peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/discovery.py
| """ | |
| The :mod:`sklearn.utils.discovery` module includes utilities to discover | |
| objects (i.e. estimators, displays, functions) from the `sklearn` package. | |
| """ | |
| import inspect | |
| import pkgutil | |
| from importlib import import_module | |
| from operator import itemgetter | |
| from pathlib import Path | |
| _MODULE_TO_IGNORE = { | |
| "tests", | |
| "externals", | |
| "setup", | |
| "conftest", | |
| "experimental", | |
| "estimator_checks", | |
| } | |
| def all_estimators(type_filter=None): | |
| """Get a list of all estimators from `sklearn`. | |
| This function crawls the module and gets all classes that inherit | |
| from BaseEstimator. Classes that are defined in test-modules are not | |
| included. | |
| Parameters | |
| ---------- | |
| type_filter : {"classifier", "regressor", "cluster", "transformer"} \ | |
| or list of such str, default=None | |
| Which kind of estimators should be returned. If None, no filter is | |
| applied and all estimators are returned. Possible values are | |
| 'classifier', 'regressor', 'cluster' and 'transformer' to get | |
| estimators only of these specific types, or a list of these to | |
| get the estimators that fit at least one of the types. | |
| Returns | |
| ------- | |
| estimators : list of tuples | |
| List of (name, class), where ``name`` is the class name as string | |
| and ``class`` is the actual type of the class. | |
| Examples | |
| -------- | |
| >>> from sklearn.utils.discovery import all_estimators | |
| >>> estimators = all_estimators() | |
| >>> type(estimators) | |
| <class 'list'> | |
| >>> type(estimators[0]) | |
| <class 'tuple'> | |
| >>> estimators[:2] | |
| [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), | |
| ('AdaBoostClassifier', | |
| <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)] | |
| >>> classifiers = all_estimators(type_filter="classifier") | |
| >>> classifiers[:2] | |
| [('AdaBoostClassifier', | |
| <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>), | |
| ('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)] | |
| >>> regressors = all_estimators(type_filter="regressor") | |
| >>> regressors[:2] | |
| [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), | |
| ('AdaBoostRegressor', | |
| <class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)] | |
| >>> both = all_estimators(type_filter=["classifier", "regressor"]) | |
| >>> both[:2] | |
| [('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>), | |
| ('AdaBoostClassifier', | |
| <class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)] | |
| """ | |
| # lazy import to avoid circular imports from sklearn.base | |
| from ..base import ( | |
| BaseEstimator, | |
| ClassifierMixin, | |
| ClusterMixin, | |
| RegressorMixin, | |
| TransformerMixin, | |
| ) | |
| from . import IS_PYPY | |
| from ._testing import ignore_warnings | |
| def is_abstract(c): | |
| if not (hasattr(c, "__abstractmethods__")): | |
| return False | |
| if not len(c.__abstractmethods__): | |
| return False | |
| return True | |
| all_classes = [] | |
| root = str(Path(__file__).parent.parent) # sklearn package | |
| # Ignore deprecation warnings triggered at import time and from walking | |
| # packages | |
| with ignore_warnings(category=FutureWarning): | |
| for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."): | |
| module_parts = module_name.split(".") | |
| if ( | |
| any(part in _MODULE_TO_IGNORE for part in module_parts) | |
| or "._" in module_name | |
| ): | |
| continue | |
| module = import_module(module_name) | |
| classes = inspect.getmembers(module, inspect.isclass) | |
| classes = [ | |
| (name, est_cls) for name, est_cls in classes if not name.startswith("_") | |
| ] | |
| # TODO: Remove when FeatureHasher is implemented in PYPY | |
| # Skips FeatureHasher for PYPY | |
| if IS_PYPY and "feature_extraction" in module_name: | |
| classes = [ | |
| (name, est_cls) | |
| for name, est_cls in classes | |
| if name == "FeatureHasher" | |
| ] | |
| all_classes.extend(classes) | |
| all_classes = set(all_classes) | |
| estimators = [ | |
| c | |
| for c in all_classes | |
| if (issubclass(c[1], BaseEstimator) and c[0] != "BaseEstimator") | |
| ] | |
| # get rid of abstract base classes | |
| estimators = [c for c in estimators if not is_abstract(c[1])] | |
| if type_filter is not None: | |
| if not isinstance(type_filter, list): | |
| type_filter = [type_filter] | |
| else: | |
| type_filter = list(type_filter) # copy | |
| filtered_estimators = [] | |
| filters = { | |
| "classifier": ClassifierMixin, | |
| "regressor": RegressorMixin, | |
| "transformer": TransformerMixin, | |
| "cluster": ClusterMixin, | |
| } | |
| for name, mixin in filters.items(): | |
| if name in type_filter: | |
| type_filter.remove(name) | |
| filtered_estimators.extend( | |
| [est for est in estimators if issubclass(est[1], mixin)] | |
| ) | |
| estimators = filtered_estimators | |
| if type_filter: | |
| raise ValueError( | |
| "Parameter type_filter must be 'classifier', " | |
| "'regressor', 'transformer', 'cluster' or " | |
| "None, got" | |
| f" {repr(type_filter)}." | |
| ) | |
| # drop duplicates, sort for reproducibility | |
| # itemgetter is used to ensure the sort does not extend to the 2nd item of | |
| # the tuple | |
| return sorted(set(estimators), key=itemgetter(0)) | |
| def all_displays(): | |
| """Get a list of all displays from `sklearn`. | |
| Returns | |
| ------- | |
| displays : list of tuples | |
| List of (name, class), where ``name`` is the display class name as | |
| string and ``class`` is the actual type of the class. | |
| Examples | |
| -------- | |
| >>> from sklearn.utils.discovery import all_displays | |
| >>> displays = all_displays() | |
| >>> displays[0] | |
| ('CalibrationDisplay', <class 'sklearn.calibration.CalibrationDisplay'>) | |
| """ | |
| # lazy import to avoid circular imports from sklearn.base | |
| from ._testing import ignore_warnings | |
| all_classes = [] | |
| root = str(Path(__file__).parent.parent) # sklearn package | |
| # Ignore deprecation warnings triggered at import time and from walking | |
| # packages | |
| with ignore_warnings(category=FutureWarning): | |
| for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."): | |
| module_parts = module_name.split(".") | |
| if ( | |
| any(part in _MODULE_TO_IGNORE for part in module_parts) | |
| or "._" in module_name | |
| ): | |
| continue | |
| module = import_module(module_name) | |
| classes = inspect.getmembers(module, inspect.isclass) | |
| classes = [ | |
| (name, display_class) | |
| for name, display_class in classes | |
| if not name.startswith("_") and name.endswith("Display") | |
| ] | |
| all_classes.extend(classes) | |
| return sorted(set(all_classes), key=itemgetter(0)) | |
| def _is_checked_function(item): | |
| if not inspect.isfunction(item): | |
| return False | |
| if item.__name__.startswith("_"): | |
| return False | |
| mod = item.__module__ | |
| if not mod.startswith("sklearn.") or mod.endswith("estimator_checks"): | |
| return False | |
| return True | |
| def all_functions(): | |
| """Get a list of all functions from `sklearn`. | |
| Returns | |
| ------- | |
| functions : list of tuples | |
| List of (name, function), where ``name`` is the function name as | |
| string and ``function`` is the actual function. | |
| Examples | |
| -------- | |
| >>> from sklearn.utils.discovery import all_functions | |
| >>> functions = all_functions() | |
| >>> name, function = functions[0] | |
| >>> name | |
| 'accuracy_score' | |
| """ | |
| # lazy import to avoid circular imports from sklearn.base | |
| from ._testing import ignore_warnings | |
| all_functions = [] | |
| root = str(Path(__file__).parent.parent) # sklearn package | |
| # Ignore deprecation warnings triggered at import time and from walking | |
| # packages | |
| with ignore_warnings(category=FutureWarning): | |
| for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."): | |
| module_parts = module_name.split(".") | |
| if ( | |
| any(part in _MODULE_TO_IGNORE for part in module_parts) | |
| or "._" in module_name | |
| ): | |
| continue | |
| module = import_module(module_name) | |
| functions = inspect.getmembers(module, _is_checked_function) | |
| functions = [ | |
| (func.__name__, func) | |
| for name, func in functions | |
| if not name.startswith("_") | |
| ] | |
| all_functions.extend(functions) | |
| # drop duplicates, sort for reproducibility | |
| # itemgetter is used to ensure the sort does not extend to the 2nd item of | |
| # the tuple | |
| return sorted(set(all_functions), key=itemgetter(0)) | |