peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_coo.py
""" A sparse matrix in COOrdinate or 'triplet' format""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['coo_array', 'coo_matrix', 'isspmatrix_coo'] | |
import math | |
from warnings import warn | |
import numpy as np | |
from .._lib._util import copy_if_needed | |
from ._matrix import spmatrix | |
from ._sparsetools import coo_tocsr, coo_todense, coo_matvec | |
from ._base import issparse, SparseEfficiencyWarning, _spbase, sparray | |
from ._data import _data_matrix, _minmax_mixin | |
from ._sputils import (upcast_char, to_native, isshape, getdtype, | |
getdata, downcast_intp_index, get_index_dtype, | |
check_shape, check_reshape_kwargs) | |
import operator | |
class _coo_base(_data_matrix, _minmax_mixin): | |
_format = 'coo' | |
def __init__(self, arg1, shape=None, dtype=None, copy=False): | |
_data_matrix.__init__(self) | |
is_array = isinstance(self, sparray) | |
if not copy: | |
copy = copy_if_needed | |
if isinstance(arg1, tuple): | |
if isshape(arg1, allow_1d=is_array): | |
self._shape = check_shape(arg1, allow_1d=is_array) | |
idx_dtype = self._get_index_dtype(maxval=max(self._shape)) | |
data_dtype = getdtype(dtype, default=float) | |
self.coords = tuple(np.array([], dtype=idx_dtype) | |
for _ in range(len(self._shape))) | |
self.data = np.array([], dtype=data_dtype) | |
self.has_canonical_format = True | |
else: | |
try: | |
obj, coords = arg1 | |
except (TypeError, ValueError) as e: | |
raise TypeError('invalid input format') from e | |
if shape is None: | |
if any(len(idx) == 0 for idx in coords): | |
raise ValueError('cannot infer dimensions from zero ' | |
'sized index arrays') | |
shape = tuple(operator.index(np.max(idx)) + 1 | |
for idx in coords) | |
self._shape = check_shape(shape, allow_1d=is_array) | |
idx_dtype = self._get_index_dtype(coords, | |
maxval=max(self.shape), | |
check_contents=True) | |
self.coords = tuple(np.array(idx, copy=copy, dtype=idx_dtype) | |
for idx in coords) | |
self.data = getdata(obj, copy=copy, dtype=dtype) | |
self.has_canonical_format = False | |
else: | |
if issparse(arg1): | |
if arg1.format == self.format and copy: | |
self.coords = tuple(idx.copy() for idx in arg1.coords) | |
self.data = arg1.data.copy() | |
self._shape = check_shape(arg1.shape, allow_1d=is_array) | |
self.has_canonical_format = arg1.has_canonical_format | |
else: | |
coo = arg1.tocoo() | |
self.coords = tuple(coo.coords) | |
self.data = coo.data | |
self._shape = check_shape(coo.shape, allow_1d=is_array) | |
self.has_canonical_format = False | |
else: | |
# dense argument | |
M = np.asarray(arg1) | |
if not is_array: | |
M = np.atleast_2d(M) | |
if M.ndim != 2: | |
raise TypeError('expected dimension <= 2 array or matrix') | |
self._shape = check_shape(M.shape, allow_1d=is_array) | |
if shape is not None: | |
if check_shape(shape, allow_1d=is_array) != self._shape: | |
message = f'inconsistent shapes: {shape} != {self._shape}' | |
raise ValueError(message) | |
index_dtype = self._get_index_dtype(maxval=max(self._shape)) | |
coords = M.nonzero() | |
self.coords = tuple(idx.astype(index_dtype, copy=False) | |
for idx in coords) | |
self.data = M[coords] | |
self.has_canonical_format = True | |
if dtype is not None: | |
self.data = self.data.astype(dtype, copy=False) | |
self._check() | |
def row(self): | |
if self.ndim > 1: | |
return self.coords[-2] | |
result = np.zeros_like(self.col) | |
result.setflags(write=False) | |
return result | |
def row(self, new_row): | |
if self.ndim < 2: | |
raise ValueError('cannot set row attribute of a 1-dimensional sparse array') | |
new_row = np.asarray(new_row, dtype=self.coords[-2].dtype) | |
self.coords = self.coords[:-2] + (new_row,) + self.coords[-1:] | |
def col(self): | |
return self.coords[-1] | |
def col(self, new_col): | |
new_col = np.asarray(new_col, dtype=self.coords[-1].dtype) | |
self.coords = self.coords[:-1] + (new_col,) | |
def reshape(self, *args, **kwargs): | |
is_array = isinstance(self, sparray) | |
shape = check_shape(args, self.shape, allow_1d=is_array) | |
order, copy = check_reshape_kwargs(kwargs) | |
# Return early if reshape is not required | |
if shape == self.shape: | |
if copy: | |
return self.copy() | |
else: | |
return self | |
# When reducing the number of dimensions, we need to be careful about | |
# index overflow. This is why we can't simply call | |
# `np.ravel_multi_index()` followed by `np.unravel_index()` here. | |
flat_coords = _ravel_coords(self.coords, self.shape, order=order) | |
if len(shape) == 2: | |
if order == 'C': | |
new_coords = divmod(flat_coords, shape[1]) | |
else: | |
new_coords = divmod(flat_coords, shape[0])[::-1] | |
else: | |
new_coords = np.unravel_index(flat_coords, shape, order=order) | |
# Handle copy here rather than passing on to the constructor so that no | |
# copy will be made of `new_coords` regardless. | |
if copy: | |
new_data = self.data.copy() | |
else: | |
new_data = self.data | |
return self.__class__((new_data, new_coords), shape=shape, copy=False) | |
reshape.__doc__ = _spbase.reshape.__doc__ | |
def _getnnz(self, axis=None): | |
if axis is None or (axis == 0 and self.ndim == 1): | |
nnz = len(self.data) | |
if any(len(idx) != nnz for idx in self.coords): | |
raise ValueError('all index and data arrays must have the ' | |
'same length') | |
if self.data.ndim != 1 or any(idx.ndim != 1 for idx in self.coords): | |
raise ValueError('row, column, and data arrays must be 1-D') | |
return int(nnz) | |
if axis < 0: | |
axis += self.ndim | |
if axis >= self.ndim: | |
raise ValueError('axis out of bounds') | |
if self.ndim > 2: | |
raise NotImplementedError('per-axis nnz for COO arrays with >2 ' | |
'dimensions is not supported') | |
return np.bincount(downcast_intp_index(self.coords[1 - axis]), | |
minlength=self.shape[1 - axis]) | |
_getnnz.__doc__ = _spbase._getnnz.__doc__ | |
def _check(self): | |
""" Checks data structure for consistency """ | |
if self.ndim != len(self.coords): | |
raise ValueError('mismatching number of index arrays for shape; ' | |
f'got {len(self.coords)}, expected {self.ndim}') | |
# index arrays should have integer data types | |
for i, idx in enumerate(self.coords): | |
if idx.dtype.kind != 'i': | |
warn(f'index array {i} has non-integer dtype ({idx.dtype.name})', | |
stacklevel=3) | |
idx_dtype = self._get_index_dtype(self.coords, maxval=max(self.shape)) | |
self.coords = tuple(np.asarray(idx, dtype=idx_dtype) | |
for idx in self.coords) | |
self.data = to_native(self.data) | |
if self.nnz > 0: | |
for i, idx in enumerate(self.coords): | |
if idx.max() >= self.shape[i]: | |
raise ValueError(f'axis {i} index {idx.max()} exceeds ' | |
f'matrix dimension {self.shape[i]}') | |
if idx.min() < 0: | |
raise ValueError(f'negative axis {i} index: {idx.min()}') | |
def transpose(self, axes=None, copy=False): | |
if axes is None: | |
axes = range(self.ndim)[::-1] | |
elif isinstance(self, sparray): | |
if len(axes) != self.ndim: | |
raise ValueError("axes don't match matrix dimensions") | |
if len(set(axes)) != self.ndim: | |
raise ValueError("repeated axis in transpose") | |
elif axes != (1, 0): | |
raise ValueError("Sparse matrices do not support an 'axes' " | |
"parameter because swapping dimensions is the " | |
"only logical permutation.") | |
permuted_shape = tuple(self._shape[i] for i in axes) | |
permuted_coords = tuple(self.coords[i] for i in axes) | |
return self.__class__((self.data, permuted_coords), | |
shape=permuted_shape, copy=copy) | |
transpose.__doc__ = _spbase.transpose.__doc__ | |
def resize(self, *shape) -> None: | |
is_array = isinstance(self, sparray) | |
shape = check_shape(shape, allow_1d=is_array) | |
# Check for added dimensions. | |
if len(shape) > self.ndim: | |
flat_coords = _ravel_coords(self.coords, self.shape) | |
max_size = math.prod(shape) | |
self.coords = np.unravel_index(flat_coords[:max_size], shape) | |
self.data = self.data[:max_size] | |
self._shape = shape | |
return | |
# Check for removed dimensions. | |
if len(shape) < self.ndim: | |
tmp_shape = ( | |
self._shape[:len(shape) - 1] # Original shape without last axis | |
+ (-1,) # Last axis is used to flatten the array | |
+ (1,) * (self.ndim - len(shape)) # Pad with ones | |
) | |
tmp = self.reshape(tmp_shape) | |
self.coords = tmp.coords[:len(shape)] | |
self._shape = tmp.shape[:len(shape)] | |
# Handle truncation of existing dimensions. | |
is_truncating = any(old > new for old, new in zip(self.shape, shape)) | |
if is_truncating: | |
mask = np.logical_and.reduce([ | |
idx < size for idx, size in zip(self.coords, shape) | |
]) | |
if not mask.all(): | |
self.coords = tuple(idx[mask] for idx in self.coords) | |
self.data = self.data[mask] | |
self._shape = shape | |
resize.__doc__ = _spbase.resize.__doc__ | |
def toarray(self, order=None, out=None): | |
B = self._process_toarray_args(order, out) | |
fortran = int(B.flags.f_contiguous) | |
if not fortran and not B.flags.c_contiguous: | |
raise ValueError("Output array must be C or F contiguous") | |
if self.ndim > 2: | |
raise ValueError("Cannot densify higher-rank sparse array") | |
# This handles both 0D and 1D cases correctly regardless of the | |
# original shape. | |
M, N = self._shape_as_2d | |
coo_todense(M, N, self.nnz, self.row, self.col, self.data, | |
B.ravel('A'), fortran) | |
# Note: reshape() doesn't copy here, but does return a new array (view). | |
return B.reshape(self.shape) | |
toarray.__doc__ = _spbase.toarray.__doc__ | |
def tocsc(self, copy=False): | |
"""Convert this array/matrix to Compressed Sparse Column format | |
Duplicate entries will be summed together. | |
Examples | |
-------- | |
>>> from numpy import array | |
>>> from scipy.sparse import coo_array | |
>>> row = array([0, 0, 1, 3, 1, 0, 0]) | |
>>> col = array([0, 2, 1, 3, 1, 0, 0]) | |
>>> data = array([1, 1, 1, 1, 1, 1, 1]) | |
>>> A = coo_array((data, (row, col)), shape=(4, 4)).tocsc() | |
>>> A.toarray() | |
array([[3, 0, 1, 0], | |
[0, 2, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
""" | |
if self.ndim != 2: | |
raise ValueError("Cannot convert a 1d sparse array to csc format") | |
if self.nnz == 0: | |
return self._csc_container(self.shape, dtype=self.dtype) | |
else: | |
from ._csc import csc_array | |
indptr, indices, data, shape = self._coo_to_compressed(csc_array._swap) | |
x = self._csc_container((data, indices, indptr), shape=shape) | |
if not self.has_canonical_format: | |
x.sum_duplicates() | |
return x | |
def tocsr(self, copy=False): | |
"""Convert this array/matrix to Compressed Sparse Row format | |
Duplicate entries will be summed together. | |
Examples | |
-------- | |
>>> from numpy import array | |
>>> from scipy.sparse import coo_array | |
>>> row = array([0, 0, 1, 3, 1, 0, 0]) | |
>>> col = array([0, 2, 1, 3, 1, 0, 0]) | |
>>> data = array([1, 1, 1, 1, 1, 1, 1]) | |
>>> A = coo_array((data, (row, col)), shape=(4, 4)).tocsr() | |
>>> A.toarray() | |
array([[3, 0, 1, 0], | |
[0, 2, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
""" | |
if self.ndim != 2: | |
raise ValueError("Cannot convert a 1d sparse array to csr format") | |
if self.nnz == 0: | |
return self._csr_container(self.shape, dtype=self.dtype) | |
else: | |
from ._csr import csr_array | |
indptr, indices, data, shape = self._coo_to_compressed(csr_array._swap) | |
x = self._csr_container((data, indices, indptr), shape=self.shape) | |
if not self.has_canonical_format: | |
x.sum_duplicates() | |
return x | |
def _coo_to_compressed(self, swap): | |
"""convert (shape, coords, data) to (indptr, indices, data, shape)""" | |
M, N = swap(self.shape) | |
major, minor = swap(self.coords) | |
nnz = len(major) | |
# convert idx_dtype intc to int32 for pythran. | |
# tested in scipy/optimize/tests/test__numdiff.py::test_group_columns | |
idx_dtype = self._get_index_dtype(self.coords, maxval=max(self.nnz, N)) | |
major = major.astype(idx_dtype, copy=False) | |
minor = minor.astype(idx_dtype, copy=False) | |
indptr = np.empty(M + 1, dtype=idx_dtype) | |
indices = np.empty_like(minor, dtype=idx_dtype) | |
data = np.empty_like(self.data, dtype=self.dtype) | |
coo_tocsr(M, N, nnz, major, minor, self.data, indptr, indices, data) | |
return indptr, indices, data, self.shape | |
def tocoo(self, copy=False): | |
if copy: | |
return self.copy() | |
else: | |
return self | |
tocoo.__doc__ = _spbase.tocoo.__doc__ | |
def todia(self, copy=False): | |
if self.ndim != 2: | |
raise ValueError("Cannot convert a 1d sparse array to dia format") | |
self.sum_duplicates() | |
ks = self.col - self.row # the diagonal for each nonzero | |
diags, diag_idx = np.unique(ks, return_inverse=True) | |
if len(diags) > 100: | |
# probably undesired, should todia() have a maxdiags parameter? | |
warn("Constructing a DIA matrix with %d diagonals " | |
"is inefficient" % len(diags), | |
SparseEfficiencyWarning, stacklevel=2) | |
#initialize and fill in data array | |
if self.data.size == 0: | |
data = np.zeros((0, 0), dtype=self.dtype) | |
else: | |
data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype) | |
data[diag_idx, self.col] = self.data | |
return self._dia_container((data, diags), shape=self.shape) | |
todia.__doc__ = _spbase.todia.__doc__ | |
def todok(self, copy=False): | |
self.sum_duplicates() | |
dok = self._dok_container(self.shape, dtype=self.dtype) | |
# ensure that 1d coordinates are not tuples | |
if self.ndim == 1: | |
coords = self.coords[0] | |
else: | |
coords = zip(*self.coords) | |
dok._dict = dict(zip(coords, self.data)) | |
return dok | |
todok.__doc__ = _spbase.todok.__doc__ | |
def diagonal(self, k=0): | |
if self.ndim != 2: | |
raise ValueError("diagonal requires two dimensions") | |
rows, cols = self.shape | |
if k <= -rows or k >= cols: | |
return np.empty(0, dtype=self.data.dtype) | |
diag = np.zeros(min(rows + min(k, 0), cols - max(k, 0)), | |
dtype=self.dtype) | |
diag_mask = (self.row + k) == self.col | |
if self.has_canonical_format: | |
row = self.row[diag_mask] | |
data = self.data[diag_mask] | |
else: | |
inds = tuple(idx[diag_mask] for idx in self.coords) | |
(row, _), data = self._sum_duplicates(inds, self.data[diag_mask]) | |
diag[row + min(k, 0)] = data | |
return diag | |
diagonal.__doc__ = _data_matrix.diagonal.__doc__ | |
def _setdiag(self, values, k): | |
if self.ndim != 2: | |
raise ValueError("setting a diagonal requires two dimensions") | |
M, N = self.shape | |
if values.ndim and not len(values): | |
return | |
idx_dtype = self.row.dtype | |
# Determine which triples to keep and where to put the new ones. | |
full_keep = self.col - self.row != k | |
if k < 0: | |
max_index = min(M+k, N) | |
if values.ndim: | |
max_index = min(max_index, len(values)) | |
keep = np.logical_or(full_keep, self.col >= max_index) | |
new_row = np.arange(-k, -k + max_index, dtype=idx_dtype) | |
new_col = np.arange(max_index, dtype=idx_dtype) | |
else: | |
max_index = min(M, N-k) | |
if values.ndim: | |
max_index = min(max_index, len(values)) | |
keep = np.logical_or(full_keep, self.row >= max_index) | |
new_row = np.arange(max_index, dtype=idx_dtype) | |
new_col = np.arange(k, k + max_index, dtype=idx_dtype) | |
# Define the array of data consisting of the entries to be added. | |
if values.ndim: | |
new_data = values[:max_index] | |
else: | |
new_data = np.empty(max_index, dtype=self.dtype) | |
new_data[:] = values | |
# Update the internal structure. | |
self.coords = (np.concatenate((self.row[keep], new_row)), | |
np.concatenate((self.col[keep], new_col))) | |
self.data = np.concatenate((self.data[keep], new_data)) | |
self.has_canonical_format = False | |
# needed by _data_matrix | |
def _with_data(self, data, copy=True): | |
"""Returns a matrix with the same sparsity structure as self, | |
but with different data. By default the index arrays are copied. | |
""" | |
if copy: | |
coords = tuple(idx.copy() for idx in self.coords) | |
else: | |
coords = self.coords | |
return self.__class__((data, coords), shape=self.shape, dtype=data.dtype) | |
def sum_duplicates(self) -> None: | |
"""Eliminate duplicate entries by adding them together | |
This is an *in place* operation | |
""" | |
if self.has_canonical_format: | |
return | |
summed = self._sum_duplicates(self.coords, self.data) | |
self.coords, self.data = summed | |
self.has_canonical_format = True | |
def _sum_duplicates(self, coords, data): | |
# Assumes coords not in canonical format. | |
if len(data) == 0: | |
return coords, data | |
# Sort coords w.r.t. rows, then cols. This corresponds to C-order, | |
# which we rely on for argmin/argmax to return the first index in the | |
# same way that numpy does (in the case of ties). | |
order = np.lexsort(coords[::-1]) | |
coords = tuple(idx[order] for idx in coords) | |
data = data[order] | |
unique_mask = np.logical_or.reduce([ | |
idx[1:] != idx[:-1] for idx in coords | |
]) | |
unique_mask = np.append(True, unique_mask) | |
coords = tuple(idx[unique_mask] for idx in coords) | |
unique_inds, = np.nonzero(unique_mask) | |
data = np.add.reduceat(data, unique_inds, dtype=self.dtype) | |
return coords, data | |
def eliminate_zeros(self): | |
"""Remove zero entries from the array/matrix | |
This is an *in place* operation | |
""" | |
mask = self.data != 0 | |
self.data = self.data[mask] | |
self.coords = tuple(idx[mask] for idx in self.coords) | |
####################### | |
# Arithmetic handlers # | |
####################### | |
def _add_dense(self, other): | |
if other.shape != self.shape: | |
raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})') | |
dtype = upcast_char(self.dtype.char, other.dtype.char) | |
result = np.array(other, dtype=dtype, copy=True) | |
fortran = int(result.flags.f_contiguous) | |
M, N = self._shape_as_2d | |
coo_todense(M, N, self.nnz, self.row, self.col, self.data, | |
result.ravel('A'), fortran) | |
return self._container(result, copy=False) | |
def _matmul_vector(self, other): | |
result_shape = self.shape[0] if self.ndim > 1 else 1 | |
result = np.zeros(result_shape, | |
dtype=upcast_char(self.dtype.char, other.dtype.char)) | |
if self.ndim == 2: | |
col = self.col | |
row = self.row | |
elif self.ndim == 1: | |
col = self.coords[0] | |
row = np.zeros_like(col) | |
else: | |
raise NotImplementedError( | |
f"coo_matvec not implemented for ndim={self.ndim}") | |
coo_matvec(self.nnz, row, col, self.data, other, result) | |
# Array semantics return a scalar here, not a single-element array. | |
if isinstance(self, sparray) and result_shape == 1: | |
return result[0] | |
return result | |
def _matmul_multivector(self, other): | |
result_dtype = upcast_char(self.dtype.char, other.dtype.char) | |
if self.ndim == 2: | |
result_shape = (other.shape[1], self.shape[0]) | |
col = self.col | |
row = self.row | |
elif self.ndim == 1: | |
result_shape = (other.shape[1],) | |
col = self.coords[0] | |
row = np.zeros_like(col) | |
else: | |
raise NotImplementedError( | |
f"coo_matvec not implemented for ndim={self.ndim}") | |
result = np.zeros(result_shape, dtype=result_dtype) | |
for i, other_col in enumerate(other.T): | |
coo_matvec(self.nnz, row, col, self.data, other_col, result[i:i + 1]) | |
return result.T.view(type=type(other)) | |
def _ravel_coords(coords, shape, order='C'): | |
"""Like np.ravel_multi_index, but avoids some overflow issues.""" | |
if len(coords) == 1: | |
return coords[0] | |
# Handle overflow as in https://github.com/scipy/scipy/pull/9132 | |
if len(coords) == 2: | |
nrows, ncols = shape | |
row, col = coords | |
if order == 'C': | |
maxval = (ncols * max(0, nrows - 1) + max(0, ncols - 1)) | |
idx_dtype = get_index_dtype(maxval=maxval) | |
return np.multiply(ncols, row, dtype=idx_dtype) + col | |
elif order == 'F': | |
maxval = (nrows * max(0, ncols - 1) + max(0, nrows - 1)) | |
idx_dtype = get_index_dtype(maxval=maxval) | |
return np.multiply(nrows, col, dtype=idx_dtype) + row | |
else: | |
raise ValueError("'order' must be 'C' or 'F'") | |
return np.ravel_multi_index(coords, shape, order=order) | |
def isspmatrix_coo(x): | |
"""Is `x` of coo_matrix type? | |
Parameters | |
---------- | |
x | |
object to check for being a coo matrix | |
Returns | |
------- | |
bool | |
True if `x` is a coo matrix, False otherwise | |
Examples | |
-------- | |
>>> from scipy.sparse import coo_array, coo_matrix, csr_matrix, isspmatrix_coo | |
>>> isspmatrix_coo(coo_matrix([[5]])) | |
True | |
>>> isspmatrix_coo(coo_array([[5]])) | |
False | |
>>> isspmatrix_coo(csr_matrix([[5]])) | |
False | |
""" | |
return isinstance(x, coo_matrix) | |
# This namespace class separates array from matrix with isinstance | |
class coo_array(_coo_base, sparray): | |
""" | |
A sparse array in COOrdinate format. | |
Also known as the 'ijv' or 'triplet' format. | |
This can be instantiated in several ways: | |
coo_array(D) | |
where D is an ndarray | |
coo_array(S) | |
with another sparse array or matrix S (equivalent to S.tocoo()) | |
coo_array(shape, [dtype]) | |
to construct an empty sparse array with shape `shape` | |
dtype is optional, defaulting to dtype='d'. | |
coo_array((data, coords), [shape]) | |
to construct from existing data and index arrays: | |
1. data[:] the entries of the sparse array, in any order | |
2. coords[i][:] the axis-i coordinates of the data entries | |
Where ``A[coords] = data``, and coords is a tuple of index arrays. | |
When shape is not specified, it is inferred from the index arrays. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the sparse array | |
shape : tuple of integers | |
Shape of the sparse array | |
ndim : int | |
Number of dimensions of the sparse array | |
nnz | |
size | |
data | |
COO format data array of the sparse array | |
coords | |
COO format tuple of index arrays | |
has_canonical_format : bool | |
Whether the matrix has sorted coordinates and no duplicates | |
format | |
T | |
Notes | |
----- | |
Sparse arrays can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the COO format | |
- facilitates fast conversion among sparse formats | |
- permits duplicate entries (see example) | |
- very fast conversion to and from CSR/CSC formats | |
Disadvantages of the COO format | |
- does not directly support: | |
+ arithmetic operations | |
+ slicing | |
Intended Usage | |
- COO is a fast format for constructing sparse arrays | |
- Once a COO array has been constructed, convert to CSR or | |
CSC format for fast arithmetic and matrix vector operations | |
- By default when converting to CSR or CSC format, duplicate (i,j) | |
entries will be summed together. This facilitates efficient | |
construction of finite element matrices and the like. (see example) | |
Canonical format | |
- Entries and coordinates sorted by row, then column. | |
- There are no duplicate entries (i.e. duplicate (i,j) locations) | |
- Data arrays MAY have explicit zeros. | |
Examples | |
-------- | |
>>> # Constructing an empty sparse array | |
>>> import numpy as np | |
>>> from scipy.sparse import coo_array | |
>>> coo_array((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> # Constructing a sparse array using ijv format | |
>>> row = np.array([0, 3, 1, 0]) | |
>>> col = np.array([0, 3, 1, 2]) | |
>>> data = np.array([4, 5, 7, 9]) | |
>>> coo_array((data, (row, col)), shape=(4, 4)).toarray() | |
array([[4, 0, 9, 0], | |
[0, 7, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 5]]) | |
>>> # Constructing a sparse array with duplicate coordinates | |
>>> row = np.array([0, 0, 1, 3, 1, 0, 0]) | |
>>> col = np.array([0, 2, 1, 3, 1, 0, 0]) | |
>>> data = np.array([1, 1, 1, 1, 1, 1, 1]) | |
>>> coo = coo_array((data, (row, col)), shape=(4, 4)) | |
>>> # Duplicate coordinates are maintained until implicitly or explicitly summed | |
>>> np.max(coo.data) | |
1 | |
>>> coo.toarray() | |
array([[3, 0, 1, 0], | |
[0, 2, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
""" | |
class coo_matrix(spmatrix, _coo_base): | |
""" | |
A sparse matrix in COOrdinate format. | |
Also known as the 'ijv' or 'triplet' format. | |
This can be instantiated in several ways: | |
coo_matrix(D) | |
where D is a 2-D ndarray | |
coo_matrix(S) | |
with another sparse array or matrix S (equivalent to S.tocoo()) | |
coo_matrix((M, N), [dtype]) | |
to construct an empty matrix with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
coo_matrix((data, (i, j)), [shape=(M, N)]) | |
to construct from three arrays: | |
1. data[:] the entries of the matrix, in any order | |
2. i[:] the row indices of the matrix entries | |
3. j[:] the column indices of the matrix entries | |
Where ``A[i[k], j[k]] = data[k]``. When shape is not | |
specified, it is inferred from the index arrays | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the matrix | |
shape : 2-tuple | |
Shape of the matrix | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
COO format data array of the matrix | |
row | |
COO format row index array of the matrix | |
col | |
COO format column index array of the matrix | |
has_canonical_format : bool | |
Whether the matrix has sorted indices and no duplicates | |
format | |
T | |
Notes | |
----- | |
Sparse matrices can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the COO format | |
- facilitates fast conversion among sparse formats | |
- permits duplicate entries (see example) | |
- very fast conversion to and from CSR/CSC formats | |
Disadvantages of the COO format | |
- does not directly support: | |
+ arithmetic operations | |
+ slicing | |
Intended Usage | |
- COO is a fast format for constructing sparse matrices | |
- Once a COO matrix has been constructed, convert to CSR or | |
CSC format for fast arithmetic and matrix vector operations | |
- By default when converting to CSR or CSC format, duplicate (i,j) | |
entries will be summed together. This facilitates efficient | |
construction of finite element matrices and the like. (see example) | |
Canonical format | |
- Entries and coordinates sorted by row, then column. | |
- There are no duplicate entries (i.e. duplicate (i,j) locations) | |
- Data arrays MAY have explicit zeros. | |
Examples | |
-------- | |
>>> # Constructing an empty matrix | |
>>> import numpy as np | |
>>> from scipy.sparse import coo_matrix | |
>>> coo_matrix((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> # Constructing a matrix using ijv format | |
>>> row = np.array([0, 3, 1, 0]) | |
>>> col = np.array([0, 3, 1, 2]) | |
>>> data = np.array([4, 5, 7, 9]) | |
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray() | |
array([[4, 0, 9, 0], | |
[0, 7, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 5]]) | |
>>> # Constructing a matrix with duplicate coordinates | |
>>> row = np.array([0, 0, 1, 3, 1, 0, 0]) | |
>>> col = np.array([0, 2, 1, 3, 1, 0, 0]) | |
>>> data = np.array([1, 1, 1, 1, 1, 1, 1]) | |
>>> coo = coo_matrix((data, (row, col)), shape=(4, 4)) | |
>>> # Duplicate coordinates are maintained until implicitly or explicitly summed | |
>>> np.max(coo.data) | |
1 | |
>>> coo.toarray() | |
array([[3, 0, 1, 0], | |
[0, 2, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 1]]) | |
""" | |
def __setstate__(self, state): | |
if 'coords' not in state: | |
# For retro-compatibility with the previous attributes | |
# storing nnz coordinates for 2D COO matrix. | |
state['coords'] = (state.pop('row'), state.pop('col')) | |
self.__dict__.update(state) | |