peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tests
/test_metaestimators.py
"""Common tests for metaestimators""" | |
import functools | |
from inspect import signature | |
import numpy as np | |
import pytest | |
from sklearn.base import BaseEstimator, is_regressor | |
from sklearn.datasets import make_classification | |
from sklearn.ensemble import BaggingClassifier | |
from sklearn.exceptions import NotFittedError | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.feature_selection import RFE, RFECV | |
from sklearn.linear_model import LogisticRegression, Ridge | |
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV | |
from sklearn.pipeline import Pipeline, make_pipeline | |
from sklearn.preprocessing import MaxAbsScaler, StandardScaler | |
from sklearn.semi_supervised import SelfTrainingClassifier | |
from sklearn.utils import all_estimators | |
from sklearn.utils._testing import set_random_state | |
from sklearn.utils.estimator_checks import ( | |
_enforce_estimator_tags_X, | |
_enforce_estimator_tags_y, | |
) | |
from sklearn.utils.validation import check_is_fitted | |
class DelegatorData: | |
def __init__( | |
self, | |
name, | |
construct, | |
skip_methods=(), | |
fit_args=make_classification(random_state=0), | |
): | |
self.name = name | |
self.construct = construct | |
self.fit_args = fit_args | |
self.skip_methods = skip_methods | |
DELEGATING_METAESTIMATORS = [ | |
DelegatorData("Pipeline", lambda est: Pipeline([("est", est)])), | |
DelegatorData( | |
"GridSearchCV", | |
lambda est: GridSearchCV(est, param_grid={"param": [5]}, cv=2), | |
skip_methods=["score"], | |
), | |
DelegatorData( | |
"RandomizedSearchCV", | |
lambda est: RandomizedSearchCV( | |
est, param_distributions={"param": [5]}, cv=2, n_iter=1 | |
), | |
skip_methods=["score"], | |
), | |
DelegatorData("RFE", RFE, skip_methods=["transform", "inverse_transform"]), | |
DelegatorData("RFECV", RFECV, skip_methods=["transform", "inverse_transform"]), | |
DelegatorData( | |
"BaggingClassifier", | |
BaggingClassifier, | |
skip_methods=[ | |
"transform", | |
"inverse_transform", | |
"score", | |
"predict_proba", | |
"predict_log_proba", | |
"predict", | |
], | |
), | |
DelegatorData( | |
"SelfTrainingClassifier", | |
lambda est: SelfTrainingClassifier(est), | |
skip_methods=["transform", "inverse_transform", "predict_proba"], | |
), | |
] | |
def test_metaestimator_delegation(): | |
# Ensures specified metaestimators have methods iff subestimator does | |
def hides(method): | |
def wrapper(obj): | |
if obj.hidden_method == method.__name__: | |
raise AttributeError("%r is hidden" % obj.hidden_method) | |
return functools.partial(method, obj) | |
return wrapper | |
class SubEstimator(BaseEstimator): | |
def __init__(self, param=1, hidden_method=None): | |
self.param = param | |
self.hidden_method = hidden_method | |
def fit(self, X, y=None, *args, **kwargs): | |
self.coef_ = np.arange(X.shape[1]) | |
self.classes_ = [] | |
return True | |
def _check_fit(self): | |
check_is_fitted(self) | |
def inverse_transform(self, X, *args, **kwargs): | |
self._check_fit() | |
return X | |
def transform(self, X, *args, **kwargs): | |
self._check_fit() | |
return X | |
def predict(self, X, *args, **kwargs): | |
self._check_fit() | |
return np.ones(X.shape[0]) | |
def predict_proba(self, X, *args, **kwargs): | |
self._check_fit() | |
return np.ones(X.shape[0]) | |
def predict_log_proba(self, X, *args, **kwargs): | |
self._check_fit() | |
return np.ones(X.shape[0]) | |
def decision_function(self, X, *args, **kwargs): | |
self._check_fit() | |
return np.ones(X.shape[0]) | |
def score(self, X, y, *args, **kwargs): | |
self._check_fit() | |
return 1.0 | |
methods = [ | |
k | |
for k in SubEstimator.__dict__.keys() | |
if not k.startswith("_") and not k.startswith("fit") | |
] | |
methods.sort() | |
for delegator_data in DELEGATING_METAESTIMATORS: | |
delegate = SubEstimator() | |
delegator = delegator_data.construct(delegate) | |
for method in methods: | |
if method in delegator_data.skip_methods: | |
continue | |
assert hasattr(delegate, method) | |
assert hasattr( | |
delegator, method | |
), "%s does not have method %r when its delegate does" % ( | |
delegator_data.name, | |
method, | |
) | |
# delegation before fit raises a NotFittedError | |
if method == "score": | |
with pytest.raises(NotFittedError): | |
getattr(delegator, method)( | |
delegator_data.fit_args[0], delegator_data.fit_args[1] | |
) | |
else: | |
with pytest.raises(NotFittedError): | |
getattr(delegator, method)(delegator_data.fit_args[0]) | |
delegator.fit(*delegator_data.fit_args) | |
for method in methods: | |
if method in delegator_data.skip_methods: | |
continue | |
# smoke test delegation | |
if method == "score": | |
getattr(delegator, method)( | |
delegator_data.fit_args[0], delegator_data.fit_args[1] | |
) | |
else: | |
getattr(delegator, method)(delegator_data.fit_args[0]) | |
for method in methods: | |
if method in delegator_data.skip_methods: | |
continue | |
delegate = SubEstimator(hidden_method=method) | |
delegator = delegator_data.construct(delegate) | |
assert not hasattr(delegate, method) | |
assert not hasattr( | |
delegator, method | |
), "%s has method %r when its delegate does not" % ( | |
delegator_data.name, | |
method, | |
) | |
def _generate_meta_estimator_instances_with_pipeline(): | |
"""Generate instances of meta-estimators fed with a pipeline | |
Are considered meta-estimators all estimators accepting one of "estimator", | |
"base_estimator" or "estimators". | |
""" | |
for _, Estimator in sorted(all_estimators()): | |
sig = set(signature(Estimator).parameters) | |
if "estimator" in sig or "base_estimator" in sig or "regressor" in sig: | |
if is_regressor(Estimator): | |
estimator = make_pipeline(TfidfVectorizer(), Ridge()) | |
param_grid = {"ridge__alpha": [0.1, 1.0]} | |
else: | |
estimator = make_pipeline(TfidfVectorizer(), LogisticRegression()) | |
param_grid = {"logisticregression__C": [0.1, 1.0]} | |
if "param_grid" in sig or "param_distributions" in sig: | |
# SearchCV estimators | |
extra_params = {"n_iter": 2} if "n_iter" in sig else {} | |
yield Estimator(estimator, param_grid, **extra_params) | |
else: | |
yield Estimator(estimator) | |
elif "transformer_list" in sig: | |
# FeatureUnion | |
transformer_list = [ | |
("trans1", make_pipeline(TfidfVectorizer(), MaxAbsScaler())), | |
( | |
"trans2", | |
make_pipeline(TfidfVectorizer(), StandardScaler(with_mean=False)), | |
), | |
] | |
yield Estimator(transformer_list) | |
elif "estimators" in sig: | |
# stacking, voting | |
if is_regressor(Estimator): | |
estimator = [ | |
("est1", make_pipeline(TfidfVectorizer(), Ridge(alpha=0.1))), | |
("est2", make_pipeline(TfidfVectorizer(), Ridge(alpha=1))), | |
] | |
else: | |
estimator = [ | |
( | |
"est1", | |
make_pipeline(TfidfVectorizer(), LogisticRegression(C=0.1)), | |
), | |
("est2", make_pipeline(TfidfVectorizer(), LogisticRegression(C=1))), | |
] | |
yield Estimator(estimator) | |
else: | |
continue | |
# TODO: remove data validation for the following estimators | |
# They should be able to work on any data and delegate data validation to | |
# their inner estimator(s). | |
DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE = [ | |
"AdaBoostClassifier", | |
"AdaBoostRegressor", | |
"BaggingClassifier", | |
"BaggingRegressor", | |
"ClassifierChain", # data validation is necessary | |
"IterativeImputer", | |
"OneVsOneClassifier", # input validation can't be avoided | |
"RANSACRegressor", | |
"RFE", | |
"RFECV", | |
"RegressorChain", # data validation is necessary | |
"SelfTrainingClassifier", | |
"SequentialFeatureSelector", # not applicable (2D data mandatory) | |
] | |
DATA_VALIDATION_META_ESTIMATORS = [ | |
est | |
for est in _generate_meta_estimator_instances_with_pipeline() | |
if est.__class__.__name__ not in DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE | |
] | |
def _get_meta_estimator_id(estimator): | |
return estimator.__class__.__name__ | |
def test_meta_estimators_delegate_data_validation(estimator): | |
# Check that meta-estimators delegate data validation to the inner | |
# estimator(s). | |
rng = np.random.RandomState(0) | |
set_random_state(estimator) | |
n_samples = 30 | |
X = rng.choice(np.array(["aa", "bb", "cc"], dtype=object), size=n_samples) | |
if is_regressor(estimator): | |
y = rng.normal(size=n_samples) | |
else: | |
y = rng.randint(3, size=n_samples) | |
# We convert to lists to make sure it works on array-like | |
X = _enforce_estimator_tags_X(estimator, X).tolist() | |
y = _enforce_estimator_tags_y(estimator, y).tolist() | |
# Calling fit should not raise any data validation exception since X is a | |
# valid input datastructure for the first step of the pipeline passed as | |
# base estimator to the meta estimator. | |
estimator.fit(X, y) | |
# n_features_in_ should not be defined since data is not tabular data. | |
assert not hasattr(estimator, "n_features_in_") | |