith("Display") | |
] | |
all_classes.extend(classes) | |
return sorted(set(all_classes), key=itemgetter(0)) | |
def _is_checked_function(item): | |
if not inspect.isfunction(item): | |
return False | |
if item.__name__.startswith("_"): | |
return False | |
mod = item.__module__ | |
if not mod.startswith("sklearn.") or mod.endswith("estimator_checks"): | |
return False | |
return True | |
def all_functions(): | |
"""Get a list of all functions from `sklearn`. | |
Returns | |
------- | |
functions : list of tuples | |
List of (name, function), where ``name`` is the function name as | |
string and ``function`` is the actual function. | |
Examples | |
-------- | |
>>> from sklearn.utils.discovery import all_functions | |
>>> functions = all_functions() | |
>>> name, function = functions[0] | |
>>> name | |
'accuracy_score' | |
""" | |
# lazy import to avoid circular imports from sklearn.base | |
from ._testing import ignore_warnings | |
all_functions = [] | |
root = str(Path(__file__).parent.parent) # sklearn package | |
# Ignore deprecation warnings triggered at import time and from walking | |
# packages | |
with ignore_warnings(category=FutureWarning): | |
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."): | |
module_parts = module_name.split(".") | |
if ( | |
any(part in _MODULE_TO_IGNORE for part in module_parts) | |
or "._" in module_name | |
): | |
continue | |
module = import_module(module_name) | |
functions = inspect.getmembers(module, _is_checked_function) | |
functions = [ | |
(func.__name__, func) | |
for name, func in functions | |
if not name.startswith("_") | |
] | |
all_functions.extend(functions) | |
# drop duplicates, sort for reproducibility | |
# itemgetter is used to ensure the sort does not extend to the 2nd item of | |
# the tuple | |
return sorted(set(all_functions), key=itemgetter(0)) | |