peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pydantic
/_internal
/_dataclasses.py
"""Private logic for creating pydantic dataclasses.""" | |
from __future__ import annotations as _annotations | |
import dataclasses | |
import typing | |
import warnings | |
from functools import partial, wraps | |
from typing import Any, Callable, ClassVar | |
from pydantic_core import ( | |
ArgsKwargs, | |
SchemaSerializer, | |
SchemaValidator, | |
core_schema, | |
) | |
from typing_extensions import TypeGuard | |
from ..errors import PydanticUndefinedAnnotation | |
from ..fields import FieldInfo | |
from ..plugin._schema_validator import create_schema_validator | |
from ..warnings import PydanticDeprecatedSince20 | |
from . import _config, _decorators, _typing_extra | |
from ._fields import collect_dataclass_fields | |
from ._generate_schema import GenerateSchema | |
from ._generics import get_standard_typevars_map | |
from ._mock_val_ser import set_dataclass_mocks | |
from ._schema_generation_shared import CallbackGetCoreSchemaHandler | |
from ._signature import generate_pydantic_signature | |
if typing.TYPE_CHECKING: | |
from ..config import ConfigDict | |
class StandardDataclass(typing.Protocol): | |
__dataclass_fields__: ClassVar[dict[str, Any]] | |
__dataclass_params__: ClassVar[Any] # in reality `dataclasses._DataclassParams` | |
__post_init__: ClassVar[Callable[..., None]] | |
def __init__(self, *args: object, **kwargs: object) -> None: | |
pass | |
class PydanticDataclass(StandardDataclass, typing.Protocol): | |
"""A protocol containing attributes only available once a class has been decorated as a Pydantic dataclass. | |
Attributes: | |
__pydantic_config__: Pydantic-specific configuration settings for the dataclass. | |
__pydantic_complete__: Whether dataclass building is completed, or if there are still undefined fields. | |
__pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer. | |
__pydantic_decorators__: Metadata containing the decorators defined on the dataclass. | |
__pydantic_fields__: Metadata about the fields defined on the dataclass. | |
__pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the dataclass. | |
__pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the dataclass. | |
""" | |
__pydantic_config__: ClassVar[ConfigDict] | |
__pydantic_complete__: ClassVar[bool] | |
__pydantic_core_schema__: ClassVar[core_schema.CoreSchema] | |
__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] | |
__pydantic_fields__: ClassVar[dict[str, FieldInfo]] | |
__pydantic_serializer__: ClassVar[SchemaSerializer] | |
__pydantic_validator__: ClassVar[SchemaValidator] | |
else: | |
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 | |
# and https://youtrack.jetbrains.com/issue/PY-51428 | |
DeprecationWarning = PydanticDeprecatedSince20 | |
def set_dataclass_fields( | |
cls: type[StandardDataclass], | |
types_namespace: dict[str, Any] | None = None, | |
config_wrapper: _config.ConfigWrapper | None = None, | |
) -> None: | |
"""Collect and set `cls.__pydantic_fields__`. | |
Args: | |
cls: The class. | |
types_namespace: The types namespace, defaults to `None`. | |
config_wrapper: The config wrapper instance, defaults to `None`. | |
""" | |
typevars_map = get_standard_typevars_map(cls) | |
fields = collect_dataclass_fields(cls, types_namespace, typevars_map=typevars_map, config_wrapper=config_wrapper) | |
cls.__pydantic_fields__ = fields # type: ignore | |
def complete_dataclass( | |
cls: type[Any], | |
config_wrapper: _config.ConfigWrapper, | |
*, | |
raise_errors: bool = True, | |
types_namespace: dict[str, Any] | None, | |
) -> bool: | |
"""Finish building a pydantic dataclass. | |
This logic is called on a class which has already been wrapped in `dataclasses.dataclass()`. | |
This is somewhat analogous to `pydantic._internal._model_construction.complete_model_class`. | |
Args: | |
cls: The class. | |
config_wrapper: The config wrapper instance. | |
raise_errors: Whether to raise errors, defaults to `True`. | |
types_namespace: The types namespace. | |
Returns: | |
`True` if building a pydantic dataclass is successfully completed, `False` otherwise. | |
Raises: | |
PydanticUndefinedAnnotation: If `raise_error` is `True` and there is an undefined annotations. | |
""" | |
if hasattr(cls, '__post_init_post_parse__'): | |
warnings.warn( | |
'Support for `__post_init_post_parse__` has been dropped, the method will not be called', DeprecationWarning | |
) | |
if types_namespace is None: | |
types_namespace = _typing_extra.get_cls_types_namespace(cls) | |
set_dataclass_fields(cls, types_namespace, config_wrapper=config_wrapper) | |
typevars_map = get_standard_typevars_map(cls) | |
gen_schema = GenerateSchema( | |
config_wrapper, | |
types_namespace, | |
typevars_map, | |
) | |
# This needs to be called before we change the __init__ | |
sig = generate_pydantic_signature( | |
init=cls.__init__, | |
fields=cls.__pydantic_fields__, # type: ignore | |
config_wrapper=config_wrapper, | |
is_dataclass=True, | |
) | |
# dataclass.__init__ must be defined here so its `__qualname__` can be changed since functions can't be copied. | |
def __init__(__dataclass_self__: PydanticDataclass, *args: Any, **kwargs: Any) -> None: | |
__tracebackhide__ = True | |
s = __dataclass_self__ | |
s.__pydantic_validator__.validate_python(ArgsKwargs(args, kwargs), self_instance=s) | |
__init__.__qualname__ = f'{cls.__qualname__}.__init__' | |
cls.__init__ = __init__ # type: ignore | |
cls.__pydantic_config__ = config_wrapper.config_dict # type: ignore | |
cls.__signature__ = sig # type: ignore | |
get_core_schema = getattr(cls, '__get_pydantic_core_schema__', None) | |
try: | |
if get_core_schema: | |
schema = get_core_schema( | |
cls, | |
CallbackGetCoreSchemaHandler( | |
partial(gen_schema.generate_schema, from_dunder_get_core_schema=False), | |
gen_schema, | |
ref_mode='unpack', | |
), | |
) | |
else: | |
schema = gen_schema.generate_schema(cls, from_dunder_get_core_schema=False) | |
except PydanticUndefinedAnnotation as e: | |
if raise_errors: | |
raise | |
set_dataclass_mocks(cls, cls.__name__, f'`{e.name}`') | |
return False | |
core_config = config_wrapper.core_config(cls) | |
try: | |
schema = gen_schema.clean_schema(schema) | |
except gen_schema.CollectedInvalid: | |
set_dataclass_mocks(cls, cls.__name__, 'all referenced types') | |
return False | |
# We are about to set all the remaining required properties expected for this cast; | |
# __pydantic_decorators__ and __pydantic_fields__ should already be set | |
cls = typing.cast('type[PydanticDataclass]', cls) | |
# debug(schema) | |
cls.__pydantic_core_schema__ = schema | |
cls.__pydantic_validator__ = validator = create_schema_validator( | |
schema, cls, cls.__module__, cls.__qualname__, 'dataclass', core_config, config_wrapper.plugin_settings | |
) | |
cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config) | |
if config_wrapper.validate_assignment: | |
def validated_setattr(instance: Any, field: str, value: str, /) -> None: | |
validator.validate_assignment(instance, field, value) | |
cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore | |
return True | |
def is_builtin_dataclass(_cls: type[Any]) -> TypeGuard[type[StandardDataclass]]: | |
"""Returns True if a class is a stdlib dataclass and *not* a pydantic dataclass. | |
We check that | |
- `_cls` is a dataclass | |
- `_cls` does not inherit from a processed pydantic dataclass (and thus have a `__pydantic_validator__`) | |
- `_cls` does not have any annotations that are not dataclass fields | |
e.g. | |
```py | |
import dataclasses | |
import pydantic.dataclasses | |
@dataclasses.dataclass | |
class A: | |
x: int | |
@pydantic.dataclasses.dataclass | |
class B(A): | |
y: int | |
``` | |
In this case, when we first check `B`, we make an extra check and look at the annotations ('y'), | |
which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x') | |
Args: | |
cls: The class. | |
Returns: | |
`True` if the class is a stdlib dataclass, `False` otherwise. | |
""" | |
return ( | |
dataclasses.is_dataclass(_cls) | |
and not hasattr(_cls, '__pydantic_validator__') | |
and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {}))) | |
) | |