peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/cluster
/tests
/test_birch.py
""" | |
Tests for the birch clustering algorithm. | |
""" | |
import numpy as np | |
import pytest | |
from sklearn.cluster import AgglomerativeClustering, Birch | |
from sklearn.cluster.tests.common import generate_clustered_data | |
from sklearn.datasets import make_blobs | |
from sklearn.exceptions import ConvergenceWarning | |
from sklearn.metrics import pairwise_distances_argmin, v_measure_score | |
from sklearn.utils._testing import assert_allclose, assert_array_equal | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
def test_n_samples_leaves_roots(global_random_seed, global_dtype): | |
# Sanity check for the number of samples in leaves and roots | |
X, y = make_blobs(n_samples=10, random_state=global_random_seed) | |
X = X.astype(global_dtype, copy=False) | |
brc = Birch() | |
brc.fit(X) | |
n_samples_root = sum([sc.n_samples_ for sc in brc.root_.subclusters_]) | |
n_samples_leaves = sum( | |
[sc.n_samples_ for leaf in brc._get_leaves() for sc in leaf.subclusters_] | |
) | |
assert n_samples_leaves == X.shape[0] | |
assert n_samples_root == X.shape[0] | |
def test_partial_fit(global_random_seed, global_dtype): | |
# Test that fit is equivalent to calling partial_fit multiple times | |
X, y = make_blobs(n_samples=100, random_state=global_random_seed) | |
X = X.astype(global_dtype, copy=False) | |
brc = Birch(n_clusters=3) | |
brc.fit(X) | |
brc_partial = Birch(n_clusters=None) | |
brc_partial.partial_fit(X[:50]) | |
brc_partial.partial_fit(X[50:]) | |
assert_allclose(brc_partial.subcluster_centers_, brc.subcluster_centers_) | |
# Test that same global labels are obtained after calling partial_fit | |
# with None | |
brc_partial.set_params(n_clusters=3) | |
brc_partial.partial_fit(None) | |
assert_array_equal(brc_partial.subcluster_labels_, brc.subcluster_labels_) | |
def test_birch_predict(global_random_seed, global_dtype): | |
# Test the predict method predicts the nearest centroid. | |
rng = np.random.RandomState(global_random_seed) | |
X = generate_clustered_data(n_clusters=3, n_features=3, n_samples_per_cluster=10) | |
X = X.astype(global_dtype, copy=False) | |
# n_samples * n_samples_per_cluster | |
shuffle_indices = np.arange(30) | |
rng.shuffle(shuffle_indices) | |
X_shuffle = X[shuffle_indices, :] | |
brc = Birch(n_clusters=4, threshold=1.0) | |
brc.fit(X_shuffle) | |
# Birch must preserve inputs' dtype | |
assert brc.subcluster_centers_.dtype == global_dtype | |
assert_array_equal(brc.labels_, brc.predict(X_shuffle)) | |
centroids = brc.subcluster_centers_ | |
nearest_centroid = brc.subcluster_labels_[ | |
pairwise_distances_argmin(X_shuffle, centroids) | |
] | |
assert_allclose(v_measure_score(nearest_centroid, brc.labels_), 1.0) | |
def test_n_clusters(global_random_seed, global_dtype): | |
# Test that n_clusters param works properly | |
X, y = make_blobs(n_samples=100, centers=10, random_state=global_random_seed) | |
X = X.astype(global_dtype, copy=False) | |
brc1 = Birch(n_clusters=10) | |
brc1.fit(X) | |
assert len(brc1.subcluster_centers_) > 10 | |
assert len(np.unique(brc1.labels_)) == 10 | |
# Test that n_clusters = Agglomerative Clustering gives | |
# the same results. | |
gc = AgglomerativeClustering(n_clusters=10) | |
brc2 = Birch(n_clusters=gc) | |
brc2.fit(X) | |
assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_) | |
assert_array_equal(brc1.labels_, brc2.labels_) | |
# Test that a small number of clusters raises a warning. | |
brc4 = Birch(threshold=10000.0) | |
with pytest.warns(ConvergenceWarning): | |
brc4.fit(X) | |
def test_sparse_X(global_random_seed, global_dtype, csr_container): | |
# Test that sparse and dense data give same results | |
X, y = make_blobs(n_samples=100, centers=10, random_state=global_random_seed) | |
X = X.astype(global_dtype, copy=False) | |
brc = Birch(n_clusters=10) | |
brc.fit(X) | |
csr = csr_container(X) | |
brc_sparse = Birch(n_clusters=10) | |
brc_sparse.fit(csr) | |
# Birch must preserve inputs' dtype | |
assert brc_sparse.subcluster_centers_.dtype == global_dtype | |
assert_array_equal(brc.labels_, brc_sparse.labels_) | |
assert_allclose(brc.subcluster_centers_, brc_sparse.subcluster_centers_) | |
def test_partial_fit_second_call_error_checks(): | |
# second partial fit calls will error when n_features is not consistent | |
# with the first call | |
X, y = make_blobs(n_samples=100) | |
brc = Birch(n_clusters=3) | |
brc.partial_fit(X, y) | |
msg = "X has 1 features, but Birch is expecting 2 features" | |
with pytest.raises(ValueError, match=msg): | |
brc.partial_fit(X[:, [0]], y) | |
def check_branching_factor(node, branching_factor): | |
subclusters = node.subclusters_ | |
assert branching_factor >= len(subclusters) | |
for cluster in subclusters: | |
if cluster.child_: | |
check_branching_factor(cluster.child_, branching_factor) | |
def test_branching_factor(global_random_seed, global_dtype): | |
# Test that nodes have at max branching_factor number of subclusters | |
X, y = make_blobs(random_state=global_random_seed) | |
X = X.astype(global_dtype, copy=False) | |
branching_factor = 9 | |
# Purposefully set a low threshold to maximize the subclusters. | |
brc = Birch(n_clusters=None, branching_factor=branching_factor, threshold=0.01) | |
brc.fit(X) | |
check_branching_factor(brc.root_, branching_factor) | |
brc = Birch(n_clusters=3, branching_factor=branching_factor, threshold=0.01) | |
brc.fit(X) | |
check_branching_factor(brc.root_, branching_factor) | |
def check_threshold(birch_instance, threshold): | |
"""Use the leaf linked list for traversal""" | |
current_leaf = birch_instance.dummy_leaf_.next_leaf_ | |
while current_leaf: | |
subclusters = current_leaf.subclusters_ | |
for sc in subclusters: | |
assert threshold >= sc.radius | |
current_leaf = current_leaf.next_leaf_ | |
def test_threshold(global_random_seed, global_dtype): | |
# Test that the leaf subclusters have a threshold lesser than radius | |
X, y = make_blobs(n_samples=80, centers=4, random_state=global_random_seed) | |
X = X.astype(global_dtype, copy=False) | |
brc = Birch(threshold=0.5, n_clusters=None) | |
brc.fit(X) | |
check_threshold(brc, 0.5) | |
brc = Birch(threshold=5.0, n_clusters=None) | |
brc.fit(X) | |
check_threshold(brc, 5.0) | |
def test_birch_n_clusters_long_int(): | |
# Check that birch supports n_clusters with np.int64 dtype, for instance | |
# coming from np.arange. #16484 | |
X, _ = make_blobs(random_state=0) | |
n_clusters = np.int64(5) | |
Birch(n_clusters=n_clusters).fit(X) | |
def test_feature_names_out(): | |
"""Check `get_feature_names_out` for `Birch`.""" | |
X, _ = make_blobs(n_samples=80, n_features=4, random_state=0) | |
brc = Birch(n_clusters=4) | |
brc.fit(X) | |
n_clusters = brc.subcluster_centers_.shape[0] | |
names_out = brc.get_feature_names_out() | |
assert_array_equal([f"birch{i}" for i in range(n_clusters)], names_out) | |
def test_transform_match_across_dtypes(global_random_seed): | |
X, _ = make_blobs(n_samples=80, n_features=4, random_state=global_random_seed) | |
brc = Birch(n_clusters=4, threshold=1.1) | |
Y_64 = brc.fit_transform(X) | |
Y_32 = brc.fit_transform(X.astype(np.float32)) | |
assert_allclose(Y_64, Y_32, atol=1e-6) | |
def test_subcluster_dtype(global_dtype): | |
X = make_blobs(n_samples=80, n_features=4, random_state=0)[0].astype( | |
global_dtype, copy=False | |
) | |
brc = Birch(n_clusters=4) | |
assert brc.fit(X).subcluster_centers_.dtype == global_dtype | |
def test_both_subclusters_updated(): | |
"""Check that both subclusters are updated when a node a split, even when there are | |
duplicated data points. Non-regression test for #23269. | |
""" | |
X = np.array( | |
[ | |
[-2.6192791, -1.5053215], | |
[-2.9993038, -1.6863596], | |
[-2.3724914, -1.3438171], | |
[-2.336792, -1.3417323], | |
[-2.4089134, -1.3290224], | |
[-2.3724914, -1.3438171], | |
[-3.364009, -1.8846745], | |
[-2.3724914, -1.3438171], | |
[-2.617677, -1.5003285], | |
[-2.2960556, -1.3260119], | |
[-2.3724914, -1.3438171], | |
[-2.5459878, -1.4533926], | |
[-2.25979, -1.3003055], | |
[-2.4089134, -1.3290224], | |
[-2.3724914, -1.3438171], | |
[-2.4089134, -1.3290224], | |
[-2.5459878, -1.4533926], | |
[-2.3724914, -1.3438171], | |
[-2.9720619, -1.7058647], | |
[-2.336792, -1.3417323], | |
[-2.3724914, -1.3438171], | |
], | |
dtype=np.float32, | |
) | |
# no error | |
Birch(branching_factor=5, threshold=1e-5, n_clusters=None).fit(X) | |