peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/blas.py
""" | |
Low-level BLAS functions (:mod:`scipy.linalg.blas`) | |
=================================================== | |
This module contains low-level functions from the BLAS library. | |
.. versionadded:: 0.12.0 | |
.. note:: | |
The common ``overwrite_<>`` option in many routines, allows the | |
input arrays to be overwritten to avoid extra memory allocation. | |
However this requires the array to satisfy two conditions | |
which are memory order and the data type to match exactly the | |
order and the type expected by the routine. | |
As an example, if you pass a double precision float array to any | |
``S....`` routine which expects single precision arguments, f2py | |
will create an intermediate array to match the argument types and | |
overwriting will be performed on that intermediate array. | |
Similarly, if a C-contiguous array is passed, f2py will pass a | |
FORTRAN-contiguous array internally. Please make sure that these | |
details are satisfied. More information can be found in the f2py | |
documentation. | |
.. warning:: | |
These functions do little to no error checking. | |
It is possible to cause crashes by mis-using them, | |
so prefer using the higher-level routines in `scipy.linalg`. | |
Finding functions | |
----------------- | |
.. autosummary:: | |
:toctree: generated/ | |
get_blas_funcs | |
find_best_blas_type | |
BLAS Level 1 functions | |
---------------------- | |
.. autosummary:: | |
:toctree: generated/ | |
caxpy | |
ccopy | |
cdotc | |
cdotu | |
crotg | |
cscal | |
csrot | |
csscal | |
cswap | |
dasum | |
daxpy | |
dcopy | |
ddot | |
dnrm2 | |
drot | |
drotg | |
drotm | |
drotmg | |
dscal | |
dswap | |
dzasum | |
dznrm2 | |
icamax | |
idamax | |
isamax | |
izamax | |
sasum | |
saxpy | |
scasum | |
scnrm2 | |
scopy | |
sdot | |
snrm2 | |
srot | |
srotg | |
srotm | |
srotmg | |
sscal | |
sswap | |
zaxpy | |
zcopy | |
zdotc | |
zdotu | |
zdrot | |
zdscal | |
zrotg | |
zscal | |
zswap | |
BLAS Level 2 functions | |
---------------------- | |
.. autosummary:: | |
:toctree: generated/ | |
sgbmv | |
sgemv | |
sger | |
ssbmv | |
sspr | |
sspr2 | |
ssymv | |
ssyr | |
ssyr2 | |
stbmv | |
stpsv | |
strmv | |
strsv | |
dgbmv | |
dgemv | |
dger | |
dsbmv | |
dspr | |
dspr2 | |
dsymv | |
dsyr | |
dsyr2 | |
dtbmv | |
dtpsv | |
dtrmv | |
dtrsv | |
cgbmv | |
cgemv | |
cgerc | |
cgeru | |
chbmv | |
chemv | |
cher | |
cher2 | |
chpmv | |
chpr | |
chpr2 | |
ctbmv | |
ctbsv | |
ctpmv | |
ctpsv | |
ctrmv | |
ctrsv | |
csyr | |
zgbmv | |
zgemv | |
zgerc | |
zgeru | |
zhbmv | |
zhemv | |
zher | |
zher2 | |
zhpmv | |
zhpr | |
zhpr2 | |
ztbmv | |
ztbsv | |
ztpmv | |
ztrmv | |
ztrsv | |
zsyr | |
BLAS Level 3 functions | |
---------------------- | |
.. autosummary:: | |
:toctree: generated/ | |
sgemm | |
ssymm | |
ssyr2k | |
ssyrk | |
strmm | |
strsm | |
dgemm | |
dsymm | |
dsyr2k | |
dsyrk | |
dtrmm | |
dtrsm | |
cgemm | |
chemm | |
cher2k | |
cherk | |
csymm | |
csyr2k | |
csyrk | |
ctrmm | |
ctrsm | |
zgemm | |
zhemm | |
zher2k | |
zherk | |
zsymm | |
zsyr2k | |
zsyrk | |
ztrmm | |
ztrsm | |
""" | |
# | |
# Author: Pearu Peterson, March 2002 | |
# refactoring by Fabian Pedregosa, March 2010 | |
# | |
__all__ = ['get_blas_funcs', 'find_best_blas_type'] | |
import numpy as _np | |
import functools | |
from scipy.linalg import _fblas | |
try: | |
from scipy.linalg import _cblas | |
except ImportError: | |
_cblas = None | |
try: | |
from scipy.linalg import _fblas_64 | |
HAS_ILP64 = True | |
except ImportError: | |
HAS_ILP64 = False | |
_fblas_64 = None | |
# Expose all functions (only fblas --- cblas is an implementation detail) | |
empty_module = None | |
from scipy.linalg._fblas import * # noqa: E402, F403 | |
del empty_module | |
# all numeric dtypes '?bBhHiIlLqQefdgFDGO' that are safe to be converted to | |
# single precision float : '?bBhH!!!!!!ef!!!!!!' | |
# double precision float : '?bBhHiIlLqQefdg!!!!' | |
# single precision complex : '?bBhH!!!!!!ef!!F!!!' | |
# double precision complex : '?bBhHiIlLqQefdgFDG!' | |
_type_score = {x: 1 for x in '?bBhHef'} | |
_type_score.update({x: 2 for x in 'iIlLqQd'}) | |
# Handle float128(g) and complex256(G) separately in case non-Windows systems. | |
# On Windows, the values will be rewritten to the same key with the same value. | |
_type_score.update({'F': 3, 'D': 4, 'g': 2, 'G': 4}) | |
# Final mapping to the actual prefixes and dtypes | |
_type_conv = {1: ('s', _np.dtype('float32')), | |
2: ('d', _np.dtype('float64')), | |
3: ('c', _np.dtype('complex64')), | |
4: ('z', _np.dtype('complex128'))} | |
# some convenience alias for complex functions | |
_blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2', | |
'cdot': 'cdotc', 'zdot': 'zdotc', | |
'cger': 'cgerc', 'zger': 'zgerc', | |
'sdotc': 'sdot', 'sdotu': 'sdot', | |
'ddotc': 'ddot', 'ddotu': 'ddot'} | |
def find_best_blas_type(arrays=(), dtype=None): | |
"""Find best-matching BLAS/LAPACK type. | |
Arrays are used to determine the optimal prefix of BLAS routines. | |
Parameters | |
---------- | |
arrays : sequence of ndarrays, optional | |
Arrays can be given to determine optimal prefix of BLAS | |
routines. If not given, double-precision routines will be | |
used, otherwise the most generic type in arrays will be used. | |
dtype : str or dtype, optional | |
Data-type specifier. Not used if `arrays` is non-empty. | |
Returns | |
------- | |
prefix : str | |
BLAS/LAPACK prefix character. | |
dtype : dtype | |
Inferred Numpy data type. | |
prefer_fortran : bool | |
Whether to prefer Fortran order routines over C order. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import scipy.linalg.blas as bla | |
>>> rng = np.random.default_rng() | |
>>> a = rng.random((10,15)) | |
>>> b = np.asfortranarray(a) # Change the memory layout order | |
>>> bla.find_best_blas_type((a,)) | |
('d', dtype('float64'), False) | |
>>> bla.find_best_blas_type((a*1j,)) | |
('z', dtype('complex128'), False) | |
>>> bla.find_best_blas_type((b,)) | |
('d', dtype('float64'), True) | |
""" | |
dtype = _np.dtype(dtype) | |
max_score = _type_score.get(dtype.char, 5) | |
prefer_fortran = False | |
if arrays: | |
# In most cases, single element is passed through, quicker route | |
if len(arrays) == 1: | |
max_score = _type_score.get(arrays[0].dtype.char, 5) | |
prefer_fortran = arrays[0].flags['FORTRAN'] | |
else: | |
# use the most generic type in arrays | |
scores = [_type_score.get(x.dtype.char, 5) for x in arrays] | |
max_score = max(scores) | |
ind_max_score = scores.index(max_score) | |
# safe upcasting for mix of float64 and complex64 --> prefix 'z' | |
if max_score == 3 and (2 in scores): | |
max_score = 4 | |
if arrays[ind_max_score].flags['FORTRAN']: | |
# prefer Fortran for leading array with column major order | |
prefer_fortran = True | |
# Get the LAPACK prefix and the corresponding dtype if not fall back | |
# to 'd' and double precision float. | |
prefix, dtype = _type_conv.get(max_score, ('d', _np.dtype('float64'))) | |
return prefix, dtype, prefer_fortran | |
def _get_funcs(names, arrays, dtype, | |
lib_name, fmodule, cmodule, | |
fmodule_name, cmodule_name, alias, | |
ilp64=False): | |
""" | |
Return available BLAS/LAPACK functions. | |
Used also in lapack.py. See get_blas_funcs for docstring. | |
""" | |
funcs = [] | |
unpack = False | |
dtype = _np.dtype(dtype) | |
module1 = (cmodule, cmodule_name) | |
module2 = (fmodule, fmodule_name) | |
if isinstance(names, str): | |
names = (names,) | |
unpack = True | |
prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype) | |
if prefer_fortran: | |
module1, module2 = module2, module1 | |
for name in names: | |
func_name = prefix + name | |
func_name = alias.get(func_name, func_name) | |
func = getattr(module1[0], func_name, None) | |
module_name = module1[1] | |
if func is None: | |
func = getattr(module2[0], func_name, None) | |
module_name = module2[1] | |
if func is None: | |
raise ValueError( | |
f'{lib_name} function {func_name} could not be found') | |
func.module_name, func.typecode = module_name, prefix | |
func.dtype = dtype | |
if not ilp64: | |
func.int_dtype = _np.dtype(_np.intc) | |
else: | |
func.int_dtype = _np.dtype(_np.int64) | |
func.prefix = prefix # Backward compatibility | |
funcs.append(func) | |
if unpack: | |
return funcs[0] | |
else: | |
return funcs | |
def _memoize_get_funcs(func): | |
""" | |
Memoized fast path for _get_funcs instances | |
""" | |
memo = {} | |
func.memo = memo | |
def getter(names, arrays=(), dtype=None, ilp64=False): | |
key = (names, dtype, ilp64) | |
for array in arrays: | |
# cf. find_blas_funcs | |
key += (array.dtype.char, array.flags.fortran) | |
try: | |
value = memo.get(key) | |
except TypeError: | |
# unhashable key etc. | |
key = None | |
value = None | |
if value is not None: | |
return value | |
value = func(names, arrays, dtype, ilp64) | |
if key is not None: | |
memo[key] = value | |
return value | |
return getter | |
def get_blas_funcs(names, arrays=(), dtype=None, ilp64=False): | |
"""Return available BLAS function objects from names. | |
Arrays are used to determine the optimal prefix of BLAS routines. | |
Parameters | |
---------- | |
names : str or sequence of str | |
Name(s) of BLAS functions without type prefix. | |
arrays : sequence of ndarrays, optional | |
Arrays can be given to determine optimal prefix of BLAS | |
routines. If not given, double-precision routines will be | |
used, otherwise the most generic type in arrays will be used. | |
dtype : str or dtype, optional | |
Data-type specifier. Not used if `arrays` is non-empty. | |
ilp64 : {True, False, 'preferred'}, optional | |
Whether to return ILP64 routine variant. | |
Choosing 'preferred' returns ILP64 routine if available, | |
and otherwise the 32-bit routine. Default: False | |
Returns | |
------- | |
funcs : list | |
List containing the found function(s). | |
Notes | |
----- | |
This routine automatically chooses between Fortran/C | |
interfaces. Fortran code is used whenever possible for arrays with | |
column major order. In all other cases, C code is preferred. | |
In BLAS, the naming convention is that all functions start with a | |
type prefix, which depends on the type of the principal | |
matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy | |
types {float32, float64, complex64, complex128} respectively. | |
The code and the dtype are stored in attributes `typecode` and `dtype` | |
of the returned functions. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import scipy.linalg as LA | |
>>> rng = np.random.default_rng() | |
>>> a = rng.random((3,2)) | |
>>> x_gemv = LA.get_blas_funcs('gemv', (a,)) | |
>>> x_gemv.typecode | |
'd' | |
>>> x_gemv = LA.get_blas_funcs('gemv',(a*1j,)) | |
>>> x_gemv.typecode | |
'z' | |
""" | |
if isinstance(ilp64, str): | |
if ilp64 == 'preferred': | |
ilp64 = HAS_ILP64 | |
else: | |
raise ValueError("Invalid value for 'ilp64'") | |
if not ilp64: | |
return _get_funcs(names, arrays, dtype, | |
"BLAS", _fblas, _cblas, "fblas", "cblas", | |
_blas_alias, ilp64=False) | |
else: | |
if not HAS_ILP64: | |
raise RuntimeError("BLAS ILP64 routine requested, but Scipy " | |
"compiled only with 32-bit BLAS") | |
return _get_funcs(names, arrays, dtype, | |
"BLAS", _fblas_64, None, "fblas_64", None, | |
_blas_alias, ilp64=True) | |