peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_matfuncs_sqrtm.py
""" | |
Matrix square root for general matrices and for upper triangular matrices. | |
This module exists to avoid cyclic imports. | |
""" | |
__all__ = ['sqrtm'] | |
import numpy as np | |
from scipy._lib._util import _asarray_validated | |
# Local imports | |
from ._misc import norm | |
from .lapack import ztrsyl, dtrsyl | |
from ._decomp_schur import schur, rsf2csf | |
class SqrtmError(np.linalg.LinAlgError): | |
pass | |
from ._matfuncs_sqrtm_triu import within_block_loop # noqa: E402 | |
def _sqrtm_triu(T, blocksize=64): | |
""" | |
Matrix square root of an upper triangular matrix. | |
This is a helper function for `sqrtm` and `logm`. | |
Parameters | |
---------- | |
T : (N, N) array_like upper triangular | |
Matrix whose square root to evaluate | |
blocksize : int, optional | |
If the blocksize is not degenerate with respect to the | |
size of the input array, then use a blocked algorithm. (Default: 64) | |
Returns | |
------- | |
sqrtm : (N, N) ndarray | |
Value of the sqrt function at `T` | |
References | |
---------- | |
.. [1] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013) | |
"Blocked Schur Algorithms for Computing the Matrix Square Root, | |
Lecture Notes in Computer Science, 7782. pp. 171-182. | |
""" | |
T_diag = np.diag(T) | |
keep_it_real = np.isrealobj(T) and np.min(T_diag) >= 0 | |
# Cast to complex as necessary + ensure double precision | |
if not keep_it_real: | |
T = np.asarray(T, dtype=np.complex128, order="C") | |
T_diag = np.asarray(T_diag, dtype=np.complex128) | |
else: | |
T = np.asarray(T, dtype=np.float64, order="C") | |
T_diag = np.asarray(T_diag, dtype=np.float64) | |
R = np.diag(np.sqrt(T_diag)) | |
# Compute the number of blocks to use; use at least one block. | |
n, n = T.shape | |
nblocks = max(n // blocksize, 1) | |
# Compute the smaller of the two sizes of blocks that | |
# we will actually use, and compute the number of large blocks. | |
bsmall, nlarge = divmod(n, nblocks) | |
blarge = bsmall + 1 | |
nsmall = nblocks - nlarge | |
if nsmall * bsmall + nlarge * blarge != n: | |
raise Exception('internal inconsistency') | |
# Define the index range covered by each block. | |
start_stop_pairs = [] | |
start = 0 | |
for count, size in ((nsmall, bsmall), (nlarge, blarge)): | |
for i in range(count): | |
start_stop_pairs.append((start, start + size)) | |
start += size | |
# Within-block interactions (Cythonized) | |
try: | |
within_block_loop(R, T, start_stop_pairs, nblocks) | |
except RuntimeError as e: | |
raise SqrtmError(*e.args) from e | |
# Between-block interactions (Cython would give no significant speedup) | |
for j in range(nblocks): | |
jstart, jstop = start_stop_pairs[j] | |
for i in range(j-1, -1, -1): | |
istart, istop = start_stop_pairs[i] | |
S = T[istart:istop, jstart:jstop] | |
if j - i > 1: | |
S = S - R[istart:istop, istop:jstart].dot(R[istop:jstart, | |
jstart:jstop]) | |
# Invoke LAPACK. | |
# For more details, see the solve_sylvester implementation | |
# and the fortran dtrsyl and ztrsyl docs. | |
Rii = R[istart:istop, istart:istop] | |
Rjj = R[jstart:jstop, jstart:jstop] | |
if keep_it_real: | |
x, scale, info = dtrsyl(Rii, Rjj, S) | |
else: | |
x, scale, info = ztrsyl(Rii, Rjj, S) | |
R[istart:istop, jstart:jstop] = x * scale | |
# Return the matrix square root. | |
return R | |
def sqrtm(A, disp=True, blocksize=64): | |
""" | |
Matrix square root. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
Matrix whose square root to evaluate | |
disp : bool, optional | |
Print warning if error in the result is estimated large | |
instead of returning estimated error. (Default: True) | |
blocksize : integer, optional | |
If the blocksize is not degenerate with respect to the | |
size of the input array, then use a blocked algorithm. (Default: 64) | |
Returns | |
------- | |
sqrtm : (N, N) ndarray | |
Value of the sqrt function at `A`. The dtype is float or complex. | |
The precision (data size) is determined based on the precision of | |
input `A`. When the dtype is float, the precision is the same as `A`. | |
When the dtype is complex, the precision is double that of `A`. The | |
precision might be clipped by each dtype precision range. | |
errest : float | |
(if disp == False) | |
Frobenius norm of the estimated error, ||err||_F / ||A||_F | |
References | |
---------- | |
.. [1] Edvin Deadman, Nicholas J. Higham, Rui Ralha (2013) | |
"Blocked Schur Algorithms for Computing the Matrix Square Root, | |
Lecture Notes in Computer Science, 7782. pp. 171-182. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import sqrtm | |
>>> a = np.array([[1.0, 3.0], [1.0, 4.0]]) | |
>>> r = sqrtm(a) | |
>>> r | |
array([[ 0.75592895, 1.13389342], | |
[ 0.37796447, 1.88982237]]) | |
>>> r.dot(r) | |
array([[ 1., 3.], | |
[ 1., 4.]]) | |
""" | |
byte_size = np.asarray(A).dtype.itemsize | |
A = _asarray_validated(A, check_finite=True, as_inexact=True) | |
if len(A.shape) != 2: | |
raise ValueError("Non-matrix input to matrix function.") | |
if blocksize < 1: | |
raise ValueError("The blocksize should be at least 1.") | |
keep_it_real = np.isrealobj(A) | |
if keep_it_real: | |
T, Z = schur(A) | |
d0 = np.diagonal(T) | |
d1 = np.diagonal(T, -1) | |
eps = np.finfo(T.dtype).eps | |
needs_conversion = abs(d1) > eps * (abs(d0[1:]) + abs(d0[:-1])) | |
if needs_conversion.any(): | |
T, Z = rsf2csf(T, Z) | |
else: | |
T, Z = schur(A, output='complex') | |
failflag = False | |
try: | |
R = _sqrtm_triu(T, blocksize=blocksize) | |
ZH = np.conjugate(Z).T | |
X = Z.dot(R).dot(ZH) | |
if not np.iscomplexobj(X): | |
# float byte size range: f2 ~ f16 | |
X = X.astype(f"f{np.clip(byte_size, 2, 16)}", copy=False) | |
else: | |
# complex byte size range: c8 ~ c32. | |
# c32(complex256) might not be supported in some environments. | |
if hasattr(np, 'complex256'): | |
X = X.astype(f"c{np.clip(byte_size*2, 8, 32)}", copy=False) | |
else: | |
X = X.astype(f"c{np.clip(byte_size*2, 8, 16)}", copy=False) | |
except SqrtmError: | |
failflag = True | |
X = np.empty_like(A) | |
X.fill(np.nan) | |
if disp: | |
if failflag: | |
print("Failed to find a square root.") | |
return X | |
else: | |
try: | |
arg2 = norm(X.dot(X) - A, 'fro')**2 / norm(A, 'fro') | |
except ValueError: | |
# NaNs in matrix | |
arg2 = np.inf | |
return X, arg2 | |