peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/mixture
/_base.py
"""Base class for mixture models.""" | |
# Author: Wei Xue <[email protected]> | |
# Modified by Thierry Guillemot <[email protected]> | |
# License: BSD 3 clause | |
import warnings | |
from abc import ABCMeta, abstractmethod | |
from numbers import Integral, Real | |
from time import time | |
import numpy as np | |
from scipy.special import logsumexp | |
from .. import cluster | |
from ..base import BaseEstimator, DensityMixin, _fit_context | |
from ..cluster import kmeans_plusplus | |
from ..exceptions import ConvergenceWarning | |
from ..utils import check_random_state | |
from ..utils._param_validation import Interval, StrOptions | |
from ..utils.validation import check_is_fitted | |
def _check_shape(param, param_shape, name): | |
"""Validate the shape of the input parameter 'param'. | |
Parameters | |
---------- | |
param : array | |
param_shape : tuple | |
name : str | |
""" | |
param = np.array(param) | |
if param.shape != param_shape: | |
raise ValueError( | |
"The parameter '%s' should have the shape of %s, but got %s" | |
% (name, param_shape, param.shape) | |
) | |
class BaseMixture(DensityMixin, BaseEstimator, metaclass=ABCMeta): | |
"""Base class for mixture models. | |
This abstract class specifies an interface for all mixture classes and | |
provides basic common methods for mixture models. | |
""" | |
_parameter_constraints: dict = { | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"tol": [Interval(Real, 0.0, None, closed="left")], | |
"reg_covar": [Interval(Real, 0.0, None, closed="left")], | |
"max_iter": [Interval(Integral, 0, None, closed="left")], | |
"n_init": [Interval(Integral, 1, None, closed="left")], | |
"init_params": [ | |
StrOptions({"kmeans", "random", "random_from_data", "k-means++"}) | |
], | |
"random_state": ["random_state"], | |
"warm_start": ["boolean"], | |
"verbose": ["verbose"], | |
"verbose_interval": [Interval(Integral, 1, None, closed="left")], | |
} | |
def __init__( | |
self, | |
n_components, | |
tol, | |
reg_covar, | |
max_iter, | |
n_init, | |
init_params, | |
random_state, | |
warm_start, | |
verbose, | |
verbose_interval, | |
): | |
self.n_components = n_components | |
self.tol = tol | |
self.reg_covar = reg_covar | |
self.max_iter = max_iter | |
self.n_init = n_init | |
self.init_params = init_params | |
self.random_state = random_state | |
self.warm_start = warm_start | |
self.verbose = verbose | |
self.verbose_interval = verbose_interval | |
def _check_parameters(self, X): | |
"""Check initial parameters of the derived class. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
""" | |
pass | |
def _initialize_parameters(self, X, random_state): | |
"""Initialize the model parameters. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
random_state : RandomState | |
A random number generator instance that controls the random seed | |
used for the method chosen to initialize the parameters. | |
""" | |
n_samples, _ = X.shape | |
if self.init_params == "kmeans": | |
resp = np.zeros((n_samples, self.n_components)) | |
label = ( | |
cluster.KMeans( | |
n_clusters=self.n_components, n_init=1, random_state=random_state | |
) | |
.fit(X) | |
.labels_ | |
) | |
resp[np.arange(n_samples), label] = 1 | |
elif self.init_params == "random": | |
resp = random_state.uniform(size=(n_samples, self.n_components)) | |
resp /= resp.sum(axis=1)[:, np.newaxis] | |
elif self.init_params == "random_from_data": | |
resp = np.zeros((n_samples, self.n_components)) | |
indices = random_state.choice( | |
n_samples, size=self.n_components, replace=False | |
) | |
resp[indices, np.arange(self.n_components)] = 1 | |
elif self.init_params == "k-means++": | |
resp = np.zeros((n_samples, self.n_components)) | |
_, indices = kmeans_plusplus( | |
X, | |
self.n_components, | |
random_state=random_state, | |
) | |
resp[indices, np.arange(self.n_components)] = 1 | |
self._initialize(X, resp) | |
def _initialize(self, X, resp): | |
"""Initialize the model parameters of the derived class. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
resp : array-like of shape (n_samples, n_components) | |
""" | |
pass | |
def fit(self, X, y=None): | |
"""Estimate model parameters with the EM algorithm. | |
The method fits the model ``n_init`` times and sets the parameters with | |
which the model has the largest likelihood or lower bound. Within each | |
trial, the method iterates between E-step and M-step for ``max_iter`` | |
times until the change of likelihood or lower bound is less than | |
``tol``, otherwise, a ``ConvergenceWarning`` is raised. | |
If ``warm_start`` is ``True``, then ``n_init`` is ignored and a single | |
initialization is performed upon the first call. Upon consecutive | |
calls, training starts where it left off. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
List of n_features-dimensional data points. Each row | |
corresponds to a single data point. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
self : object | |
The fitted mixture. | |
""" | |
# parameters are validated in fit_predict | |
self.fit_predict(X, y) | |
return self | |
def fit_predict(self, X, y=None): | |
"""Estimate model parameters using X and predict the labels for X. | |
The method fits the model n_init times and sets the parameters with | |
which the model has the largest likelihood or lower bound. Within each | |
trial, the method iterates between E-step and M-step for `max_iter` | |
times until the change of likelihood or lower bound is less than | |
`tol`, otherwise, a :class:`~sklearn.exceptions.ConvergenceWarning` is | |
raised. After fitting, it predicts the most probable label for the | |
input data points. | |
.. versionadded:: 0.20 | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
List of n_features-dimensional data points. Each row | |
corresponds to a single data point. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
labels : array, shape (n_samples,) | |
Component labels. | |
""" | |
X = self._validate_data(X, dtype=[np.float64, np.float32], ensure_min_samples=2) | |
if X.shape[0] < self.n_components: | |
raise ValueError( | |
"Expected n_samples >= n_components " | |
f"but got n_components = {self.n_components}, " | |
f"n_samples = {X.shape[0]}" | |
) | |
self._check_parameters(X) | |
# if we enable warm_start, we will have a unique initialisation | |
do_init = not (self.warm_start and hasattr(self, "converged_")) | |
n_init = self.n_init if do_init else 1 | |
max_lower_bound = -np.inf | |
self.converged_ = False | |
random_state = check_random_state(self.random_state) | |
n_samples, _ = X.shape | |
for init in range(n_init): | |
self._print_verbose_msg_init_beg(init) | |
if do_init: | |
self._initialize_parameters(X, random_state) | |
lower_bound = -np.inf if do_init else self.lower_bound_ | |
if self.max_iter == 0: | |
best_params = self._get_parameters() | |
best_n_iter = 0 | |
else: | |
for n_iter in range(1, self.max_iter + 1): | |
prev_lower_bound = lower_bound | |
log_prob_norm, log_resp = self._e_step(X) | |
self._m_step(X, log_resp) | |
lower_bound = self._compute_lower_bound(log_resp, log_prob_norm) | |
change = lower_bound - prev_lower_bound | |
self._print_verbose_msg_iter_end(n_iter, change) | |
if abs(change) < self.tol: | |
self.converged_ = True | |
break | |
self._print_verbose_msg_init_end(lower_bound) | |
if lower_bound > max_lower_bound or max_lower_bound == -np.inf: | |
max_lower_bound = lower_bound | |
best_params = self._get_parameters() | |
best_n_iter = n_iter | |
# Should only warn about convergence if max_iter > 0, otherwise | |
# the user is assumed to have used 0-iters initialization | |
# to get the initial means. | |
if not self.converged_ and self.max_iter > 0: | |
warnings.warn( | |
"Initialization %d did not converge. " | |
"Try different init parameters, " | |
"or increase max_iter, tol " | |
"or check for degenerate data." % (init + 1), | |
ConvergenceWarning, | |
) | |
self._set_parameters(best_params) | |
self.n_iter_ = best_n_iter | |
self.lower_bound_ = max_lower_bound | |
# Always do a final e-step to guarantee that the labels returned by | |
# fit_predict(X) are always consistent with fit(X).predict(X) | |
# for any value of max_iter and tol (and any random_state). | |
_, log_resp = self._e_step(X) | |
return log_resp.argmax(axis=1) | |
def _e_step(self, X): | |
"""E step. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Returns | |
------- | |
log_prob_norm : float | |
Mean of the logarithms of the probabilities of each sample in X | |
log_responsibility : array, shape (n_samples, n_components) | |
Logarithm of the posterior probabilities (or responsibilities) of | |
the point of each sample in X. | |
""" | |
log_prob_norm, log_resp = self._estimate_log_prob_resp(X) | |
return np.mean(log_prob_norm), log_resp | |
def _m_step(self, X, log_resp): | |
"""M step. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
log_resp : array-like of shape (n_samples, n_components) | |
Logarithm of the posterior probabilities (or responsibilities) of | |
the point of each sample in X. | |
""" | |
pass | |
def _get_parameters(self): | |
pass | |
def _set_parameters(self, params): | |
pass | |
def score_samples(self, X): | |
"""Compute the log-likelihood of each sample. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
List of n_features-dimensional data points. Each row | |
corresponds to a single data point. | |
Returns | |
------- | |
log_prob : array, shape (n_samples,) | |
Log-likelihood of each sample in `X` under the current model. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False) | |
return logsumexp(self._estimate_weighted_log_prob(X), axis=1) | |
def score(self, X, y=None): | |
"""Compute the per-sample average log-likelihood of the given data X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_dimensions) | |
List of n_features-dimensional data points. Each row | |
corresponds to a single data point. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
log_likelihood : float | |
Log-likelihood of `X` under the Gaussian mixture model. | |
""" | |
return self.score_samples(X).mean() | |
def predict(self, X): | |
"""Predict the labels for the data samples in X using trained model. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
List of n_features-dimensional data points. Each row | |
corresponds to a single data point. | |
Returns | |
------- | |
labels : array, shape (n_samples,) | |
Component labels. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False) | |
return self._estimate_weighted_log_prob(X).argmax(axis=1) | |
def predict_proba(self, X): | |
"""Evaluate the components' density for each sample. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
List of n_features-dimensional data points. Each row | |
corresponds to a single data point. | |
Returns | |
------- | |
resp : array, shape (n_samples, n_components) | |
Density of each Gaussian component for each sample in X. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False) | |
_, log_resp = self._estimate_log_prob_resp(X) | |
return np.exp(log_resp) | |
def sample(self, n_samples=1): | |
"""Generate random samples from the fitted Gaussian distribution. | |
Parameters | |
---------- | |
n_samples : int, default=1 | |
Number of samples to generate. | |
Returns | |
------- | |
X : array, shape (n_samples, n_features) | |
Randomly generated sample. | |
y : array, shape (nsamples,) | |
Component labels. | |
""" | |
check_is_fitted(self) | |
if n_samples < 1: | |
raise ValueError( | |
"Invalid value for 'n_samples': %d . The sampling requires at " | |
"least one sample." % (self.n_components) | |
) | |
_, n_features = self.means_.shape | |
rng = check_random_state(self.random_state) | |
n_samples_comp = rng.multinomial(n_samples, self.weights_) | |
if self.covariance_type == "full": | |
X = np.vstack( | |
[ | |
rng.multivariate_normal(mean, covariance, int(sample)) | |
for (mean, covariance, sample) in zip( | |
self.means_, self.covariances_, n_samples_comp | |
) | |
] | |
) | |
elif self.covariance_type == "tied": | |
X = np.vstack( | |
[ | |
rng.multivariate_normal(mean, self.covariances_, int(sample)) | |
for (mean, sample) in zip(self.means_, n_samples_comp) | |
] | |
) | |
else: | |
X = np.vstack( | |
[ | |
mean | |
+ rng.standard_normal(size=(sample, n_features)) | |
* np.sqrt(covariance) | |
for (mean, covariance, sample) in zip( | |
self.means_, self.covariances_, n_samples_comp | |
) | |
] | |
) | |
y = np.concatenate( | |
[np.full(sample, j, dtype=int) for j, sample in enumerate(n_samples_comp)] | |
) | |
return (X, y) | |
def _estimate_weighted_log_prob(self, X): | |
"""Estimate the weighted log-probabilities, log P(X | Z) + log weights. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Returns | |
------- | |
weighted_log_prob : array, shape (n_samples, n_component) | |
""" | |
return self._estimate_log_prob(X) + self._estimate_log_weights() | |
def _estimate_log_weights(self): | |
"""Estimate log-weights in EM algorithm, E[ log pi ] in VB algorithm. | |
Returns | |
------- | |
log_weight : array, shape (n_components, ) | |
""" | |
pass | |
def _estimate_log_prob(self, X): | |
"""Estimate the log-probabilities log P(X | Z). | |
Compute the log-probabilities per each component for each sample. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Returns | |
------- | |
log_prob : array, shape (n_samples, n_component) | |
""" | |
pass | |
def _estimate_log_prob_resp(self, X): | |
"""Estimate log probabilities and responsibilities for each sample. | |
Compute the log probabilities, weighted log probabilities per | |
component and responsibilities for each sample in X with respect to | |
the current state of the model. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Returns | |
------- | |
log_prob_norm : array, shape (n_samples,) | |
log p(X) | |
log_responsibilities : array, shape (n_samples, n_components) | |
logarithm of the responsibilities | |
""" | |
weighted_log_prob = self._estimate_weighted_log_prob(X) | |
log_prob_norm = logsumexp(weighted_log_prob, axis=1) | |
with np.errstate(under="ignore"): | |
# ignore underflow | |
log_resp = weighted_log_prob - log_prob_norm[:, np.newaxis] | |
return log_prob_norm, log_resp | |
def _print_verbose_msg_init_beg(self, n_init): | |
"""Print verbose message on initialization.""" | |
if self.verbose == 1: | |
print("Initialization %d" % n_init) | |
elif self.verbose >= 2: | |
print("Initialization %d" % n_init) | |
self._init_prev_time = time() | |
self._iter_prev_time = self._init_prev_time | |
def _print_verbose_msg_iter_end(self, n_iter, diff_ll): | |
"""Print verbose message on initialization.""" | |
if n_iter % self.verbose_interval == 0: | |
if self.verbose == 1: | |
print(" Iteration %d" % n_iter) | |
elif self.verbose >= 2: | |
cur_time = time() | |
print( | |
" Iteration %d\t time lapse %.5fs\t ll change %.5f" | |
% (n_iter, cur_time - self._iter_prev_time, diff_ll) | |
) | |
self._iter_prev_time = cur_time | |
def _print_verbose_msg_init_end(self, ll): | |
"""Print verbose message on the end of iteration.""" | |
if self.verbose == 1: | |
print("Initialization converged: %s" % self.converged_) | |
elif self.verbose >= 2: | |
print( | |
"Initialization converged: %s\t time lapse %.5fs\t ll %.5f" | |
% (self.converged_, time() - self._init_prev_time, ll) | |
) | |