peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/lm
/smoothing.py
| # Natural Language Toolkit: Language Model Unit Tests | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Ilia Kurenkov <[email protected]> | |
| # Manu Joseph <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """Smoothing algorithms for language modeling. | |
| According to Chen & Goodman 1995 these should work with both Backoff and | |
| Interpolation. | |
| """ | |
| from operator import methodcaller | |
| from nltk.lm.api import Smoothing | |
| from nltk.probability import ConditionalFreqDist | |
| def _count_values_gt_zero(distribution): | |
| """Count values that are greater than zero in a distribution. | |
| Assumes distribution is either a mapping with counts as values or | |
| an instance of `nltk.ConditionalFreqDist`. | |
| """ | |
| as_count = ( | |
| methodcaller("N") | |
| if isinstance(distribution, ConditionalFreqDist) | |
| else lambda count: count | |
| ) | |
| # We explicitly check that values are > 0 to guard against negative counts. | |
| return sum( | |
| 1 for dist_or_count in distribution.values() if as_count(dist_or_count) > 0 | |
| ) | |
| class WittenBell(Smoothing): | |
| """Witten-Bell smoothing.""" | |
| def __init__(self, vocabulary, counter, **kwargs): | |
| super().__init__(vocabulary, counter, **kwargs) | |
| def alpha_gamma(self, word, context): | |
| alpha = self.counts[context].freq(word) | |
| gamma = self._gamma(context) | |
| return (1.0 - gamma) * alpha, gamma | |
| def _gamma(self, context): | |
| n_plus = _count_values_gt_zero(self.counts[context]) | |
| return n_plus / (n_plus + self.counts[context].N()) | |
| def unigram_score(self, word): | |
| return self.counts.unigrams.freq(word) | |
| class AbsoluteDiscounting(Smoothing): | |
| """Smoothing with absolute discount.""" | |
| def __init__(self, vocabulary, counter, discount=0.75, **kwargs): | |
| super().__init__(vocabulary, counter, **kwargs) | |
| self.discount = discount | |
| def alpha_gamma(self, word, context): | |
| alpha = ( | |
| max(self.counts[context][word] - self.discount, 0) | |
| / self.counts[context].N() | |
| ) | |
| gamma = self._gamma(context) | |
| return alpha, gamma | |
| def _gamma(self, context): | |
| n_plus = _count_values_gt_zero(self.counts[context]) | |
| return (self.discount * n_plus) / self.counts[context].N() | |
| def unigram_score(self, word): | |
| return self.counts.unigrams.freq(word) | |
| class KneserNey(Smoothing): | |
| """Kneser-Ney Smoothing. | |
| This is an extension of smoothing with a discount. | |
| Resources: | |
| - https://pages.ucsd.edu/~rlevy/lign256/winter2008/kneser_ney_mini_example.pdf | |
| - https://www.youtube.com/watch?v=ody1ysUTD7o | |
| - https://medium.com/@dennyc/a-simple-numerical-example-for-kneser-ney-smoothing-nlp-4600addf38b8 | |
| - https://www.cl.uni-heidelberg.de/courses/ss15/smt/scribe6.pdf | |
| - https://www-i6.informatik.rwth-aachen.de/publications/download/951/Kneser-ICASSP-1995.pdf | |
| """ | |
| def __init__(self, vocabulary, counter, order, discount=0.1, **kwargs): | |
| super().__init__(vocabulary, counter, **kwargs) | |
| self.discount = discount | |
| self._order = order | |
| def unigram_score(self, word): | |
| word_continuation_count, total_count = self._continuation_counts(word) | |
| return word_continuation_count / total_count | |
| def alpha_gamma(self, word, context): | |
| prefix_counts = self.counts[context] | |
| word_continuation_count, total_count = ( | |
| (prefix_counts[word], prefix_counts.N()) | |
| if len(context) + 1 == self._order | |
| else self._continuation_counts(word, context) | |
| ) | |
| alpha = max(word_continuation_count - self.discount, 0.0) / total_count | |
| gamma = self.discount * _count_values_gt_zero(prefix_counts) / total_count | |
| return alpha, gamma | |
| def _continuation_counts(self, word, context=tuple()): | |
| """Count continuations that end with context and word. | |
| Continuations track unique ngram "types", regardless of how many | |
| instances were observed for each "type". | |
| This is different than raw ngram counts which track number of instances. | |
| """ | |
| higher_order_ngrams_with_context = ( | |
| counts | |
| for prefix_ngram, counts in self.counts[len(context) + 2].items() | |
| if prefix_ngram[1:] == context | |
| ) | |
| higher_order_ngrams_with_word_count, total = 0, 0 | |
| for counts in higher_order_ngrams_with_context: | |
| higher_order_ngrams_with_word_count += int(counts[word] > 0) | |
| total += _count_values_gt_zero(counts) | |
| return higher_order_ngrams_with_word_count, total | |