peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_base.py
# Author: Gael Varoquaux | |
# License: BSD 3 clause | |
import pickle | |
import re | |
import warnings | |
import numpy as np | |
import pytest | |
import scipy.sparse as sp | |
from numpy.testing import assert_allclose | |
import sklearn | |
from sklearn import config_context, datasets | |
from sklearn.base import ( | |
BaseEstimator, | |
OutlierMixin, | |
TransformerMixin, | |
clone, | |
is_classifier, | |
) | |
from sklearn.decomposition import PCA | |
from sklearn.exceptions import InconsistentVersionWarning | |
from sklearn.model_selection import GridSearchCV | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.svm import SVC | |
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor | |
from sklearn.utils._mocking import MockDataFrame | |
from sklearn.utils._set_output import _get_output_config | |
from sklearn.utils._testing import ( | |
_convert_container, | |
assert_array_equal, | |
assert_no_warnings, | |
ignore_warnings, | |
) | |
############################################################################# | |
# A few test classes | |
class MyEstimator(BaseEstimator): | |
def __init__(self, l1=0, empty=None): | |
self.l1 = l1 | |
self.empty = empty | |
class K(BaseEstimator): | |
def __init__(self, c=None, d=None): | |
self.c = c | |
self.d = d | |
class T(BaseEstimator): | |
def __init__(self, a=None, b=None): | |
self.a = a | |
self.b = b | |
class NaNTag(BaseEstimator): | |
def _more_tags(self): | |
return {"allow_nan": True} | |
class NoNaNTag(BaseEstimator): | |
def _more_tags(self): | |
return {"allow_nan": False} | |
class OverrideTag(NaNTag): | |
def _more_tags(self): | |
return {"allow_nan": False} | |
class DiamondOverwriteTag(NaNTag, NoNaNTag): | |
def _more_tags(self): | |
return dict() | |
class InheritDiamondOverwriteTag(DiamondOverwriteTag): | |
pass | |
class ModifyInitParams(BaseEstimator): | |
"""Deprecated behavior. | |
Equal parameters but with a type cast. | |
Doesn't fulfill a is a | |
""" | |
def __init__(self, a=np.array([0])): | |
self.a = a.copy() | |
class Buggy(BaseEstimator): | |
"A buggy estimator that does not set its parameters right." | |
def __init__(self, a=None): | |
self.a = 1 | |
class NoEstimator: | |
def __init__(self): | |
pass | |
def fit(self, X=None, y=None): | |
return self | |
def predict(self, X=None): | |
return None | |
class VargEstimator(BaseEstimator): | |
"""scikit-learn estimators shouldn't have vargs.""" | |
def __init__(self, *vargs): | |
pass | |
############################################################################# | |
# The tests | |
def test_clone(): | |
# Tests that clone creates a correct deep copy. | |
# We create an estimator, make a copy of its original state | |
# (which, in this case, is the current state of the estimator), | |
# and check that the obtained copy is a correct deep copy. | |
from sklearn.feature_selection import SelectFpr, f_classif | |
selector = SelectFpr(f_classif, alpha=0.1) | |
new_selector = clone(selector) | |
assert selector is not new_selector | |
assert selector.get_params() == new_selector.get_params() | |
selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) | |
new_selector = clone(selector) | |
assert selector is not new_selector | |
def test_clone_2(): | |
# Tests that clone doesn't copy everything. | |
# We first create an estimator, give it an own attribute, and | |
# make a copy of its original state. Then we check that the copy doesn't | |
# have the specific attribute we manually added to the initial estimator. | |
from sklearn.feature_selection import SelectFpr, f_classif | |
selector = SelectFpr(f_classif, alpha=0.1) | |
selector.own_attribute = "test" | |
new_selector = clone(selector) | |
assert not hasattr(new_selector, "own_attribute") | |
def test_clone_buggy(): | |
# Check that clone raises an error on buggy estimators. | |
buggy = Buggy() | |
buggy.a = 2 | |
with pytest.raises(RuntimeError): | |
clone(buggy) | |
no_estimator = NoEstimator() | |
with pytest.raises(TypeError): | |
clone(no_estimator) | |
varg_est = VargEstimator() | |
with pytest.raises(RuntimeError): | |
clone(varg_est) | |
est = ModifyInitParams() | |
with pytest.raises(RuntimeError): | |
clone(est) | |
def test_clone_empty_array(): | |
# Regression test for cloning estimators with empty arrays | |
clf = MyEstimator(empty=np.array([])) | |
clf2 = clone(clf) | |
assert_array_equal(clf.empty, clf2.empty) | |
clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) | |
clf2 = clone(clf) | |
assert_array_equal(clf.empty.data, clf2.empty.data) | |
def test_clone_nan(): | |
# Regression test for cloning estimators with default parameter as np.nan | |
clf = MyEstimator(empty=np.nan) | |
clf2 = clone(clf) | |
assert clf.empty is clf2.empty | |
def test_clone_dict(): | |
# test that clone creates a clone of a dict | |
orig = {"a": MyEstimator()} | |
cloned = clone(orig) | |
assert orig["a"] is not cloned["a"] | |
def test_clone_sparse_matrices(): | |
sparse_matrix_classes = [ | |
cls | |
for name in dir(sp) | |
if name.endswith("_matrix") and type(cls := getattr(sp, name)) is type | |
] | |
for cls in sparse_matrix_classes: | |
sparse_matrix = cls(np.eye(5)) | |
clf = MyEstimator(empty=sparse_matrix) | |
clf_cloned = clone(clf) | |
assert clf.empty.__class__ is clf_cloned.empty.__class__ | |
assert_array_equal(clf.empty.toarray(), clf_cloned.empty.toarray()) | |
def test_clone_estimator_types(): | |
# Check that clone works for parameters that are types rather than | |
# instances | |
clf = MyEstimator(empty=MyEstimator) | |
clf2 = clone(clf) | |
assert clf.empty is clf2.empty | |
def test_clone_class_rather_than_instance(): | |
# Check that clone raises expected error message when | |
# cloning class rather than instance | |
msg = "You should provide an instance of scikit-learn estimator" | |
with pytest.raises(TypeError, match=msg): | |
clone(MyEstimator) | |
def test_repr(): | |
# Smoke test the repr of the base estimator. | |
my_estimator = MyEstimator() | |
repr(my_estimator) | |
test = T(K(), K()) | |
assert repr(test) == "T(a=K(), b=K())" | |
some_est = T(a=["long_params"] * 1000) | |
assert len(repr(some_est)) == 485 | |
def test_str(): | |
# Smoke test the str of the base estimator | |
my_estimator = MyEstimator() | |
str(my_estimator) | |
def test_get_params(): | |
test = T(K(), K) | |
assert "a__d" in test.get_params(deep=True) | |
assert "a__d" not in test.get_params(deep=False) | |
test.set_params(a__d=2) | |
assert test.a.d == 2 | |
with pytest.raises(ValueError): | |
test.set_params(a__a=2) | |
def test_is_classifier(): | |
svc = SVC() | |
assert is_classifier(svc) | |
assert is_classifier(GridSearchCV(svc, {"C": [0.1, 1]})) | |
assert is_classifier(Pipeline([("svc", svc)])) | |
assert is_classifier(Pipeline([("svc_cv", GridSearchCV(svc, {"C": [0.1, 1]}))])) | |
def test_set_params(): | |
# test nested estimator parameter setting | |
clf = Pipeline([("svc", SVC())]) | |
# non-existing parameter in svc | |
with pytest.raises(ValueError): | |
clf.set_params(svc__stupid_param=True) | |
# non-existing parameter of pipeline | |
with pytest.raises(ValueError): | |
clf.set_params(svm__stupid_param=True) | |
# we don't currently catch if the things in pipeline are estimators | |
# bad_pipeline = Pipeline([("bad", NoEstimator())]) | |
# assert_raises(AttributeError, bad_pipeline.set_params, | |
# bad__stupid_param=True) | |
def test_set_params_passes_all_parameters(): | |
# Make sure all parameters are passed together to set_params | |
# of nested estimator. Regression test for #9944 | |
class TestDecisionTree(DecisionTreeClassifier): | |
def set_params(self, **kwargs): | |
super().set_params(**kwargs) | |
# expected_kwargs is in test scope | |
assert kwargs == expected_kwargs | |
return self | |
expected_kwargs = {"max_depth": 5, "min_samples_leaf": 2} | |
for est in [ | |
Pipeline([("estimator", TestDecisionTree())]), | |
GridSearchCV(TestDecisionTree(), {}), | |
]: | |
est.set_params(estimator__max_depth=5, estimator__min_samples_leaf=2) | |
def test_set_params_updates_valid_params(): | |
# Check that set_params tries to set SVC().C, not | |
# DecisionTreeClassifier().C | |
gscv = GridSearchCV(DecisionTreeClassifier(), {}) | |
gscv.set_params(estimator=SVC(), estimator__C=42.0) | |
assert gscv.estimator.C == 42.0 | |
def test_score_sample_weight(tree, dataset): | |
rng = np.random.RandomState(0) | |
# check that the score with and without sample weights are different | |
X, y = dataset | |
tree.fit(X, y) | |
# generate random sample weights | |
sample_weight = rng.randint(1, 10, size=len(y)) | |
score_unweighted = tree.score(X, y) | |
score_weighted = tree.score(X, y, sample_weight=sample_weight) | |
msg = "Unweighted and weighted scores are unexpectedly equal" | |
assert score_unweighted != score_weighted, msg | |
def test_clone_pandas_dataframe(): | |
class DummyEstimator(TransformerMixin, BaseEstimator): | |
"""This is a dummy class for generating numerical features | |
This feature extractor extracts numerical features from pandas data | |
frame. | |
Parameters | |
---------- | |
df: pandas data frame | |
The pandas data frame parameter. | |
Notes | |
----- | |
""" | |
def __init__(self, df=None, scalar_param=1): | |
self.df = df | |
self.scalar_param = scalar_param | |
def fit(self, X, y=None): | |
pass | |
def transform(self, X): | |
pass | |
# build and clone estimator | |
d = np.arange(10) | |
df = MockDataFrame(d) | |
e = DummyEstimator(df, scalar_param=1) | |
cloned_e = clone(e) | |
# the test | |
assert (e.df == cloned_e.df).values.all() | |
assert e.scalar_param == cloned_e.scalar_param | |
def test_clone_protocol(): | |
"""Checks that clone works with `__sklearn_clone__` protocol.""" | |
class FrozenEstimator(BaseEstimator): | |
def __init__(self, fitted_estimator): | |
self.fitted_estimator = fitted_estimator | |
def __getattr__(self, name): | |
return getattr(self.fitted_estimator, name) | |
def __sklearn_clone__(self): | |
return self | |
def fit(self, *args, **kwargs): | |
return self | |
def fit_transform(self, *args, **kwargs): | |
return self.fitted_estimator.transform(*args, **kwargs) | |
X = np.array([[-1, -1], [-2, -1], [-3, -2]]) | |
pca = PCA().fit(X) | |
components = pca.components_ | |
frozen_pca = FrozenEstimator(pca) | |
assert_allclose(frozen_pca.components_, components) | |
# Calling PCA methods such as `get_feature_names_out` still works | |
assert_array_equal(frozen_pca.get_feature_names_out(), pca.get_feature_names_out()) | |
# Fitting on a new data does not alter `components_` | |
X_new = np.asarray([[-1, 2], [3, 4], [1, 2]]) | |
frozen_pca.fit(X_new) | |
assert_allclose(frozen_pca.components_, components) | |
# `fit_transform` does not alter state | |
frozen_pca.fit_transform(X_new) | |
assert_allclose(frozen_pca.components_, components) | |
# Cloning estimator is a no-op | |
clone_frozen_pca = clone(frozen_pca) | |
assert clone_frozen_pca is frozen_pca | |
assert_allclose(clone_frozen_pca.components_, components) | |
def test_pickle_version_warning_is_not_raised_with_matching_version(): | |
iris = datasets.load_iris() | |
tree = DecisionTreeClassifier().fit(iris.data, iris.target) | |
tree_pickle = pickle.dumps(tree) | |
assert b"_sklearn_version" in tree_pickle | |
tree_restored = assert_no_warnings(pickle.loads, tree_pickle) | |
# test that we can predict with the restored decision tree classifier | |
score_of_original = tree.score(iris.data, iris.target) | |
score_of_restored = tree_restored.score(iris.data, iris.target) | |
assert score_of_original == score_of_restored | |
class TreeBadVersion(DecisionTreeClassifier): | |
def __getstate__(self): | |
return dict(self.__dict__.items(), _sklearn_version="something") | |
pickle_error_message = ( | |
"Trying to unpickle estimator {estimator} from " | |
"version {old_version} when using version " | |
"{current_version}. This might " | |
"lead to breaking code or invalid results. " | |
"Use at your own risk." | |
) | |
def test_pickle_version_warning_is_issued_upon_different_version(): | |
iris = datasets.load_iris() | |
tree = TreeBadVersion().fit(iris.data, iris.target) | |
tree_pickle_other = pickle.dumps(tree) | |
message = pickle_error_message.format( | |
estimator="TreeBadVersion", | |
old_version="something", | |
current_version=sklearn.__version__, | |
) | |
with pytest.warns(UserWarning, match=message) as warning_record: | |
pickle.loads(tree_pickle_other) | |
message = warning_record.list[0].message | |
assert isinstance(message, InconsistentVersionWarning) | |
assert message.estimator_name == "TreeBadVersion" | |
assert message.original_sklearn_version == "something" | |
assert message.current_sklearn_version == sklearn.__version__ | |
class TreeNoVersion(DecisionTreeClassifier): | |
def __getstate__(self): | |
return self.__dict__ | |
def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle(): | |
iris = datasets.load_iris() | |
# TreeNoVersion has no getstate, like pre-0.18 | |
tree = TreeNoVersion().fit(iris.data, iris.target) | |
tree_pickle_noversion = pickle.dumps(tree) | |
assert b"_sklearn_version" not in tree_pickle_noversion | |
message = pickle_error_message.format( | |
estimator="TreeNoVersion", | |
old_version="pre-0.18", | |
current_version=sklearn.__version__, | |
) | |
# check we got the warning about using pre-0.18 pickle | |
with pytest.warns(UserWarning, match=message): | |
pickle.loads(tree_pickle_noversion) | |
def test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator(): | |
iris = datasets.load_iris() | |
tree = TreeNoVersion().fit(iris.data, iris.target) | |
tree_pickle_noversion = pickle.dumps(tree) | |
try: | |
module_backup = TreeNoVersion.__module__ | |
TreeNoVersion.__module__ = "notsklearn" | |
assert_no_warnings(pickle.loads, tree_pickle_noversion) | |
finally: | |
TreeNoVersion.__module__ = module_backup | |
class DontPickleAttributeMixin: | |
def __getstate__(self): | |
data = self.__dict__.copy() | |
data["_attribute_not_pickled"] = None | |
return data | |
def __setstate__(self, state): | |
state["_restored"] = True | |
self.__dict__.update(state) | |
class MultiInheritanceEstimator(DontPickleAttributeMixin, BaseEstimator): | |
def __init__(self, attribute_pickled=5): | |
self.attribute_pickled = attribute_pickled | |
self._attribute_not_pickled = None | |
def test_pickling_when_getstate_is_overwritten_by_mixin(): | |
estimator = MultiInheritanceEstimator() | |
estimator._attribute_not_pickled = "this attribute should not be pickled" | |
serialized = pickle.dumps(estimator) | |
estimator_restored = pickle.loads(serialized) | |
assert estimator_restored.attribute_pickled == 5 | |
assert estimator_restored._attribute_not_pickled is None | |
assert estimator_restored._restored | |
def test_pickling_when_getstate_is_overwritten_by_mixin_outside_of_sklearn(): | |
try: | |
estimator = MultiInheritanceEstimator() | |
text = "this attribute should not be pickled" | |
estimator._attribute_not_pickled = text | |
old_mod = type(estimator).__module__ | |
type(estimator).__module__ = "notsklearn" | |
serialized = estimator.__getstate__() | |
assert serialized == {"_attribute_not_pickled": None, "attribute_pickled": 5} | |
serialized["attribute_pickled"] = 4 | |
estimator.__setstate__(serialized) | |
assert estimator.attribute_pickled == 4 | |
assert estimator._restored | |
finally: | |
type(estimator).__module__ = old_mod | |
class SingleInheritanceEstimator(BaseEstimator): | |
def __init__(self, attribute_pickled=5): | |
self.attribute_pickled = attribute_pickled | |
self._attribute_not_pickled = None | |
def __getstate__(self): | |
data = self.__dict__.copy() | |
data["_attribute_not_pickled"] = None | |
return data | |
def test_pickling_works_when_getstate_is_overwritten_in_the_child_class(): | |
estimator = SingleInheritanceEstimator() | |
estimator._attribute_not_pickled = "this attribute should not be pickled" | |
serialized = pickle.dumps(estimator) | |
estimator_restored = pickle.loads(serialized) | |
assert estimator_restored.attribute_pickled == 5 | |
assert estimator_restored._attribute_not_pickled is None | |
def test_tag_inheritance(): | |
# test that changing tags by inheritance is not allowed | |
nan_tag_est = NaNTag() | |
no_nan_tag_est = NoNaNTag() | |
assert nan_tag_est._get_tags()["allow_nan"] | |
assert not no_nan_tag_est._get_tags()["allow_nan"] | |
redefine_tags_est = OverrideTag() | |
assert not redefine_tags_est._get_tags()["allow_nan"] | |
diamond_tag_est = DiamondOverwriteTag() | |
assert diamond_tag_est._get_tags()["allow_nan"] | |
inherit_diamond_tag_est = InheritDiamondOverwriteTag() | |
assert inherit_diamond_tag_est._get_tags()["allow_nan"] | |
def test_raises_on_get_params_non_attribute(): | |
class MyEstimator(BaseEstimator): | |
def __init__(self, param=5): | |
pass | |
def fit(self, X, y=None): | |
return self | |
est = MyEstimator() | |
msg = "'MyEstimator' object has no attribute 'param'" | |
with pytest.raises(AttributeError, match=msg): | |
est.get_params() | |
def test_repr_mimebundle_(): | |
# Checks the display configuration flag controls the json output | |
tree = DecisionTreeClassifier() | |
output = tree._repr_mimebundle_() | |
assert "text/plain" in output | |
assert "text/html" in output | |
with config_context(display="text"): | |
output = tree._repr_mimebundle_() | |
assert "text/plain" in output | |
assert "text/html" not in output | |
def test_repr_html_wraps(): | |
# Checks the display configuration flag controls the html output | |
tree = DecisionTreeClassifier() | |
output = tree._repr_html_() | |
assert "<style>" in output | |
with config_context(display="text"): | |
msg = "_repr_html_ is only defined when" | |
with pytest.raises(AttributeError, match=msg): | |
output = tree._repr_html_() | |
def test_n_features_in_validation(): | |
"""Check that `_check_n_features` validates data when reset=False""" | |
est = MyEstimator() | |
X_train = [[1, 2, 3], [4, 5, 6]] | |
est._check_n_features(X_train, reset=True) | |
assert est.n_features_in_ == 3 | |
msg = "X does not contain any features, but MyEstimator is expecting 3 features" | |
with pytest.raises(ValueError, match=msg): | |
est._check_n_features("invalid X", reset=False) | |
def test_n_features_in_no_validation(): | |
"""Check that `_check_n_features` does not validate data when | |
n_features_in_ is not defined.""" | |
est = MyEstimator() | |
est._check_n_features("invalid X", reset=True) | |
assert not hasattr(est, "n_features_in_") | |
# does not raise | |
est._check_n_features("invalid X", reset=False) | |
def test_feature_names_in(): | |
"""Check that feature_name_in are recorded by `_validate_data`""" | |
pd = pytest.importorskip("pandas") | |
iris = datasets.load_iris() | |
X_np = iris.data | |
df = pd.DataFrame(X_np, columns=iris.feature_names) | |
class NoOpTransformer(TransformerMixin, BaseEstimator): | |
def fit(self, X, y=None): | |
self._validate_data(X) | |
return self | |
def transform(self, X): | |
self._validate_data(X, reset=False) | |
return X | |
# fit on dataframe saves the feature names | |
trans = NoOpTransformer().fit(df) | |
assert_array_equal(trans.feature_names_in_, df.columns) | |
# fit again but on ndarray does not keep the previous feature names (see #21383) | |
trans.fit(X_np) | |
assert not hasattr(trans, "feature_names_in_") | |
trans.fit(df) | |
msg = "The feature names should match those that were passed" | |
df_bad = pd.DataFrame(X_np, columns=iris.feature_names[::-1]) | |
with pytest.raises(ValueError, match=msg): | |
trans.transform(df_bad) | |
# warns when fitted on dataframe and transforming a ndarray | |
msg = ( | |
"X does not have valid feature names, but NoOpTransformer was " | |
"fitted with feature names" | |
) | |
with pytest.warns(UserWarning, match=msg): | |
trans.transform(X_np) | |
# warns when fitted on a ndarray and transforming dataframe | |
msg = "X has feature names, but NoOpTransformer was fitted without feature names" | |
trans = NoOpTransformer().fit(X_np) | |
with pytest.warns(UserWarning, match=msg): | |
trans.transform(df) | |
# fit on dataframe with all integer feature names works without warning | |
df_int_names = pd.DataFrame(X_np) | |
trans = NoOpTransformer() | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
trans.fit(df_int_names) | |
# fit on dataframe with no feature names or all integer feature names | |
# -> do not warn on transform | |
Xs = [X_np, df_int_names] | |
for X in Xs: | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
trans.transform(X) | |
# fit on dataframe with feature names that are mixed raises an error: | |
df_mixed = pd.DataFrame(X_np, columns=["a", "b", 1, 2]) | |
trans = NoOpTransformer() | |
msg = re.escape( | |
"Feature names are only supported if all input features have string names, " | |
"but your input has ['int', 'str'] as feature name / column name types. " | |
"If you want feature names to be stored and validated, you must convert " | |
"them all to strings, by using X.columns = X.columns.astype(str) for " | |
"example. Otherwise you can remove feature / column names from your input " | |
"data, or convert them all to a non-string data type." | |
) | |
with pytest.raises(TypeError, match=msg): | |
trans.fit(df_mixed) | |
# transform on feature names that are mixed also raises: | |
with pytest.raises(TypeError, match=msg): | |
trans.transform(df_mixed) | |
def test_validate_data_cast_to_ndarray(): | |
"""Check cast_to_ndarray option of _validate_data.""" | |
pd = pytest.importorskip("pandas") | |
iris = datasets.load_iris() | |
df = pd.DataFrame(iris.data, columns=iris.feature_names) | |
y = pd.Series(iris.target) | |
class NoOpTransformer(TransformerMixin, BaseEstimator): | |
pass | |
no_op = NoOpTransformer() | |
X_np_out = no_op._validate_data(df, cast_to_ndarray=True) | |
assert isinstance(X_np_out, np.ndarray) | |
assert_allclose(X_np_out, df.to_numpy()) | |
X_df_out = no_op._validate_data(df, cast_to_ndarray=False) | |
assert X_df_out is df | |
y_np_out = no_op._validate_data(y=y, cast_to_ndarray=True) | |
assert isinstance(y_np_out, np.ndarray) | |
assert_allclose(y_np_out, y.to_numpy()) | |
y_series_out = no_op._validate_data(y=y, cast_to_ndarray=False) | |
assert y_series_out is y | |
X_np_out, y_np_out = no_op._validate_data(df, y, cast_to_ndarray=True) | |
assert isinstance(X_np_out, np.ndarray) | |
assert_allclose(X_np_out, df.to_numpy()) | |
assert isinstance(y_np_out, np.ndarray) | |
assert_allclose(y_np_out, y.to_numpy()) | |
X_df_out, y_series_out = no_op._validate_data(df, y, cast_to_ndarray=False) | |
assert X_df_out is df | |
assert y_series_out is y | |
msg = "Validation should be done on X, y or both." | |
with pytest.raises(ValueError, match=msg): | |
no_op._validate_data() | |
def test_clone_keeps_output_config(): | |
"""Check that clone keeps the set_output config.""" | |
ss = StandardScaler().set_output(transform="pandas") | |
config = _get_output_config("transform", ss) | |
ss_clone = clone(ss) | |
config_clone = _get_output_config("transform", ss_clone) | |
assert config == config_clone | |
class _Empty: | |
pass | |
class EmptyEstimator(_Empty, BaseEstimator): | |
pass | |
def test_estimator_empty_instance_dict(estimator): | |
"""Check that ``__getstate__`` returns an empty ``dict`` with an empty | |
instance. | |
Python 3.11+ changed behaviour by returning ``None`` instead of raising an | |
``AttributeError``. Non-regression test for gh-25188. | |
""" | |
state = estimator.__getstate__() | |
expected = {"_sklearn_version": sklearn.__version__} | |
assert state == expected | |
# this should not raise | |
pickle.loads(pickle.dumps(BaseEstimator())) | |
def test_estimator_getstate_using_slots_error_message(): | |
"""Using a `BaseEstimator` with `__slots__` is not supported.""" | |
class WithSlots: | |
__slots__ = ("x",) | |
class Estimator(BaseEstimator, WithSlots): | |
pass | |
msg = ( | |
"You cannot use `__slots__` in objects inheriting from " | |
"`sklearn.base.BaseEstimator`" | |
) | |
with pytest.raises(TypeError, match=msg): | |
Estimator().__getstate__() | |
with pytest.raises(TypeError, match=msg): | |
pickle.dumps(Estimator()) | |
def test_dataframe_protocol(constructor_name, minversion): | |
"""Uses the dataframe exchange protocol to get feature names.""" | |
data = [[1, 4, 2], [3, 3, 6]] | |
columns = ["col_0", "col_1", "col_2"] | |
df = _convert_container( | |
data, constructor_name, columns_name=columns, minversion=minversion | |
) | |
class NoOpTransformer(TransformerMixin, BaseEstimator): | |
def fit(self, X, y=None): | |
self._validate_data(X) | |
return self | |
def transform(self, X): | |
return self._validate_data(X, reset=False) | |
no_op = NoOpTransformer() | |
no_op.fit(df) | |
assert_array_equal(no_op.feature_names_in_, columns) | |
X_out = no_op.transform(df) | |
if constructor_name != "pyarrow": | |
# pyarrow does not work with `np.asarray` | |
# https://github.com/apache/arrow/issues/34886 | |
assert_allclose(df, X_out) | |
bad_names = ["a", "b", "c"] | |
df_bad = _convert_container(data, constructor_name, columns_name=bad_names) | |
with pytest.raises(ValueError, match="The feature names should match"): | |
no_op.transform(df_bad) | |
def test_transformer_fit_transform_with_metadata_in_transform(): | |
"""Test that having a transformer with metadata for transform raises a | |
warning when calling fit_transform.""" | |
class CustomTransformer(BaseEstimator, TransformerMixin): | |
def fit(self, X, y=None, prop=None): | |
return self | |
def transform(self, X, prop=None): | |
return X | |
# passing the metadata to `fit_transform` should raise a warning since it | |
# could potentially be consumed by `transform` | |
with pytest.warns(UserWarning, match="`transform` method which consumes metadata"): | |
CustomTransformer().set_transform_request(prop=True).fit_transform( | |
[[1]], [1], prop=1 | |
) | |
# not passing a metadata which can potentially be consumed by `transform` should | |
# not raise a warning | |
with warnings.catch_warnings(record=True) as record: | |
CustomTransformer().set_transform_request(prop=True).fit_transform([[1]], [1]) | |
assert len(record) == 0 | |
def test_outlier_mixin_fit_predict_with_metadata_in_predict(): | |
"""Test that having an OutlierMixin with metadata for predict raises a | |
warning when calling fit_predict.""" | |
class CustomOutlierDetector(BaseEstimator, OutlierMixin): | |
def fit(self, X, y=None, prop=None): | |
return self | |
def predict(self, X, prop=None): | |
return X | |
# passing the metadata to `fit_predict` should raise a warning since it | |
# could potentially be consumed by `predict` | |
with pytest.warns(UserWarning, match="`predict` method which consumes metadata"): | |
CustomOutlierDetector().set_predict_request(prop=True).fit_predict( | |
[[1]], [1], prop=1 | |
) | |
# not passing a metadata which can potentially be consumed by `predict` should | |
# not raise a warning | |
with warnings.catch_warnings(record=True) as record: | |
CustomOutlierDetector().set_predict_request(prop=True).fit_predict([[1]], [1]) | |
assert len(record) == 0 | |