peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/sentencepiece_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union | |
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers | |
from tokenizers.models import BPE | |
from tokenizers.normalizers import NFKC | |
from .base_tokenizer import BaseTokenizer | |
class SentencePieceBPETokenizer(BaseTokenizer): | |
"""SentencePiece BPE Tokenizer | |
Represents the BPE algorithm, with the pretokenization used by SentencePiece | |
""" | |
def __init__( | |
self, | |
vocab: Optional[Union[str, Dict[str, int]]] = None, | |
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, | |
unk_token: Union[str, AddedToken] = "<unk>", | |
replacement: str = "▁", | |
add_prefix_space: bool = True, | |
dropout: Optional[float] = None, | |
fuse_unk: Optional[bool] = False, | |
): | |
if vocab is not None and merges is not None: | |
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) | |
else: | |
tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) | |
if tokenizer.token_to_id(str(unk_token)) is not None: | |
tokenizer.add_special_tokens([str(unk_token)]) | |
tokenizer.normalizer = NFKC() | |
prepend_scheme = "always" if add_prefix_space else "never" | |
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) | |
parameters = { | |
"model": "SentencePieceBPE", | |
"unk_token": unk_token, | |
"replacement": replacement, | |
"add_prefix_space": add_prefix_space, | |
"dropout": dropout, | |
} | |
super().__init__(tokenizer, parameters) | |
def from_file(vocab_filename: str, merges_filename: str, **kwargs): | |
vocab, merges = BPE.read_file(vocab_filename, merges_filename) | |
return SentencePieceBPETokenizer(vocab, merges, **kwargs) | |
def train( | |
self, | |
files: Union[str, List[str]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
special_tokens: List[Union[str, AddedToken]] = ["<unk>"], | |
limit_alphabet: int = 1000, | |
initial_alphabet: List[str] = [], | |
show_progress: bool = True, | |
): | |
"""Train the model using the given files""" | |
trainer = trainers.BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
special_tokens=special_tokens, | |
limit_alphabet=limit_alphabet, | |
initial_alphabet=initial_alphabet, | |
show_progress=show_progress, | |
) | |
if isinstance(files, str): | |
files = [files] | |
self._tokenizer.train(files, trainer=trainer) | |
def train_from_iterator( | |
self, | |
iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
special_tokens: List[Union[str, AddedToken]] = ["<unk>"], | |
limit_alphabet: int = 1000, | |
initial_alphabet: List[str] = [], | |
show_progress: bool = True, | |
length: Optional[int] = None, | |
): | |
"""Train the model using the given iterator""" | |
trainer = trainers.BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
special_tokens=special_tokens, | |
limit_alphabet=limit_alphabet, | |
initial_alphabet=initial_alphabet, | |
show_progress=show_progress, | |
) | |
self._tokenizer.train_from_iterator( | |
iterator, | |
trainer=trainer, | |
length=length, | |
) | |