peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/lib
/function_base.pyi
import sys | |
from collections.abc import Sequence, Iterator, Callable, Iterable | |
from typing import ( | |
Literal as L, | |
Any, | |
TypeVar, | |
overload, | |
Protocol, | |
SupportsIndex, | |
SupportsInt, | |
) | |
if sys.version_info >= (3, 10): | |
from typing import TypeGuard | |
else: | |
from typing_extensions import TypeGuard | |
from numpy import ( | |
vectorize as vectorize, | |
ufunc, | |
generic, | |
floating, | |
complexfloating, | |
intp, | |
float64, | |
complex128, | |
timedelta64, | |
datetime64, | |
object_, | |
_OrderKACF, | |
) | |
from numpy._typing import ( | |
NDArray, | |
ArrayLike, | |
DTypeLike, | |
_ShapeLike, | |
_ScalarLike_co, | |
_DTypeLike, | |
_ArrayLike, | |
_ArrayLikeInt_co, | |
_ArrayLikeFloat_co, | |
_ArrayLikeComplex_co, | |
_ArrayLikeTD64_co, | |
_ArrayLikeDT64_co, | |
_ArrayLikeObject_co, | |
_FloatLike_co, | |
_ComplexLike_co, | |
) | |
from numpy.core.function_base import ( | |
add_newdoc as add_newdoc, | |
) | |
from numpy.core.multiarray import ( | |
add_docstring as add_docstring, | |
bincount as bincount, | |
) | |
from numpy.core.umath import _add_newdoc_ufunc | |
_T = TypeVar("_T") | |
_T_co = TypeVar("_T_co", covariant=True) | |
_SCT = TypeVar("_SCT", bound=generic) | |
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) | |
_2Tuple = tuple[_T, _T] | |
class _TrimZerosSequence(Protocol[_T_co]): | |
def __len__(self) -> int: ... | |
def __getitem__(self, key: slice, /) -> _T_co: ... | |
def __iter__(self) -> Iterator[Any]: ... | |
class _SupportsWriteFlush(Protocol): | |
def write(self, s: str, /) -> object: ... | |
def flush(self) -> object: ... | |
__all__: list[str] | |
# NOTE: This is in reality a re-export of `np.core.umath._add_newdoc_ufunc` | |
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None: ... | |
def rot90( | |
m: _ArrayLike[_SCT], | |
k: int = ..., | |
axes: tuple[int, int] = ..., | |
) -> NDArray[_SCT]: ... | |
def rot90( | |
m: ArrayLike, | |
k: int = ..., | |
axes: tuple[int, int] = ..., | |
) -> NDArray[Any]: ... | |
def flip(m: _SCT, axis: None = ...) -> _SCT: ... | |
def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ... | |
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]: ... | |
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]: ... | |
def iterable(y: object) -> TypeGuard[Iterable[Any]]: ... | |
def average( | |
a: _ArrayLikeFloat_co, | |
axis: None = ..., | |
weights: None | _ArrayLikeFloat_co= ..., | |
returned: L[False] = ..., | |
keepdims: L[False] = ..., | |
) -> floating[Any]: ... | |
def average( | |
a: _ArrayLikeComplex_co, | |
axis: None = ..., | |
weights: None | _ArrayLikeComplex_co = ..., | |
returned: L[False] = ..., | |
keepdims: L[False] = ..., | |
) -> complexfloating[Any, Any]: ... | |
def average( | |
a: _ArrayLikeObject_co, | |
axis: None = ..., | |
weights: None | Any = ..., | |
returned: L[False] = ..., | |
keepdims: L[False] = ..., | |
) -> Any: ... | |
def average( | |
a: _ArrayLikeFloat_co, | |
axis: None = ..., | |
weights: None | _ArrayLikeFloat_co= ..., | |
returned: L[True] = ..., | |
keepdims: L[False] = ..., | |
) -> _2Tuple[floating[Any]]: ... | |
def average( | |
a: _ArrayLikeComplex_co, | |
axis: None = ..., | |
weights: None | _ArrayLikeComplex_co = ..., | |
returned: L[True] = ..., | |
keepdims: L[False] = ..., | |
) -> _2Tuple[complexfloating[Any, Any]]: ... | |
def average( | |
a: _ArrayLikeObject_co, | |
axis: None = ..., | |
weights: None | Any = ..., | |
returned: L[True] = ..., | |
keepdims: L[False] = ..., | |
) -> _2Tuple[Any]: ... | |
def average( | |
a: _ArrayLikeComplex_co | _ArrayLikeObject_co, | |
axis: None | _ShapeLike = ..., | |
weights: None | Any = ..., | |
returned: L[False] = ..., | |
keepdims: bool = ..., | |
) -> Any: ... | |
def average( | |
a: _ArrayLikeComplex_co | _ArrayLikeObject_co, | |
axis: None | _ShapeLike = ..., | |
weights: None | Any = ..., | |
returned: L[True] = ..., | |
keepdims: bool = ..., | |
) -> _2Tuple[Any]: ... | |
def asarray_chkfinite( | |
a: _ArrayLike[_SCT], | |
dtype: None = ..., | |
order: _OrderKACF = ..., | |
) -> NDArray[_SCT]: ... | |
def asarray_chkfinite( | |
a: object, | |
dtype: None = ..., | |
order: _OrderKACF = ..., | |
) -> NDArray[Any]: ... | |
def asarray_chkfinite( | |
a: Any, | |
dtype: _DTypeLike[_SCT], | |
order: _OrderKACF = ..., | |
) -> NDArray[_SCT]: ... | |
def asarray_chkfinite( | |
a: Any, | |
dtype: DTypeLike, | |
order: _OrderKACF = ..., | |
) -> NDArray[Any]: ... | |
# TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate` | |
# xref python/mypy#8645 | |
def piecewise( | |
x: _ArrayLike[_SCT], | |
condlist: ArrayLike, | |
funclist: Sequence[Any | Callable[..., Any]], | |
*args: Any, | |
**kw: Any, | |
) -> NDArray[_SCT]: ... | |
def piecewise( | |
x: ArrayLike, | |
condlist: ArrayLike, | |
funclist: Sequence[Any | Callable[..., Any]], | |
*args: Any, | |
**kw: Any, | |
) -> NDArray[Any]: ... | |
def select( | |
condlist: Sequence[ArrayLike], | |
choicelist: Sequence[ArrayLike], | |
default: ArrayLike = ..., | |
) -> NDArray[Any]: ... | |
def copy( | |
a: _ArrayType, | |
order: _OrderKACF, | |
subok: L[True], | |
) -> _ArrayType: ... | |
def copy( | |
a: _ArrayType, | |
order: _OrderKACF = ..., | |
*, | |
subok: L[True], | |
) -> _ArrayType: ... | |
def copy( | |
a: _ArrayLike[_SCT], | |
order: _OrderKACF = ..., | |
subok: L[False] = ..., | |
) -> NDArray[_SCT]: ... | |
def copy( | |
a: ArrayLike, | |
order: _OrderKACF = ..., | |
subok: L[False] = ..., | |
) -> NDArray[Any]: ... | |
def gradient( | |
f: ArrayLike, | |
*varargs: ArrayLike, | |
axis: None | _ShapeLike = ..., | |
edge_order: L[1, 2] = ..., | |
) -> Any: ... | |
def diff( | |
a: _T, | |
n: L[0], | |
axis: SupportsIndex = ..., | |
prepend: ArrayLike = ..., | |
append: ArrayLike = ..., | |
) -> _T: ... | |
def diff( | |
a: ArrayLike, | |
n: int = ..., | |
axis: SupportsIndex = ..., | |
prepend: ArrayLike = ..., | |
append: ArrayLike = ..., | |
) -> NDArray[Any]: ... | |
def interp( | |
x: _ArrayLikeFloat_co, | |
xp: _ArrayLikeFloat_co, | |
fp: _ArrayLikeFloat_co, | |
left: None | _FloatLike_co = ..., | |
right: None | _FloatLike_co = ..., | |
period: None | _FloatLike_co = ..., | |
) -> NDArray[float64]: ... | |
def interp( | |
x: _ArrayLikeFloat_co, | |
xp: _ArrayLikeFloat_co, | |
fp: _ArrayLikeComplex_co, | |
left: None | _ComplexLike_co = ..., | |
right: None | _ComplexLike_co = ..., | |
period: None | _FloatLike_co = ..., | |
) -> NDArray[complex128]: ... | |
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]: ... | |
def angle(z: object_, deg: bool = ...) -> Any: ... | |
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]: ... | |
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ... | |
def unwrap( | |
p: _ArrayLikeFloat_co, | |
discont: None | float = ..., | |
axis: int = ..., | |
*, | |
period: float = ..., | |
) -> NDArray[floating[Any]]: ... | |
def unwrap( | |
p: _ArrayLikeObject_co, | |
discont: None | float = ..., | |
axis: int = ..., | |
*, | |
period: float = ..., | |
) -> NDArray[object_]: ... | |
def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]: ... | |
def trim_zeros( | |
filt: _TrimZerosSequence[_T], | |
trim: L["f", "b", "fb", "bf"] = ..., | |
) -> _T: ... | |
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... | |
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ... | |
def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ... | |
def disp( | |
mesg: object, | |
device: None | _SupportsWriteFlush = ..., | |
linefeed: bool = ..., | |
) -> None: ... | |
def cov( | |
m: _ArrayLikeFloat_co, | |
y: None | _ArrayLikeFloat_co = ..., | |
rowvar: bool = ..., | |
bias: bool = ..., | |
ddof: None | SupportsIndex | SupportsInt = ..., | |
fweights: None | ArrayLike = ..., | |
aweights: None | ArrayLike = ..., | |
*, | |
dtype: None = ..., | |
) -> NDArray[floating[Any]]: ... | |
def cov( | |
m: _ArrayLikeComplex_co, | |
y: None | _ArrayLikeComplex_co = ..., | |
rowvar: bool = ..., | |
bias: bool = ..., | |
ddof: None | SupportsIndex | SupportsInt = ..., | |
fweights: None | ArrayLike = ..., | |
aweights: None | ArrayLike = ..., | |
*, | |
dtype: None = ..., | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
def cov( | |
m: _ArrayLikeComplex_co, | |
y: None | _ArrayLikeComplex_co = ..., | |
rowvar: bool = ..., | |
bias: bool = ..., | |
ddof: None | SupportsIndex | SupportsInt = ..., | |
fweights: None | ArrayLike = ..., | |
aweights: None | ArrayLike = ..., | |
*, | |
dtype: _DTypeLike[_SCT], | |
) -> NDArray[_SCT]: ... | |
def cov( | |
m: _ArrayLikeComplex_co, | |
y: None | _ArrayLikeComplex_co = ..., | |
rowvar: bool = ..., | |
bias: bool = ..., | |
ddof: None | SupportsIndex | SupportsInt = ..., | |
fweights: None | ArrayLike = ..., | |
aweights: None | ArrayLike = ..., | |
*, | |
dtype: DTypeLike, | |
) -> NDArray[Any]: ... | |
# NOTE `bias` and `ddof` have been deprecated | |
def corrcoef( | |
m: _ArrayLikeFloat_co, | |
y: None | _ArrayLikeFloat_co = ..., | |
rowvar: bool = ..., | |
*, | |
dtype: None = ..., | |
) -> NDArray[floating[Any]]: ... | |
def corrcoef( | |
m: _ArrayLikeComplex_co, | |
y: None | _ArrayLikeComplex_co = ..., | |
rowvar: bool = ..., | |
*, | |
dtype: None = ..., | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
def corrcoef( | |
m: _ArrayLikeComplex_co, | |
y: None | _ArrayLikeComplex_co = ..., | |
rowvar: bool = ..., | |
*, | |
dtype: _DTypeLike[_SCT], | |
) -> NDArray[_SCT]: ... | |
def corrcoef( | |
m: _ArrayLikeComplex_co, | |
y: None | _ArrayLikeComplex_co = ..., | |
rowvar: bool = ..., | |
*, | |
dtype: DTypeLike, | |
) -> NDArray[Any]: ... | |
def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]: ... | |
def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]: ... | |
def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]: ... | |
def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]: ... | |
def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... | |
def kaiser( | |
M: _FloatLike_co, | |
beta: _FloatLike_co, | |
) -> NDArray[floating[Any]]: ... | |
def sinc(x: _FloatLike_co) -> floating[Any]: ... | |
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]: ... | |
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... | |
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
# NOTE: Deprecated | |
# def msort(a: ArrayLike) -> NDArray[Any]: ... | |
def median( | |
a: _ArrayLikeFloat_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
keepdims: L[False] = ..., | |
) -> floating[Any]: ... | |
def median( | |
a: _ArrayLikeComplex_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
keepdims: L[False] = ..., | |
) -> complexfloating[Any, Any]: ... | |
def median( | |
a: _ArrayLikeTD64_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
keepdims: L[False] = ..., | |
) -> timedelta64: ... | |
def median( | |
a: _ArrayLikeObject_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
keepdims: L[False] = ..., | |
) -> Any: ... | |
def median( | |
a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
keepdims: bool = ..., | |
) -> Any: ... | |
def median( | |
a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, | |
axis: None | _ShapeLike = ..., | |
out: _ArrayType = ..., | |
overwrite_input: bool = ..., | |
keepdims: bool = ..., | |
) -> _ArrayType: ... | |
_MethodKind = L[ | |
"inverted_cdf", | |
"averaged_inverted_cdf", | |
"closest_observation", | |
"interpolated_inverted_cdf", | |
"hazen", | |
"weibull", | |
"linear", | |
"median_unbiased", | |
"normal_unbiased", | |
"lower", | |
"higher", | |
"midpoint", | |
"nearest", | |
] | |
def percentile( | |
a: _ArrayLikeFloat_co, | |
q: _FloatLike_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> floating[Any]: ... | |
def percentile( | |
a: _ArrayLikeComplex_co, | |
q: _FloatLike_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> complexfloating[Any, Any]: ... | |
def percentile( | |
a: _ArrayLikeTD64_co, | |
q: _FloatLike_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> timedelta64: ... | |
def percentile( | |
a: _ArrayLikeDT64_co, | |
q: _FloatLike_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> datetime64: ... | |
def percentile( | |
a: _ArrayLikeObject_co, | |
q: _FloatLike_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> Any: ... | |
def percentile( | |
a: _ArrayLikeFloat_co, | |
q: _ArrayLikeFloat_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> NDArray[floating[Any]]: ... | |
def percentile( | |
a: _ArrayLikeComplex_co, | |
q: _ArrayLikeFloat_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
def percentile( | |
a: _ArrayLikeTD64_co, | |
q: _ArrayLikeFloat_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> NDArray[timedelta64]: ... | |
def percentile( | |
a: _ArrayLikeDT64_co, | |
q: _ArrayLikeFloat_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> NDArray[datetime64]: ... | |
def percentile( | |
a: _ArrayLikeObject_co, | |
q: _ArrayLikeFloat_co, | |
axis: None = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: L[False] = ..., | |
) -> NDArray[object_]: ... | |
def percentile( | |
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, | |
q: _ArrayLikeFloat_co, | |
axis: None | _ShapeLike = ..., | |
out: None = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: bool = ..., | |
) -> Any: ... | |
def percentile( | |
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, | |
q: _ArrayLikeFloat_co, | |
axis: None | _ShapeLike = ..., | |
out: _ArrayType = ..., | |
overwrite_input: bool = ..., | |
method: _MethodKind = ..., | |
keepdims: bool = ..., | |
) -> _ArrayType: ... | |
# NOTE: Not an alias, but they do have identical signatures | |
# (that we can reuse) | |
quantile = percentile | |
# TODO: Returns a scalar for <= 1D array-likes; returns an ndarray otherwise | |
def trapz( | |
y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, | |
x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ..., | |
dx: float = ..., | |
axis: SupportsIndex = ..., | |
) -> Any: ... | |
def meshgrid( | |
*xi: ArrayLike, | |
copy: bool = ..., | |
sparse: bool = ..., | |
indexing: L["xy", "ij"] = ..., | |
) -> list[NDArray[Any]]: ... | |
def delete( | |
arr: _ArrayLike[_SCT], | |
obj: slice | _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
) -> NDArray[_SCT]: ... | |
def delete( | |
arr: ArrayLike, | |
obj: slice | _ArrayLikeInt_co, | |
axis: None | SupportsIndex = ..., | |
) -> NDArray[Any]: ... | |
def insert( | |
arr: _ArrayLike[_SCT], | |
obj: slice | _ArrayLikeInt_co, | |
values: ArrayLike, | |
axis: None | SupportsIndex = ..., | |
) -> NDArray[_SCT]: ... | |
def insert( | |
arr: ArrayLike, | |
obj: slice | _ArrayLikeInt_co, | |
values: ArrayLike, | |
axis: None | SupportsIndex = ..., | |
) -> NDArray[Any]: ... | |
def append( | |
arr: ArrayLike, | |
values: ArrayLike, | |
axis: None | SupportsIndex = ..., | |
) -> NDArray[Any]: ... | |
def digitize( | |
x: _FloatLike_co, | |
bins: _ArrayLikeFloat_co, | |
right: bool = ..., | |
) -> intp: ... | |
def digitize( | |
x: _ArrayLikeFloat_co, | |
bins: _ArrayLikeFloat_co, | |
right: bool = ..., | |
) -> NDArray[intp]: ... | |