peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_lu.py
"""LU decomposition functions.""" | |
from warnings import warn | |
from numpy import asarray, asarray_chkfinite | |
import numpy as np | |
from itertools import product | |
# Local imports | |
from ._misc import _datacopied, LinAlgWarning | |
from .lapack import get_lapack_funcs | |
from ._decomp_lu_cython import lu_dispatcher | |
lapack_cast_dict = {x: ''.join([y for y in 'fdFD' if np.can_cast(x, y)]) | |
for x in np.typecodes['All']} | |
__all__ = ['lu', 'lu_solve', 'lu_factor'] | |
def lu_factor(a, overwrite_a=False, check_finite=True): | |
""" | |
Compute pivoted LU decomposition of a matrix. | |
The decomposition is:: | |
A = P L U | |
where P is a permutation matrix, L lower triangular with unit | |
diagonal elements, and U upper triangular. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Matrix to decompose | |
overwrite_a : bool, optional | |
Whether to overwrite data in A (may increase performance) | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
lu : (M, N) ndarray | |
Matrix containing U in its upper triangle, and L in its lower triangle. | |
The unit diagonal elements of L are not stored. | |
piv : (K,) ndarray | |
Pivot indices representing the permutation matrix P: | |
row i of matrix was interchanged with row piv[i]. | |
Of shape ``(K,)``, with ``K = min(M, N)``. | |
See Also | |
-------- | |
lu : gives lu factorization in more user-friendly format | |
lu_solve : solve an equation system using the LU factorization of a matrix | |
Notes | |
----- | |
This is a wrapper to the ``*GETRF`` routines from LAPACK. Unlike | |
:func:`lu`, it outputs the L and U factors into a single array | |
and returns pivot indices instead of a permutation matrix. | |
While the underlying ``*GETRF`` routines return 1-based pivot indices, the | |
``piv`` array returned by ``lu_factor`` contains 0-based indices. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import lu_factor | |
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) | |
>>> lu, piv = lu_factor(A) | |
>>> piv | |
array([2, 2, 3, 3], dtype=int32) | |
Convert LAPACK's ``piv`` array to NumPy index and test the permutation | |
>>> def pivot_to_permutation(piv): | |
... perm = np.arange(len(piv)) | |
... for i in range(len(piv)): | |
... perm[i], perm[piv[i]] = perm[piv[i]], perm[i] | |
... return perm | |
... | |
>>> p_inv = pivot_to_permutation(piv) | |
>>> p_inv | |
array([2, 0, 3, 1]) | |
>>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu) | |
>>> np.allclose(A[p_inv] - L @ U, np.zeros((4, 4))) | |
True | |
The P matrix in P L U is defined by the inverse permutation and | |
can be recovered using argsort: | |
>>> p = np.argsort(p_inv) | |
>>> p | |
array([1, 3, 0, 2]) | |
>>> np.allclose(A - L[p] @ U, np.zeros((4, 4))) | |
True | |
or alternatively: | |
>>> P = np.eye(4)[p] | |
>>> np.allclose(A - P @ L @ U, np.zeros((4, 4))) | |
True | |
""" | |
if check_finite: | |
a1 = asarray_chkfinite(a) | |
else: | |
a1 = asarray(a) | |
overwrite_a = overwrite_a or (_datacopied(a1, a)) | |
getrf, = get_lapack_funcs(('getrf',), (a1,)) | |
lu, piv, info = getrf(a1, overwrite_a=overwrite_a) | |
if info < 0: | |
raise ValueError('illegal value in %dth argument of ' | |
'internal getrf (lu_factor)' % -info) | |
if info > 0: | |
warn("Diagonal number %d is exactly zero. Singular matrix." % info, | |
LinAlgWarning, stacklevel=2) | |
return lu, piv | |
def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True): | |
"""Solve an equation system, a x = b, given the LU factorization of a | |
Parameters | |
---------- | |
(lu, piv) | |
Factorization of the coefficient matrix a, as given by lu_factor. | |
In particular piv are 0-indexed pivot indices. | |
b : array | |
Right-hand side | |
trans : {0, 1, 2}, optional | |
Type of system to solve: | |
===== ========= | |
trans system | |
===== ========= | |
0 a x = b | |
1 a^T x = b | |
2 a^H x = b | |
===== ========= | |
overwrite_b : bool, optional | |
Whether to overwrite data in b (may increase performance) | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : array | |
Solution to the system | |
See Also | |
-------- | |
lu_factor : LU factorize a matrix | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import lu_factor, lu_solve | |
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) | |
>>> b = np.array([1, 1, 1, 1]) | |
>>> lu, piv = lu_factor(A) | |
>>> x = lu_solve((lu, piv), b) | |
>>> np.allclose(A @ x - b, np.zeros((4,))) | |
True | |
""" | |
(lu, piv) = lu_and_piv | |
if check_finite: | |
b1 = asarray_chkfinite(b) | |
else: | |
b1 = asarray(b) | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
if lu.shape[0] != b1.shape[0]: | |
raise ValueError(f"Shapes of lu {lu.shape} and b {b1.shape} are incompatible") | |
getrs, = get_lapack_funcs(('getrs',), (lu, b1)) | |
x, info = getrs(lu, piv, b1, trans=trans, overwrite_b=overwrite_b) | |
if info == 0: | |
return x | |
raise ValueError('illegal value in %dth argument of internal gesv|posv' | |
% -info) | |
def lu(a, permute_l=False, overwrite_a=False, check_finite=True, | |
p_indices=False): | |
""" | |
Compute LU decomposition of a matrix with partial pivoting. | |
The decomposition satisfies:: | |
A = P @ L @ U | |
where ``P`` is a permutation matrix, ``L`` lower triangular with unit | |
diagonal elements, and ``U`` upper triangular. If `permute_l` is set to | |
``True`` then ``L`` is returned already permuted and hence satisfying | |
``A = L @ U``. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Array to decompose | |
permute_l : bool, optional | |
Perform the multiplication P*L (Default: do not permute) | |
overwrite_a : bool, optional | |
Whether to overwrite data in a (may improve performance) | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
p_indices : bool, optional | |
If ``True`` the permutation information is returned as row indices. | |
The default is ``False`` for backwards-compatibility reasons. | |
Returns | |
------- | |
**(If `permute_l` is ``False``)** | |
p : (..., M, M) ndarray | |
Permutation arrays or vectors depending on `p_indices` | |
l : (..., M, K) ndarray | |
Lower triangular or trapezoidal array with unit diagonal. | |
``K = min(M, N)`` | |
u : (..., K, N) ndarray | |
Upper triangular or trapezoidal array | |
**(If `permute_l` is ``True``)** | |
pl : (..., M, K) ndarray | |
Permuted L matrix. | |
``K = min(M, N)`` | |
u : (..., K, N) ndarray | |
Upper triangular or trapezoidal array | |
Notes | |
----- | |
Permutation matrices are costly since they are nothing but row reorder of | |
``L`` and hence indices are strongly recommended to be used instead if the | |
permutation is required. The relation in the 2D case then becomes simply | |
``A = L[P, :] @ U``. In higher dimensions, it is better to use `permute_l` | |
to avoid complicated indexing tricks. | |
In 2D case, if one has the indices however, for some reason, the | |
permutation matrix is still needed then it can be constructed by | |
``np.eye(M)[P, :]``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import lu | |
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) | |
>>> p, l, u = lu(A) | |
>>> np.allclose(A, p @ l @ u) | |
True | |
>>> p # Permutation matrix | |
array([[0., 1., 0., 0.], # Row index 1 | |
[0., 0., 0., 1.], # Row index 3 | |
[1., 0., 0., 0.], # Row index 0 | |
[0., 0., 1., 0.]]) # Row index 2 | |
>>> p, _, _ = lu(A, p_indices=True) | |
>>> p | |
array([1, 3, 0, 2]) # as given by row indices above | |
>>> np.allclose(A, l[p, :] @ u) | |
True | |
We can also use nd-arrays, for example, a demonstration with 4D array: | |
>>> rng = np.random.default_rng() | |
>>> A = rng.uniform(low=-4, high=4, size=[3, 2, 4, 8]) | |
>>> p, l, u = lu(A) | |
>>> p.shape, l.shape, u.shape | |
((3, 2, 4, 4), (3, 2, 4, 4), (3, 2, 4, 8)) | |
>>> np.allclose(A, p @ l @ u) | |
True | |
>>> PL, U = lu(A, permute_l=True) | |
>>> np.allclose(A, PL @ U) | |
True | |
""" | |
a1 = np.asarray_chkfinite(a) if check_finite else np.asarray(a) | |
if a1.ndim < 2: | |
raise ValueError('The input array must be at least two-dimensional.') | |
# Also check if dtype is LAPACK compatible | |
if a1.dtype.char not in 'fdFD': | |
dtype_char = lapack_cast_dict[a1.dtype.char] | |
if not dtype_char: # No casting possible | |
raise TypeError(f'The dtype {a1.dtype} cannot be cast ' | |
'to float(32, 64) or complex(64, 128).') | |
a1 = a1.astype(dtype_char[0]) # makes a copy, free to scratch | |
overwrite_a = True | |
*nd, m, n = a1.shape | |
k = min(m, n) | |
real_dchar = 'f' if a1.dtype.char in 'fF' else 'd' | |
# Empty input | |
if min(*a1.shape) == 0: | |
if permute_l: | |
PL = np.empty(shape=[*nd, m, k], dtype=a1.dtype) | |
U = np.empty(shape=[*nd, k, n], dtype=a1.dtype) | |
return PL, U | |
else: | |
P = (np.empty([*nd, 0], dtype=np.int32) if p_indices else | |
np.empty([*nd, 0, 0], dtype=real_dchar)) | |
L = np.empty(shape=[*nd, m, k], dtype=a1.dtype) | |
U = np.empty(shape=[*nd, k, n], dtype=a1.dtype) | |
return P, L, U | |
# Scalar case | |
if a1.shape[-2:] == (1, 1): | |
if permute_l: | |
return np.ones_like(a1), (a1 if overwrite_a else a1.copy()) | |
else: | |
P = (np.zeros(shape=[*nd, m], dtype=int) if p_indices | |
else np.ones_like(a1)) | |
return P, np.ones_like(a1), (a1 if overwrite_a else a1.copy()) | |
# Then check overwrite permission | |
if not _datacopied(a1, a): # "a" still alive through "a1" | |
if not overwrite_a: | |
# Data belongs to "a" so make a copy | |
a1 = a1.copy(order='C') | |
# else: Do nothing we'll use "a" if possible | |
# else: a1 has its own data thus free to scratch | |
# Then layout checks, might happen that overwrite is allowed but original | |
# array was read-only or non-contiguous. | |
if not (a1.flags['C_CONTIGUOUS'] and a1.flags['WRITEABLE']): | |
a1 = a1.copy(order='C') | |
if not nd: # 2D array | |
p = np.empty(m, dtype=np.int32) | |
u = np.zeros([k, k], dtype=a1.dtype) | |
lu_dispatcher(a1, u, p, permute_l) | |
P, L, U = (p, a1, u) if m > n else (p, u, a1) | |
else: # Stacked array | |
# Prepare the contiguous data holders | |
P = np.empty([*nd, m], dtype=np.int32) # perm vecs | |
if m > n: # Tall arrays, U will be created | |
U = np.zeros([*nd, k, k], dtype=a1.dtype) | |
for ind in product(*[range(x) for x in a1.shape[:-2]]): | |
lu_dispatcher(a1[ind], U[ind], P[ind], permute_l) | |
L = a1 | |
else: # Fat arrays, L will be created | |
L = np.zeros([*nd, k, k], dtype=a1.dtype) | |
for ind in product(*[range(x) for x in a1.shape[:-2]]): | |
lu_dispatcher(a1[ind], L[ind], P[ind], permute_l) | |
U = a1 | |
# Convert permutation vecs to permutation arrays | |
# permute_l=False needed to enter here to avoid wasted efforts | |
if (not p_indices) and (not permute_l): | |
if nd: | |
Pa = np.zeros([*nd, m, m], dtype=real_dchar) | |
# An unreadable index hack - One-hot encoding for perm matrices | |
nd_ix = np.ix_(*([np.arange(x) for x in nd]+[np.arange(m)])) | |
Pa[(*nd_ix, P)] = 1 | |
P = Pa | |
else: # 2D case | |
Pa = np.zeros([m, m], dtype=real_dchar) | |
Pa[np.arange(m), P] = 1 | |
P = Pa | |
return (L, U) if permute_l else (P, L, U) | |