peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/translate
/ibm1.py
| # Natural Language Toolkit: IBM Model 1 | |
| # | |
| # Copyright (C) 2001-2013 NLTK Project | |
| # Author: Chin Yee Lee <[email protected]> | |
| # Hengfeng Li <[email protected]> | |
| # Ruxin Hou <[email protected]> | |
| # Calvin Tanujaya Lim <[email protected]> | |
| # Based on earlier version by: | |
| # Will Zhang <[email protected]> | |
| # Guan Gui <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| Lexical translation model that ignores word order. | |
| In IBM Model 1, word order is ignored for simplicity. As long as the | |
| word alignments are equivalent, it doesn't matter where the word occurs | |
| in the source or target sentence. Thus, the following three alignments | |
| are equally likely:: | |
| Source: je mange du jambon | |
| Target: i eat some ham | |
| Alignment: (0,0) (1,1) (2,2) (3,3) | |
| Source: je mange du jambon | |
| Target: some ham eat i | |
| Alignment: (0,2) (1,3) (2,1) (3,1) | |
| Source: du jambon je mange | |
| Target: eat i some ham | |
| Alignment: (0,3) (1,2) (2,0) (3,1) | |
| Note that an alignment is represented here as | |
| (word_index_in_target, word_index_in_source). | |
| The EM algorithm used in Model 1 is: | |
| :E step: In the training data, count how many times a source language | |
| word is translated into a target language word, weighted by | |
| the prior probability of the translation. | |
| :M step: Estimate the new probability of translation based on the | |
| counts from the Expectation step. | |
| Notations | |
| --------- | |
| :i: Position in the source sentence | |
| Valid values are 0 (for NULL), 1, 2, ..., length of source sentence | |
| :j: Position in the target sentence | |
| Valid values are 1, 2, ..., length of target sentence | |
| :s: A word in the source language | |
| :t: A word in the target language | |
| References | |
| ---------- | |
| Philipp Koehn. 2010. Statistical Machine Translation. | |
| Cambridge University Press, New York. | |
| Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and | |
| Robert L. Mercer. 1993. The Mathematics of Statistical Machine | |
| Translation: Parameter Estimation. Computational Linguistics, 19 (2), | |
| 263-311. | |
| """ | |
| import warnings | |
| from collections import defaultdict | |
| from nltk.translate import AlignedSent, Alignment, IBMModel | |
| from nltk.translate.ibm_model import Counts | |
| class IBMModel1(IBMModel): | |
| """ | |
| Lexical translation model that ignores word order | |
| >>> bitext = [] | |
| >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small'])) | |
| >>> bitext.append(AlignedSent(['das', 'haus', 'ist', 'ja', 'groß'], ['the', 'house', 'is', 'big'])) | |
| >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small'])) | |
| >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house'])) | |
| >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book'])) | |
| >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book'])) | |
| >>> ibm1 = IBMModel1(bitext, 5) | |
| >>> print(round(ibm1.translation_table['buch']['book'], 3)) | |
| 0.889 | |
| >>> print(round(ibm1.translation_table['das']['book'], 3)) | |
| 0.062 | |
| >>> print(round(ibm1.translation_table['buch'][None], 3)) | |
| 0.113 | |
| >>> print(round(ibm1.translation_table['ja'][None], 3)) | |
| 0.073 | |
| >>> test_sentence = bitext[2] | |
| >>> test_sentence.words | |
| ['das', 'buch', 'ist', 'ja', 'klein'] | |
| >>> test_sentence.mots | |
| ['the', 'book', 'is', 'small'] | |
| >>> test_sentence.alignment | |
| Alignment([(0, 0), (1, 1), (2, 2), (3, 2), (4, 3)]) | |
| """ | |
| def __init__(self, sentence_aligned_corpus, iterations, probability_tables=None): | |
| """ | |
| Train on ``sentence_aligned_corpus`` and create a lexical | |
| translation model. | |
| Translation direction is from ``AlignedSent.mots`` to | |
| ``AlignedSent.words``. | |
| :param sentence_aligned_corpus: Sentence-aligned parallel corpus | |
| :type sentence_aligned_corpus: list(AlignedSent) | |
| :param iterations: Number of iterations to run training algorithm | |
| :type iterations: int | |
| :param probability_tables: Optional. Use this to pass in custom | |
| probability values. If not specified, probabilities will be | |
| set to a uniform distribution, or some other sensible value. | |
| If specified, the following entry must be present: | |
| ``translation_table``. | |
| See ``IBMModel`` for the type and purpose of this table. | |
| :type probability_tables: dict[str]: object | |
| """ | |
| super().__init__(sentence_aligned_corpus) | |
| if probability_tables is None: | |
| self.set_uniform_probabilities(sentence_aligned_corpus) | |
| else: | |
| # Set user-defined probabilities | |
| self.translation_table = probability_tables["translation_table"] | |
| for n in range(0, iterations): | |
| self.train(sentence_aligned_corpus) | |
| self.align_all(sentence_aligned_corpus) | |
| def set_uniform_probabilities(self, sentence_aligned_corpus): | |
| initial_prob = 1 / len(self.trg_vocab) | |
| if initial_prob < IBMModel.MIN_PROB: | |
| warnings.warn( | |
| "Target language vocabulary is too large (" | |
| + str(len(self.trg_vocab)) | |
| + " words). " | |
| "Results may be less accurate." | |
| ) | |
| for t in self.trg_vocab: | |
| self.translation_table[t] = defaultdict(lambda: initial_prob) | |
| def train(self, parallel_corpus): | |
| counts = Counts() | |
| for aligned_sentence in parallel_corpus: | |
| trg_sentence = aligned_sentence.words | |
| src_sentence = [None] + aligned_sentence.mots | |
| # E step (a): Compute normalization factors to weigh counts | |
| total_count = self.prob_all_alignments(src_sentence, trg_sentence) | |
| # E step (b): Collect counts | |
| for t in trg_sentence: | |
| for s in src_sentence: | |
| count = self.prob_alignment_point(s, t) | |
| normalized_count = count / total_count[t] | |
| counts.t_given_s[t][s] += normalized_count | |
| counts.any_t_given_s[s] += normalized_count | |
| # M step: Update probabilities with maximum likelihood estimate | |
| self.maximize_lexical_translation_probabilities(counts) | |
| def prob_all_alignments(self, src_sentence, trg_sentence): | |
| """ | |
| Computes the probability of all possible word alignments, | |
| expressed as a marginal distribution over target words t | |
| Each entry in the return value represents the contribution to | |
| the total alignment probability by the target word t. | |
| To obtain probability(alignment | src_sentence, trg_sentence), | |
| simply sum the entries in the return value. | |
| :return: Probability of t for all s in ``src_sentence`` | |
| :rtype: dict(str): float | |
| """ | |
| alignment_prob_for_t = defaultdict(lambda: 0.0) | |
| for t in trg_sentence: | |
| for s in src_sentence: | |
| alignment_prob_for_t[t] += self.prob_alignment_point(s, t) | |
| return alignment_prob_for_t | |
| def prob_alignment_point(self, s, t): | |
| """ | |
| Probability that word ``t`` in the target sentence is aligned to | |
| word ``s`` in the source sentence | |
| """ | |
| return self.translation_table[t][s] | |
| def prob_t_a_given_s(self, alignment_info): | |
| """ | |
| Probability of target sentence and an alignment given the | |
| source sentence | |
| """ | |
| prob = 1.0 | |
| for j, i in enumerate(alignment_info.alignment): | |
| if j == 0: | |
| continue # skip the dummy zeroeth element | |
| trg_word = alignment_info.trg_sentence[j] | |
| src_word = alignment_info.src_sentence[i] | |
| prob *= self.translation_table[trg_word][src_word] | |
| return max(prob, IBMModel.MIN_PROB) | |
| def align_all(self, parallel_corpus): | |
| for sentence_pair in parallel_corpus: | |
| self.align(sentence_pair) | |
| def align(self, sentence_pair): | |
| """ | |
| Determines the best word alignment for one sentence pair from | |
| the corpus that the model was trained on. | |
| The best alignment will be set in ``sentence_pair`` when the | |
| method returns. In contrast with the internal implementation of | |
| IBM models, the word indices in the ``Alignment`` are zero- | |
| indexed, not one-indexed. | |
| :param sentence_pair: A sentence in the source language and its | |
| counterpart sentence in the target language | |
| :type sentence_pair: AlignedSent | |
| """ | |
| best_alignment = [] | |
| for j, trg_word in enumerate(sentence_pair.words): | |
| # Initialize trg_word to align with the NULL token | |
| best_prob = max(self.translation_table[trg_word][None], IBMModel.MIN_PROB) | |
| best_alignment_point = None | |
| for i, src_word in enumerate(sentence_pair.mots): | |
| align_prob = self.translation_table[trg_word][src_word] | |
| if align_prob >= best_prob: # prefer newer word in case of tie | |
| best_prob = align_prob | |
| best_alignment_point = i | |
| best_alignment.append((j, best_alignment_point)) | |
| sentence_pair.alignment = Alignment(best_alignment) | |