peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/io
/matlab
/_miobase.py
# Authors: Travis Oliphant, Matthew Brett | |
""" | |
Base classes for MATLAB file stream reading. | |
MATLAB is a registered trademark of the Mathworks inc. | |
""" | |
import numpy as np | |
from scipy._lib import doccer | |
from . import _byteordercodes as boc | |
__all__ = [ | |
'MatFileReader', 'MatReadError', 'MatReadWarning', | |
'MatVarReader', 'MatWriteError', 'arr_dtype_number', | |
'arr_to_chars', 'convert_dtypes', 'doc_dict', | |
'docfiller', 'get_matfile_version', | |
'matdims', 'read_dtype' | |
] | |
class MatReadError(Exception): | |
"""Exception indicating a read issue.""" | |
class MatWriteError(Exception): | |
"""Exception indicating a write issue.""" | |
class MatReadWarning(UserWarning): | |
"""Warning class for read issues.""" | |
doc_dict = \ | |
{'file_arg': | |
'''file_name : str | |
Name of the mat file (do not need .mat extension if | |
appendmat==True) Can also pass open file-like object.''', | |
'append_arg': | |
'''appendmat : bool, optional | |
True to append the .mat extension to the end of the given | |
filename, if not already present. Default is True.''', | |
'load_args': | |
'''byte_order : str or None, optional | |
None by default, implying byte order guessed from mat | |
file. Otherwise can be one of ('native', '=', 'little', '<', | |
'BIG', '>'). | |
mat_dtype : bool, optional | |
If True, return arrays in same dtype as would be loaded into | |
MATLAB (instead of the dtype with which they are saved). | |
squeeze_me : bool, optional | |
Whether to squeeze unit matrix dimensions or not. | |
chars_as_strings : bool, optional | |
Whether to convert char arrays to string arrays. | |
matlab_compatible : bool, optional | |
Returns matrices as would be loaded by MATLAB (implies | |
squeeze_me=False, chars_as_strings=False, mat_dtype=True, | |
struct_as_record=True).''', | |
'struct_arg': | |
'''struct_as_record : bool, optional | |
Whether to load MATLAB structs as NumPy record arrays, or as | |
old-style NumPy arrays with dtype=object. Setting this flag to | |
False replicates the behavior of SciPy version 0.7.x (returning | |
numpy object arrays). The default setting is True, because it | |
allows easier round-trip load and save of MATLAB files.''', | |
'matstream_arg': | |
'''mat_stream : file-like | |
Object with file API, open for reading.''', | |
'long_fields': | |
'''long_field_names : bool, optional | |
* False - maximum field name length in a structure is 31 characters | |
which is the documented maximum length. This is the default. | |
* True - maximum field name length in a structure is 63 characters | |
which works for MATLAB 7.6''', | |
'do_compression': | |
'''do_compression : bool, optional | |
Whether to compress matrices on write. Default is False.''', | |
'oned_as': | |
'''oned_as : {'row', 'column'}, optional | |
If 'column', write 1-D NumPy arrays as column vectors. | |
If 'row', write 1D NumPy arrays as row vectors.''', | |
'unicode_strings': | |
'''unicode_strings : bool, optional | |
If True, write strings as Unicode, else MATLAB usual encoding.'''} | |
docfiller = doccer.filldoc(doc_dict) | |
''' | |
Note on architecture | |
====================== | |
There are three sets of parameters relevant for reading files. The | |
first are *file read parameters* - containing options that are common | |
for reading the whole file, and therefore every variable within that | |
file. At the moment these are: | |
* mat_stream | |
* dtypes (derived from byte code) | |
* byte_order | |
* chars_as_strings | |
* squeeze_me | |
* struct_as_record (MATLAB 5 files) | |
* class_dtypes (derived from order code, MATLAB 5 files) | |
* codecs (MATLAB 5 files) | |
* uint16_codec (MATLAB 5 files) | |
Another set of parameters are those that apply only to the current | |
variable being read - the *header*: | |
* header related variables (different for v4 and v5 mat files) | |
* is_complex | |
* mclass | |
* var_stream | |
With the header, we need ``next_position`` to tell us where the next | |
variable in the stream is. | |
Then, for each element in a matrix, there can be *element read | |
parameters*. An element is, for example, one element in a MATLAB cell | |
array. At the moment, these are: | |
* mat_dtype | |
The file-reading object contains the *file read parameters*. The | |
*header* is passed around as a data object, or may be read and discarded | |
in a single function. The *element read parameters* - the mat_dtype in | |
this instance, is passed into a general post-processing function - see | |
``mio_utils`` for details. | |
''' | |
def convert_dtypes(dtype_template, order_code): | |
''' Convert dtypes in mapping to given order | |
Parameters | |
---------- | |
dtype_template : mapping | |
mapping with values returning numpy dtype from ``np.dtype(val)`` | |
order_code : str | |
an order code suitable for using in ``dtype.newbyteorder()`` | |
Returns | |
------- | |
dtypes : mapping | |
mapping where values have been replaced by | |
``np.dtype(val).newbyteorder(order_code)`` | |
''' | |
dtypes = dtype_template.copy() | |
for k in dtypes: | |
dtypes[k] = np.dtype(dtypes[k]).newbyteorder(order_code) | |
return dtypes | |
def read_dtype(mat_stream, a_dtype): | |
""" | |
Generic get of byte stream data of known type | |
Parameters | |
---------- | |
mat_stream : file_like object | |
MATLAB (tm) mat file stream | |
a_dtype : dtype | |
dtype of array to read. `a_dtype` is assumed to be correct | |
endianness. | |
Returns | |
------- | |
arr : ndarray | |
Array of dtype `a_dtype` read from stream. | |
""" | |
num_bytes = a_dtype.itemsize | |
arr = np.ndarray(shape=(), | |
dtype=a_dtype, | |
buffer=mat_stream.read(num_bytes), | |
order='F') | |
return arr | |
def matfile_version(file_name, *, appendmat=True): | |
""" | |
Return major, minor tuple depending on apparent mat file type | |
Where: | |
#. 0,x -> version 4 format mat files | |
#. 1,x -> version 5 format mat files | |
#. 2,x -> version 7.3 format mat files (HDF format) | |
Parameters | |
---------- | |
file_name : str | |
Name of the mat file (do not need .mat extension if | |
appendmat==True). Can also pass open file-like object. | |
appendmat : bool, optional | |
True to append the .mat extension to the end of the given | |
filename, if not already present. Default is True. | |
Returns | |
------- | |
major_version : {0, 1, 2} | |
major MATLAB File format version | |
minor_version : int | |
minor MATLAB file format version | |
Raises | |
------ | |
MatReadError | |
If the file is empty. | |
ValueError | |
The matfile version is unknown. | |
Notes | |
----- | |
Has the side effect of setting the file read pointer to 0 | |
""" | |
from ._mio import _open_file_context | |
with _open_file_context(file_name, appendmat=appendmat) as fileobj: | |
return _get_matfile_version(fileobj) | |
get_matfile_version = matfile_version | |
def _get_matfile_version(fileobj): | |
# Mat4 files have a zero somewhere in first 4 bytes | |
fileobj.seek(0) | |
mopt_bytes = fileobj.read(4) | |
if len(mopt_bytes) == 0: | |
raise MatReadError("Mat file appears to be empty") | |
mopt_ints = np.ndarray(shape=(4,), dtype=np.uint8, buffer=mopt_bytes) | |
if 0 in mopt_ints: | |
fileobj.seek(0) | |
return (0,0) | |
# For 5 format or 7.3 format we need to read an integer in the | |
# header. Bytes 124 through 128 contain a version integer and an | |
# endian test string | |
fileobj.seek(124) | |
tst_str = fileobj.read(4) | |
fileobj.seek(0) | |
maj_ind = int(tst_str[2] == b'I'[0]) | |
maj_val = int(tst_str[maj_ind]) | |
min_val = int(tst_str[1 - maj_ind]) | |
ret = (maj_val, min_val) | |
if maj_val in (1, 2): | |
return ret | |
raise ValueError('Unknown mat file type, version {}, {}'.format(*ret)) | |
def matdims(arr, oned_as='column'): | |
""" | |
Determine equivalent MATLAB dimensions for given array | |
Parameters | |
---------- | |
arr : ndarray | |
Input array | |
oned_as : {'column', 'row'}, optional | |
Whether 1-D arrays are returned as MATLAB row or column matrices. | |
Default is 'column'. | |
Returns | |
------- | |
dims : tuple | |
Shape tuple, in the form MATLAB expects it. | |
Notes | |
----- | |
We had to decide what shape a 1 dimensional array would be by | |
default. ``np.atleast_2d`` thinks it is a row vector. The | |
default for a vector in MATLAB (e.g., ``>> 1:12``) is a row vector. | |
Versions of scipy up to and including 0.11 resulted (accidentally) | |
in 1-D arrays being read as column vectors. For the moment, we | |
maintain the same tradition here. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.io.matlab._miobase import matdims | |
>>> matdims(np.array(1)) # NumPy scalar | |
(1, 1) | |
>>> matdims(np.array([1])) # 1-D array, 1 element | |
(1, 1) | |
>>> matdims(np.array([1,2])) # 1-D array, 2 elements | |
(2, 1) | |
>>> matdims(np.array([[2],[3]])) # 2-D array, column vector | |
(2, 1) | |
>>> matdims(np.array([[2,3]])) # 2-D array, row vector | |
(1, 2) | |
>>> matdims(np.array([[[2,3]]])) # 3-D array, rowish vector | |
(1, 1, 2) | |
>>> matdims(np.array([])) # empty 1-D array | |
(0, 0) | |
>>> matdims(np.array([[]])) # empty 2-D array | |
(0, 0) | |
>>> matdims(np.array([[[]]])) # empty 3-D array | |
(0, 0, 0) | |
Optional argument flips 1-D shape behavior. | |
>>> matdims(np.array([1,2]), 'row') # 1-D array, 2 elements | |
(1, 2) | |
The argument has to make sense though | |
>>> matdims(np.array([1,2]), 'bizarre') | |
Traceback (most recent call last): | |
... | |
ValueError: 1-D option "bizarre" is strange | |
""" | |
shape = arr.shape | |
if shape == (): # scalar | |
return (1, 1) | |
if len(shape) == 1: # 1D | |
if shape[0] == 0: | |
return (0, 0) | |
elif oned_as == 'column': | |
return shape + (1,) | |
elif oned_as == 'row': | |
return (1,) + shape | |
else: | |
raise ValueError('1-D option "%s" is strange' | |
% oned_as) | |
return shape | |
class MatVarReader: | |
''' Abstract class defining required interface for var readers''' | |
def __init__(self, file_reader): | |
pass | |
def read_header(self): | |
''' Returns header ''' | |
pass | |
def array_from_header(self, header): | |
''' Reads array given header ''' | |
pass | |
class MatFileReader: | |
""" Base object for reading mat files | |
To make this class functional, you will need to override the | |
following methods: | |
matrix_getter_factory - gives object to fetch next matrix from stream | |
guess_byte_order - guesses file byte order from file | |
""" | |
def __init__(self, mat_stream, | |
byte_order=None, | |
mat_dtype=False, | |
squeeze_me=False, | |
chars_as_strings=True, | |
matlab_compatible=False, | |
struct_as_record=True, | |
verify_compressed_data_integrity=True, | |
simplify_cells=False): | |
''' | |
Initializer for mat file reader | |
mat_stream : file-like | |
object with file API, open for reading | |
%(load_args)s | |
''' | |
# Initialize stream | |
self.mat_stream = mat_stream | |
self.dtypes = {} | |
if not byte_order: | |
byte_order = self.guess_byte_order() | |
else: | |
byte_order = boc.to_numpy_code(byte_order) | |
self.byte_order = byte_order | |
self.struct_as_record = struct_as_record | |
if matlab_compatible: | |
self.set_matlab_compatible() | |
else: | |
self.squeeze_me = squeeze_me | |
self.chars_as_strings = chars_as_strings | |
self.mat_dtype = mat_dtype | |
self.verify_compressed_data_integrity = verify_compressed_data_integrity | |
self.simplify_cells = simplify_cells | |
if simplify_cells: | |
self.squeeze_me = True | |
self.struct_as_record = False | |
def set_matlab_compatible(self): | |
''' Sets options to return arrays as MATLAB loads them ''' | |
self.mat_dtype = True | |
self.squeeze_me = False | |
self.chars_as_strings = False | |
def guess_byte_order(self): | |
''' As we do not know what file type we have, assume native ''' | |
return boc.native_code | |
def end_of_stream(self): | |
b = self.mat_stream.read(1) | |
curpos = self.mat_stream.tell() | |
self.mat_stream.seek(curpos-1) | |
return len(b) == 0 | |
def arr_dtype_number(arr, num): | |
''' Return dtype for given number of items per element''' | |
return np.dtype(arr.dtype.str[:2] + str(num)) | |
def arr_to_chars(arr): | |
''' Convert string array to char array ''' | |
dims = list(arr.shape) | |
if not dims: | |
dims = [1] | |
dims.append(int(arr.dtype.str[2:])) | |
arr = np.ndarray(shape=dims, | |
dtype=arr_dtype_number(arr, 1), | |
buffer=arr) | |
empties = [arr == np.array('', dtype=arr.dtype)] | |
if not np.any(empties): | |
return arr | |
arr = arr.copy() | |
arr[tuple(empties)] = ' ' | |
return arr | |